
Pan et al. 
Chinese Journal of Mechanical Engineering           (2024) 37:41  
https://doi.org/10.1186/s10033-024-01021-9

ORIGINAL ARTICLE Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Chinese Journal of Mechanical Engineering

Real-Time Intelligent Diagnosis 
of Co-frequency Vibration Faults in Rotating 
Machinery Based on Lightweight-Convolutional 
Neural Networks
Xin Pan1,2*  , Xiancheng Zhang1, Zhinong Jiang1,2 and Guangfu Bin3 

Abstract 

The co-frequency vibration fault is one of the common faults in the operation of rotating equipment, and realizing the real-
time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying 
out vibration suppression of the equipment. In engineering scenarios, co-frequency vibration faults are highlighted by rota-
tional frequency and are difficult to identify, and existing intelligent methods require more hardware conditions and are 
exclusively time-consuming. Therefore, Lightweight-convolutional neural networks (LW-CNN) algorithm is proposed in this 
paper to achieve real-time fault diagnosis. The critical parameters are discussed and verified by simulated and experimental 
signals for the sliding window data augmentation method. Based on LW-CNN and data augmentation, the real-time intel-
ligent diagnosis of co-frequency is realized. Moreover, a real-time detection method of fault diagnosis algorithm is proposed 
for data acquisition to fault diagnosis. It is verified by experiments that the LW-CNN and sliding window methods are used 
with high accuracy and real-time performance.

Keywords Co-frequency vibration, Real-time diagnosis, LW-CNN, Data augmentation

1   Introduction
Co-frequency vibration, which is dominated by the rota-
tional vibration component, is the most common form 
of vibration defects in rotating machinery. Co-frequency 
vibration accounts for approximately 70% of rotating 
equipment vibration failures, according to statistical data. 
When a severe vibration defect arises and the vibration 

signal is measured to be dominated by co-frequency com-
ponents, balancing is often performed on-site or the rotor 
is sent to the factory. If the underlying source of a vibration 
defect is not identified, the vibration fault cannot be eradi-
cated after reassembly, which not only wastes production 
time but is also inefficient. In addition, incorrect assembly 
might introduce new flaws, which further compounds the 
problem. With the growth of intelligent equipment, self-
diagnosis of the equipment has become a necessity [1, 2]. 
Self-recovery regulatory systems such as active balancing 
and automatic balancing algorithms and shafting align-
ment algorithm to suppress and locate excessive vibration 
require real-time fault diagnostics [3, 4].

A variety of faults will increase the co-frequency vibra-
tion, such as imbalance, misalignment, and looseness. 
In engineering contexts, it is simple to attribute co-fre-
quency vibration faults to unbalance, making it easy to 
identify the fault state but challenging to identify the 
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fault category. Methods for rotating equipment problem 
diagnosis can be split into three categories: Vibration 
model, signal processing, and intelligent algorithm [5]. 
The methods based on vibration models, such as employ-
ing the finite element method to establish the dynam-
ics equations of the rotor-bearing-foundation systems 
[6, 7], and identifying faults by calculating the residual 
forces of faults [8], but the kinetic parameters of various 
equipment vary greatly and are partially random. Fault 
diagnosis methods based on signal processing, such as 
the empirical mode decomposition (EMD) algorithm, 
decomposing vibration signals into intrinsic mode func-
tions (IMFs) [9], and ensemble empirical mode decom-
position (EEMD) [10], need to be improved in different 
application scenarios [11–13], and the process of extract-
ing IMFs is time-consuming in loop iteration.

Combining the intelligent algorithm’s adaptability and 
processing precision with the signal processing approach 
makes the algorithm more applicable. Support vec-
tor machine (SVM) and convolutional neural network 
(CNN) are two intelligent defect diagnosis algorithms. 
Linear SVM is a type of binary classification model 
whose fundamental model is a linear classifier with the 
biggest interval in the feature space, which has the advan-
tages of broad applicability and quick training. Pei et al. 
[14] introduced a joint optimization of SVM and non-
dominated sorting genetic algorithm II for the target, and 
the performance of the jointly optimized classifier was 
at least 99.9%. Ahmad et al. [15] proposed two new fac-
tors for axis misalignment that occurs during overload 
and employed SVM for fault identification, which has a 
high degree of accuracy in practice. In the fields of image 
processing and fault diagnostics, the traditional CNN 
has found widespread application. Both Wang et al. [16] 
and Li et al. [17] detected motor bearing vibration fault 
signals under changing loads using CNN as a classifier. 
Nowadays, gearbox and bearing fault diagnosis comprise 
the majority of rotating equipment fault diagnosis [11, 
18, 19], and these fault signal characteristics are accom-
panied by shock signals.

The majority of fault diagnosis studies utilizing deep 
learning approaches focus on fault signals with impact 
characteristics, whereas real-time diagnostic investiga-
tions for co-frequency faults have not been published 
domestically or internationally. The co-frequency faults 
of rotating machinery, such as unbalance, misalign-
ment, and looseness, are frequently characterized by a 
single spectral characteristic, vibration without shock, 
and vibration energy values that are close to one another 
under the same working condition, making them dif-
ficult to differentiate using conventional spectrograms. 
As explained in Section  2.1, the reasons of misalign-
ment fault are different, but the misalignment fault is 

evident from the vibration mechanism [8]. In the mean-
time, there is always more than one problem particular 
to distinct rotor system damping, stiffness, and instal-
lation conditions, thus the effect of the spectrum graph 
is obscure. The classification method employs machine 
learning and deep learning techniques to extract the sig-
nal characteristics of these co-frequency defects from a 
high-dimensional space or a deep network. In engineer-
ing settings, the majority of the data collected throughout 
the collection process is normal data, while the fault data 
is rather tiny, necessitating the need for logical data aug-
mentation. The initial vibration signal in the time domain 
is intercepted by sliding window processing and can be 
utilized immediately for classifier. Significant sliding win-
dow data augmentation method parameters are explored 
and statistically analyzed in this article.

Lightweight-convolutional neural networks (LW-CNN) 
is proposed in this paper, which minimizes the number of 
layers and parameters to accomplish real-time diagnosis. 
The CNN structure consists primarily of input and out-
put layers as well as an intermediate convolutional-pool-
ing layer. The LW-CNN suggested in this study, however, 
reduces the number of convolutional pooling layers while 
maintaining accuracy.

This paper is organized as follows: In Section 2, a sum-
mary of the mechanism of co-frequency faults in rotat-
ing machinery is made; meanwhile, the principle of the 
co-frequency fault diagnosis algorithm LW-CNN and 
SVM is introduced. In Section  3, the method of real-
time diagnosis of co-frequency faults and its evaluation 
method are proposed, as well as the method of data pre-
processing. In Section 4, developed experiments are used 
to validate the performance of the real-time intelligent 
diagnosis approach based on the LW-CNN. Finally, the 
conclusions are in Section 5.

2  Rotating Machinery Failure Mechanism 
and Intelligent Algorithms

The common rotating equipments such as pumps, com-
pressors, fans, etc., are composed of four parts: rotor 
system, bearing support, seals and other accessories. 
The rotor is supported by the bearing in the process of 
movement, the impeller interact with fluid materials, 
the motor rotor is affected by electromagnetic field and 
coupling. In short, the rotor-bearing system is affected 
by centrifugal force, gravity, magnetic force, and inter-
action between rigid bodies and fluid. The causes of the 
co-frequency vibration are complex and often result from 
the comprehensive action of many factors. The common 
causes are as shown in Figure 1.

The co-frequency vibration of rotating machinery is not 
always caused by rotor unbalance but also may be due to 
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poor alignment, bearing problems, improper clearance of 
bearing shell, or other reasons. The co-frequency vibra-
tion excitation force mainly comes from the radial rotation 
vector caused by rotor shaft system, bearing failure, inter-
action between the rotor and stator or transmission parts, 
shell vibration and resonance, etc. The locations of the 
rotor system unbalance, misalignment and looseness fault 
are shown in Figure 2.

2.1  Comparison Faults Mechanism and Actual Faults 
Signal

Unbalance: Typical fault of radial rotation vector caused 
by the rotor itself is unbalance fault. When the rotor 
has an unbalance fault, i.e., the center of mass and rota-
tion do not coincide, the dynamic unbalance caused by 

centrifugal force always has obvious response in each 
rotation. The intense response at the rotor bending criti-
cal speed, which is also related to the unbalance posi-
tion. The mass eccentric m causes the bearing to suffer 
the same rotational periodic ω force, as shown in Eq. (1), 
where e is the eccentricity.

Misalignment: Rotating machinery needs couplings to 
transmit forces and moments. The axis often has a certain 
misalignment, when the rotor is running under loads. In 
general, rotors always have center and angular misalign-
ment, and couplings can overcome misalignment to a 
lesser extent. However, if the misalignment exceeds a cer-
tain level, the performance of the bearing will be affected.

Any point in the coupling moves around the center of 
the shaft from a to b by an angle ω′t , the offset is �y.

Then, the trajectory of O’ is expressed as follows and is 
shown in Figure 3.

(1)F =meω2.

(2)
x =

�y

2
sin(ω′t − ϕ′) =

�y

2
sin(2ωt − 2ϕ),

y =
�y

2
cos(ω′t − ϕ′) =

�y

2
cos(2ωt − 2ϕ).

Figure 1 Typical vibration of rotating machinery

Figure 2 Schematic diagram of the location of unbalance, 
misalignment and looseness fault in a rotor system
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Expression of exciting force:

In the case of only central misalignment, the radial 
vibration frequency caused by the misaligned excited 
rotor is twice the rotational frequency, with a large of 
harmonic components.

Looseness: It is a kind of fault caused by the existence 
of gaps or insufficient rigidity of the connection at the 
joint surface of the rotor support system, resulting in low 
mechanical damping and excessive vibration in opera-
tion. Looseness, unbalance, and misalignment faults can 
all lead to co-frequency vibrations in the rotor system. 
Loose rotor support parts make the connection stiffness 
and mechanical damping decrease, assuming that the gap 
is � , the mass converted to the rotor disc is recorded as 
C0 , the rotor’s equation of motion is as follows:

where x is the displacement of disc mass, k is the rotor 
support stiffness, and M is the disc mass.

Harmonic analysis of the above equation shows that 
the rotor support system is non-linear, the vibration 
response contains the co-frequency signal, and 2X, 3X 
and other high and low harmonics, in which X is the 
rotational frequency.

(3)
Fx = 2m�yω2 sin(2ωt − 2ϕ),

Fy = 2m�yω2 cos(2ωt − 2ϕ).

(4)

M
•
x+k

••
x = F(x)+ Qx,

F(x) =







kC0, x > C0,

kx, −C0 < x < C0,

−kC0, x < −C0,

However, although all the above analyses provide a 
reference direction for the co-frequency fault diagno-
sis, the actual collected co-frequency fault signals are 
unsatisfactory. As shown in Figure  4, the high ampli-
tude frequency is basically concentrated in power 
frequency and 2X. The amplitude changes of differ-
ent measurement points under the same fault and the 
amplitude changes of the same measurement point 
under different faults are irregular.

2.2  Intelligent Diagnosis Algorithm
CNN and SVM are classical classification methods in the 
fault diagnosis field. Different convolutional structures, 
convolutional kernels number, convolutional kernel steps, 
the size of fully connected layers, and different normaliza-
tion methods, etc., form different CNN. SVM combines 
other probabilistic conditions [20] or, after combining 
multiple SVMs, forms different improved SVM [11, 21]. 
The following briefly describes CNN and SVM principles 
and signal processing.

2.2.1  CNN and LW‑CNN
CNN, a kind of neural network containing convolution 
computation, gets feature maps by convolution window 
sliding. After that, the feature map used to represent 
input data features will be obtained, then the pooling 
calculation is carried out, which calculate through a 
sliding window without weight.

The 2D convolution is defined as follows:

where z is the result of the convolution of x on k(u, v) , i 
and j are the two directions respectively. For an l convo-
lutional layer, given the input feature map size is (m×m) , 
the convolutional kernel size is (n× n) , and the output of 
the layer is:

Using average pooling method, the weight of each 
convolution kernel is �l+1 , and the output of the pool-
ing layer with convolution adds the bias as shown in 
Eq. (7):

(5)z(u, v) =

∞
∑

i=−∞

∞
∑

j=−∞

xi,j · ku−i,v−j ,

(6)

zlu,v =

∞
∑

i=−∞

∞
∑

j=−∞

yl−1
i+u,j+v · k

l
rot,u−i,v−j · δ(i, j),

δ(i, j) =

{

1, 0 ≤ i, j ≤ n,
0, otherwise.

Figure 3 Trajectory of O′
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Figure 4 Spectrograms of different actual fault signals under different measurement points: (a) Misalignment, (b) Unbalance, (c) Looseness, (d) 
Normal
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Figure 4 continued
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The pooling layer has two functions, one is to allow fur-
ther feature extraction to reduce the number of weight 
parameters, and the other is to make the input to the 
network with translation without distortion. Key differ-
ences between CNNs and traditional neural networks are 
reflected in local connectivity, shared weights, and spatial 
pooling [22]. These differences also allow CNN to have 
better translation invariance, fewer parameters, and bet-
ter generalization performance of the model compared to 
previous neural networks.

CNN was widely used in computer vision and natural 
language recognition and are also prevalent in fault diag-
nosis. In recent years, CNN has made great progress in 
its development, among which AlexNet, VGGNet, Goog-
LeNet, and ResNet [23–26] are all representative deep 
networks based on CNN. These methods have hundreds 
of layers, billions of parameters and require a long train-
ing cycle and expensive hardware, thus not acceptable 
for researchers who want to know test results quickly. 
The fewer the layers of neural networks, the simpler the 
structure, the fewer the training parameters, and the 
shorter the training time, the shorter the prediction time 
of the trained network, so the lightweight neural network 
should be considered.

The CNN model mainly consists of convolutional, 
pooling, and fully connected layers, and Figure 5 shows 
a LW-CNN model with five hidden layers after the vibra-
tion signal is processed. As shown in Figure 4, the 5 hid-
den layers of CNN are the convolutional layer Conv 1 
(first hidden layer), Pooling layer 1 (second hidden layer), 
convolutional layer Conv 2 (third hidden layer), Pooling 
layer 2 (fourth hidden layer) and fully connected (FC) 
layer (fifth hidden layer).

(7)
zl+1
i,j = �

l+1
(i+1)d−1
∑

u=id

(j+1)d−1
∑

v=jd

yl+1
u,v + bl+1,

yl+1
u,v = f (zl+1

i,j ).

2.2.2  SVM
Assume that the input space and feature space of SVM are 
two different spaces, where the input space is an Euclidean 
space or discrete set and the feature space is an Euclidean 
space or Hilbert space. Assume that the elements of the 
two spaces, linear separable SVM and linear SVM, are in 
one-to-one correspondence, and map the inputs of the 
input space to the feature vectors of the feature space.

Rotor fault features are basically nonlinear, and a non-
linear SVM, i.e., a ticked SVM, is required to achieve fault 
type classification. Assuming that there exists a mapping 
relationship ϕ from the input space to the Hilbert feature 
space, the kernel function satisfies Eq. (8):

The input space corresponds to the Hilbert space, i.e., Η, 
so that the original high-dimensional hypersurface in the 
input space is transformed into a hyperplane in the feature 
space, thus achieving nonlinear distribution classification 
[27]. For SVM with kernel functions, the process is essen-
tially the same as for linear SVM, and the presence of the 
mapping relationship makes the hyperplane equation, as 
shown in Eq. (9):

Similar to linear SVM, the optimization model Eq. (10) at 
this time can be found:

where ω is the margin, as shown in Figure 6, ϕ is the lin-
ear expression and b is the linear expression intercept. 
To obtain the dual problem under nonlinearity, the inner 
product of xi and xj can be equal to the value in the origi-
nal sample space by the kernel function K

(

xi, xj
)

 , which 
greatly reduces the computational difficulty, and the dual 
problem is shown in Eq. (11):

(8)K (x, z) = ϕ(x) · ϕ(z).

(9)f (x) = ωTϕ(x)+ b.

(10)
min
ω,b

1

2
�ω�2,

s.t., yi

(

ωTϕ(xi)+ b
)

≥ 1, i = 1, 2, ..., m,

Figure 5 Signal processing and LW-CNN structure
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After solving α by the above equation, ω and b can be 
found subsequently. The solution leads to the hyper-
plane equation:

From the above calculation process, the appropriate 
form of ϕ(x) is crucial for the kernel function K  . It is 
known from the kernel theorem that any kernel func-
tion implicitly defines a reproducing kernel Hilbert 
feature space. The choice of kernel function causes the 
biggest difference in SVM. The commonly used ker-
nel functions are linear kernel function, polynomial 
kernel function, Gaussian kernel function, Laplacian 
kernel, and Sigmoid kernel function, among which the 
RBF kernel function is the most commonly used ker-
nel function with strong adaptability and the low num-
ber of parameters. With the development of machine 
learning, SVM as a common classification method has 
been used extensively, and for a more detailed deriva-
tion of formulas in SVM in Ref. [28].

(11)

max
α

m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjK
(

xi, xj
)

,

s.t.,

m
∑

i=1

αiyi = 0,

αi ≥ 0, i = 1, 2, ..., m.

(12)

f (x) = ωTx + b

=

m
∑

i=1

αiyiϕ(x)
Tϕ(xi)+ b

=

m
∑

i=1

αiyiK (x, xi)+ b.

3  Real‑Time Diagnosis Method of Co‑Frequency 
Faults

3.1  Basic Principle
As mentioned above, the actual co-frequency vibra-
tion faults do not have obvious characteristics in time 
and frequency domains, and the types of faults are often 
not directly determined by spectrum maps. However, 
deep learning methods are able to extract deep features 
and implicit features of faults, and these features do not 
give a specific physical meaning interpretation because 
the feature extraction process in deep learning methods 
is a black-box process. The co-frequency fault diagnosis 
method using the deep learning method is shown in Fig-
ure 7. When the raw data is pre-processed, the bad points 
in the measurement process are removed, and the data is 
collated into a suitable format and sent to the model for 
training.

The traditional offline fault diagnosis often relies on 
specialized knowledge to extract signal or mechanism 
features. However, these feature extractions often require 
an iterative processfor each diagnosis process. In con-
trast, real-time fault algorithms are more time-consum-
ing during training, but the diagnosis is very fast after the 
training is completed and is fully real-time.

3.2  Data Preprocessing
After normalizing the continuous vibration signals 
S1, S2, · · · , Sn , the data augmentation process is per-
formed on Si . The rotor speed is n, the sampling fre-
quency during the experiment is Fs, and the row and 
each sample’s row and column size is Nf  . The sample size 
N 2
f  is the nearest positive integer of sampling points per 

full turn at the rotate speed n.

Figure 6 Margin in SVM

Figure 7 Co-frequency vibration fault diagnosis diagram
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The window slides on the time-domain signals Si , and 
the feature can be ignored when the window slides to 
the end of the last occurrence of insufficient points. 
Different move steps and after several iterations can 
generate a large amount of data to train the model, as 
shown in Figure  8. In the process of sliding the win-
dow to generate data, the size of sliding window step 
and window size are two important parameters, and the 
sliding window step is expressed as the ratio of window 
step and window size (RWW). The correlation coeffi-
cient (CC) of the time-domain signal is used to quan-
titatively characterize the correlation of the data before 
and after the data augmentation. If the autocorrelation 
coefficient is close to 1 and the interrelationship is low, 
the data after data augmentation can be used. From sta-
tistical knowledge, the relationship between the magni-
tude of the correlation coefficient and the strength of 
the correlation is shown in Table 1.

Two different simulated signals are considered to vary 
mainly in terms of frequency, amplitude, initial phase 

(13)
[

60Fs

n

]

≤ N 2
f .

and noise intensity. The simulated Signal i is character-
ized by the following equation:

where di is the offset and ni denotes the signal noise, 
which is expressed by different signal-to-noise ratios 
(SNR) in the simulation experiment. Two sets of simu-
lated signals, Sig. 1 and Sig. 2, are set up with the param-
eters shown in Table 2, and time domain plots are shown 
in Figure  9. The results of the correlation analysis done 
for the signals under different RWWs are shown in Fig-
ure  10. From Figure  10, the autocorrelation coefficients 
of the two signals under different RWW are above 0.8, 
and the mutual correlation number is about 0.5, which is 
medium to low correlation. Therefore, the requirements 
for the data can be satisfied under different RWWs.

3.3  Real‑Time Performance Evaluation Method
In order to verify the applicability of the proposed 
algorithm to online fault diagnosis, the real-time per-
formance of the algorithm needs to be tested. The open-
source environment of Python, TensorFlow, and other 
modules are updated and iterated rapidly to facilitate fur-
ther improvement of algorithms. In this paper, the algo-
rithm is divided into the following parts: normalization 
of the original data, transformation into standard data, 
and the classification process in the classifier.

Aiming to test the real-time performance of the algo-
rithm, the number of samples needs to be changed. There 
are 3 ways to increase the sample points: a) Add one 
point each time in the sample features based on a certain 
number from the original data points; b) add one sample 

(14)Sig. i = Ai sin(2π fi + ϕi)+ di + ni,

Figure 8 Schematic of data augmentation by sliding window 
processing method

Table 1 Relationship between the correlation coefficient and 
the degree of correlation

Value of CC Degree of relevance

0.8 ≤ CC<1 High

0.5 ≤ CC < 0.8 Moderate

0.3 ≤ CC < 0.5 Low

0 ≤ CC < 0.3 Very weak

Table 2 Simulated signal settings

fi (Hz) Ai ϕi di SNR (dB) Sampling Points Fs (Hz)

Sig. 1 30 2 0° 0 15 16384 25600

Sig. 2 30 4 90° 2 10 16384 25600

Figure 9 Time domain mapping of Sig. 1 and Sig. 2
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feature size  (L2) each time based on a certain number 
from the original data points; c) add the number of sam-
pling points  (L1) in each sampling time. The fault diag-
nosis time within each sampling time is tested to ensure 
that the algorithm time is much less than the sampling 
time. Figure 11 illustrates the above 3 methods.

4  Experimental Verification
Specific experiments are used to verify the above process. 
The experimental procedure is shown in Figure 12.

4.1  Experiment Preparation
The rotor test bench shown in Figure 13 mainly verifies 
this experimental verification. The test bench is driven 
by a motor, and the first-order critical speed of the actual 
test bench rotor is about 2700 r/min. Both ends of the 
rotor are supported by sliding bearings, and various 
faults are simulated on the experimental bench. A simple 
diagram of the test bench is shown in Figure 13(b), which 
clearly shows the location of the fault and sensor posi-
tion. The experimental data was collected by BH7000. 
Misalignment fault is simulated and measured by adjust-
ing a micrometer screw at the coupling position; unbal-
ance fault is to add a fixed mass of counterweight block 
to the 0 phase; loose fault is to loosen the screw on the 

bearing support side of the rear end, the test bench fault 
simulation is shown in Figure 14.

The actual faults often do not occur in isolation, and the 
same type of failure also has different causes of failure; 
in most cases, one fault is dominant, and others coexist. 

Figure 10 Autocorrelation coefficients and intercorrelation numbers 
of Sig. 1 and Sig. 2 at different RWW 

Figure 11 Schematic diagram of real-time data addition method: (a) 
Method a, (b) Method b, (c) Method c

Figure 12 Flowchart of diagnosis process

Figure 13 Rotor failure test bench: (a) Actual rotor test bench, (b) 
Schematic diagram of rotor test bench
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Hence the dynamic balance and alignment of the test rig 
should be completed before fault data collection, regarded 
as experimental data only if the test bench vibration value 
is in the acceptable range. After each fault simulation test, 
the fault is removed instead of repeating the dynamic bal-
ancing and alignment experiments on the test bench, and 
the trial continues with the following fault. By this opera-
tion, each major fault contains more than one faults.

Misalignment fault point is set close to the coupling 
position because the vibration intensity at the free end is 
greater when the rotor vibrates, also in loose fault experi-
ment. For unbalance fault, the same unbalance is added 
to the middle of the shaft position to provoke greater 
vibration. To ensure that the unbalance fault in the exper-
iment is not significantly different from other faults, the 
unbalance fault is applied at the motor side. The param-
eters of each fault in this experiment are shown in Table 3 
and experiment is conducted at a constant speed of 1800 
r/min (slightly below the first-order critical speed). The 
sampling frequency Fs and sampling points Ns are 25.6 
kHz and 16384, respectively. The amount of data col-
lected is shown in Table 4.

4.2  Experimental Data Processing
After processing the data sampled from different faults, 
different measurement points, and the same time point, 
the time domain waveforms are shown in Figure  15, 
where CH1−CH4 respectively represent sensors 1ha, 
1va, 2ha, 2va. The time domain waveforms are filtered by 
sampling moving average, filtering higher frequency. The 
time domain waveform from filtered data are shown in 
Figure  16. The frequency domain plot is shown in Sec-
tion 2.1. Based on the time domain and frequency spec-
trum, the 3 faults are highly similar.

As mentioned in the previous section, the sliding win-
dow method is adopted for data argumentation, the win-
dow size in this experiment is 900. The training and test 
sets use using 3/4 and 1/2 RWW, and the validation set 
uses using 1/3 RWW for one of the measurement points, 
so the size of the resulting data set is shown in Table 5. 
The autocorrelation coefficients and intercorrelation 
numbers under different RWWs are shown in Figures 17 
and 18.

Figure 14 The actual form of fault simulation used in this 
experiment: (a) Misalignment, (b) Unbalance, (c) Looseness

Table 3 Experimental fault type, magnitude setting

Label Rotor state Speed
(r/min)

Fault name Sampling rate Sampling points

0 Misalignment 1800 0.75 mm 16384 25600

1 Unbalance 1800 2 g∠0° 16384 25600

2 Looseness 1800 1 turn 16384 25600

3 Normal 1800 − 16384 25600
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From Figures  17 and 18, it can be concluded that the 
augmented data with different faults are well-distin-
guished in 2D space. The similarity between different 
faults is weak or even extremely weak, while the similar-
ity between the same faults is in medium and high simi-
larity. In Figure 17, the autocorrelation coefficient of the 
2va measurement point is always slightly lower than the 
other measurement points. This is because, compared to 
the other measurement points, the 2va is further away 
from the fault position, the fault signal transmission path 
is more complex and the fault vibration signal is attenu-
ated, resulting in a smaller signal autocorrelation coef-
ficient. The high correlation coefficient values between 
the unbalance fault and the loose fault in Figure 18(b) are 
mainly because both have similar fault magnitude and 
characteristics. Therefore, the data set after data augmen-
tation can be used for further diagnosis.

4.3  Fault Diagnosis Verification
The experiments were performed on Python 3.7.10, 
in a 64-bit Window environment with a RTX 2080Ti 
GPU. The CNN is performed on Keras 2.3.1, Tensor-
Flow-gpu2.2.0 environment, and the SVM uses scikit-
learn0.24.1. The SVM and two different CNN structure 
parameters and specific parameter values are shown in 
Tables 6 and 7.

In the actual fault diagnosis process, the amount of 
fault data is often small, and the suddenness of the fault 
requires the diagnosis method to be lightweight. The 
algorithm needs to be able to maintain a high correct 
rate even with little data. In order to solve this practical 
problem, the following work was done in this experiment 
during the fault diagnosis. As can be seen from Table 7, 
compared to the multi-CNN, the LW-CNN reduces 
one layer of convolutional pooling and keeps the other 
parameter structure unchanged. The final total param-
eters are reduced from 3.37 million to 1.3 million.

a) The difference between the two CNNs is that the 
Multi-CNN has more network layers and param-
eters. In order to compare the different layers of the 
CNN network, two CNN are designed respectively 

as LW-CNN and multi-CNN. Thereinto, multi-CNN 
has more hidden layers and more parameters.

b) The algorithm does complete training, testing, and 
validation at a gradual and uniform increase of the 

Table 4 Summary of fault data collected from experiments

Data format: No. measuring points × No. sampling periods × Ns

Type Data size

Misalignment 4 × 64 × 16384

Unbalance 4 × 47 × 16384

Looseness 4 × 43 × 16384

Normal 4 × 25 × 16384

Figure 15 Time domain waveforms of different fault types: (a) 
Unbalance, (b) Misalignment, (c) Looseness, (d) Normal
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data volume from 25% to 100% of the total data vol-
ume.

c) To avoid accidental error, the algorithms must be 
repeated 10 times on the same data.

For more quantitatively describing the classification 
performance of different algorithms under different data 
volumes, the F1 value, a common classification evalua-
tion parameter in machine learning, is used for a more 
comprehensive evaluation. For a specific binary classi-
fication problem, the samples are labeled with positive 
or negative labels (1 or 0), and the algorithm outputs a 
predicted label after training. Compared with the actual 
label, the labeled results have four cases, as shown in 
Figure 19, which are recorded as true positive (TP), false 
positive (FP), false negative (FN), false negative (FP), and 
true negative (TN). The accuracy of the algorithm’s clas-
sification (Eq. (15)) and the check-all rate (Eq. (17)) are 
often two contradictory quantities, and the summed 
average F1 score of the two (Eq. (18)) is used to do the 
evaluation, as shown in Eqs. (15), (16), (17), (18):

The performance of each method on the training, test, 
and validation sets is shown in Table 8, and the specific 
performance on the test set is shown in Figures  20, 21, 
22, 23. In Table 8, the overall accuracy of SVM is above 
85%. The accuracy performance of SVM improves by 
about 10% as the data volume increases, and the F1 value 
also improves by about 10% as the data volume increases. 
In contrast, the performance of the CNN network is sta-
ble with increased data volume. At 25% data volume, the 
accuracy of LW-CNN is above 95%, most of which are at 
99% level with excellent performance, and the F1 score 
is above 0.98 on average. By analyzing Figures 20, 21, 22, 
23, the fault diagnosis accuracy of CNN under the four 
data amounts is basically above 95%, which has excellent 
performance. However, in SVM, the imbalance and mis-
alignment diagnosis accuracy are below 85% with 100% 

(15)Accuracy =
TP + TN

TP + TN + FP + FN
,

(16)Precision =
TP

TP + FP
,

(17)Recall =
TP

TP + FP
,

(18)F1score =
2Precision · Recall

Precision+ Recall
.

Figure 16 Filtered time domain waveform of each measurement point under unbalance fault

Table 5 Size of dataset after data augmentation

Dataset size

Looseness Misalignment Unbalance Normal

Training 8145 × 900 5979 × 900 5469 × 900 3174 × 900

Testing 3492 × 900 2562 × 900 2343 × 900 1362 × 900

Validating 2343 × 900 2562 × 900 2343 × 900 1362 × 900
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Figure 17 Autocorrelation coefficients for different types of faults 
at different RWW: (a) Unbalanced, (b) Misaligned, (c) Looseness, (d) 
Normal

Figure 18 Value of interrelationships between different RWW: 
(a) Misalignment and normal, (b) Unbalance and looseness, (c) 
Looseness and normal, (d) Misalignment and unbalance
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data volume or less. Regardingparameter number, the 
LW-CNN has 1.3 million, and the multi-layer CNN has 
3.37 million in comparison.

After processing the time domain signal with the slid-
ing window method, the different co-frequency vibra-
tion faults have low correlation values with each other. 
The signal processing stage not only improves the ability 
to discriminate between different vibration fault forms 
but also achieves the purpose of data augmentation. 
According to the data analysis in Section 4.3, it is obvi-
ous that CNN performs better when the data volume is 
small, with a better F1 score and better generalization 
performance. For CNN, although LW-CNN has one less 

convolutional layer and pooling layer than multi-CNN, 
the performance is no worse than multi-CNN. There-
fore, the data processing method time domain truncation 
method produces data features with better adaptability to 
different faults and can achieve better results using light-
weight neural networks.

4.4  Real‑Time Analysis of Diagnostic Methods
As described in Section 3.3, the feature size in this experi-
ment is 900, the sampling time is 0.64 s, and the sampling 

Table 6 Parameters of machine learning classifier and parameter 
values

Parameter Parameter value

SVM Regularization parameter 0.3

Kernel type RBF

Kernel coefficient Scale

Other parameters Default

Table 7 Parameters of convolutional neural network and parameter values

Layer Parameter LW‑CNN Multi‑CNN

#1 Convolution-pooling Number of convolution kernel 32 32

Convolution kernel size 3 3

Activation function ReLu

Convolution stride 1

Pooling size 2

Pooling stride 2

#2 Convolution-pooling Number of convolution kernel 64

Convolution kernel size 3

Activation function ReLu

Convolution stride 1

Pooling size 3 2

Pooling stride 2 2

#3 Convolution-pooling Number of convolution kernel − 128

Convolution kernel size − 3

Activation function ReLu

Convolution stride − 1

Pooling size − 2

Pooling stride − 3

Fully connection Units 800 1024

Activation function ReLu

Output layer Units 4

Activation function SoftMax

Padding − Same

Optimizer − Adam

Loss function − Cross entropy

Total parameters 1.30 million 3.37 million

Figure 19 Filtered time domain waveform of each measurement 
point under unbalance fault
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points is 16384. Therefore, the 3 methods are tested sepa-
rately in tensorflow environment as shown in Figure 24.

In fact, the sample is increased using the 3 methods 
before mentioned and repeat 10 times. The final result 
is shown in Figure  24. For method (a), because the 
window size and the moving step are fixed in the data 
processing stage, the amount of standard data entering 
the classifier does not change even though the number 
of points increases in a certain range; for method (b), 
900 points are added because the size of the reference 

window is set, and not much standard data is added 
after data processing. The data amount added is small 
for methods (a) and (b). The time change is not visible 
due to the short time of the algorithm itself, which is 
regarded as a normal phenomenon because of the short 
time and the small amount of sample change. Method 
(c) is considered in one sampling time, which conforms 
to the actual fault diagnosis process. From Figure  24, 
the average processing time is about 0.01 s, which can 

Table 8 Performance of different methods with different data volumes

Data format: Training accuracy/Testing accuracy/Validating accuracy/F1 score

Method Data size

25% 50% 75% 100%

SVM 86.2/83.0/83.6/0.82 88.7/89.9/88.3/0.88 93.0/90.1/91.9/0.91 94.5/93.1/93.8/0.93

LW-CNN 99.8/97.9/98.3/0.98 99.7/98.5/98.5/0.98 100/99.1/99.4/0.99 99.9/99.4/99.5/1.0

multi-CNN 100/98.6/99.1/0.99 99.7/99.1/99.2/0.99 99.9/99.6/99.6/1.0 100/99.7/99.8/1.0

Figure 20 Algorithm performance under 25% dataset: (a) SVM, (b) LW-CNN, (c) Multi-CNN

Figure 21 Algorithm performance under 50% dataset: (a) SVM, (b) LW-CNN, (c) Multi-CNN
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fully meet the real-time requirements of fault diagnosis 
compared with the actual sampling time of 0.64 s.

As it was considered unlikely that a high performance 
GPU would be provided in a real application, the running 
time of the algorithm was measured on the CPU (4-core 
i5-1135G7) using method (c), as shown in Figure 25. The 
average processing time per data set on the CPU is 0.05 s, 
which still meets the algorithm’s real-time requirements. 
Of course, the running time of the algorithm is also 
affected by other factors such as programming language, 
program structure, computer hardware, and computer 
environment. Hence, the measured time varies from time 
to time. Even if the above variations exist, it does not 
change our conclusion that the algorithm is real-time.

5  Conclusions
Co-frequency faults account for a large proportion of 
the actual factory production process. In order to solve 
the problem that the characteristics of the co-frequency 
vibration signal are not obvious and the diagnosis is dif-
ficult, a real-time fault extraction method based on 

LW-CNN is proposed in this paper. The following con-
clusions verified by experiments are as follows:

(1) A complete fault diagnosis process is proposed 
for the three most common co-frequency faults in 
rotor faults: Imbalance, misalignment, and loose-
ness, and correlation coefficients are proposed 
for the data enhancement part of it to quantita-
tively assess the correlation before and after data 
enhancement.

(2) Using CNN and SVM for fault diagnosis with dif-
ferent data volumes, the classification performance 
of CNN is better than SVM. The average classifica-
tion accuracy of LW-CNN is above 95%, and using 
LW-CNN can also reduce the training parameters 
and speed up the training speed.

(3) The diagnosis time of the LW-CNN-based real-time 
fault diagnosis method is tested using the measured 
fault diagnosis time method, and the results show 
that the time is 0.01 s on the high-performance 
GPU and 0.05 s on the CPU, both of which can 
meet the real-time requirements.

Figure 22 Algorithm performance under 75% dataset: (a) SVM, (b) LW-CNN, (c) Multi-CNN

Figure 23 Algorithm performance under 100% dataset: (a) SVM, (b) LW-CNN, (c) Multi-CNN
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This is a public attempt to use data data-driven method 
to diagnose rotor co-frequency faults in real time. The 
deep learning method used in this paper is a relatively 

simple algorithm, and many more cutting-edge and 
esoteric algorithms are yet to be further applied in this 
direction to finally achieve high-performance, fast, and 
accurate diagnosis of rotor co-frequency faults.
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