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Abstract 

The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-
controlled cylinder system. Bench test data are easily obtained, but it is challenging to emulate actual loads 
in the research on parameter estimation of valve-controlled cylinder system. Despite the actual load information con-
tained in the operating data of the control valve, its acquisition remains challenging. This paper proposes a method 
that fuses bench test and operating data for parameter estimation to address the aforementioned problems. The 
proposed method is based on Bayesian theory, and its core is a pool fusion of prior information from bench test 
and operating data. Firstly, a system model is established, and the parameters in the model are analysed. Secondly, 
the bench and operating data of the system are collected. Then, the model parameters and weight coefficients are 
estimated using the data fusion method. Finally, the estimated effects of the data fusion method, Bayesian method, 
and particle swarm optimisation (PSO) algorithm on system model parameters are compared. The research shows 
that the weight coefficient represents the contribution of different prior information to the parameter estimation 
result. The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method 
and the PSO algorithm. Increasing load complexity leads to a decrease in model accuracy, highlighting the crucial role 
of the data fusion method in parameter estimation studies.

Keywords Valve-controlled cylinder system, Parameter estimation, The Bayesian theory, Data fusion method, Weight 
coefficients

1 Introduction
A valve-controlled cylinder system is a typical hydraulic 
drive system consisting of a pilot handle, control valve 
and cylinder. It is widely used in construction, agri-
culture, aerospace and other fields, which require low 
energy consumption, stable control and a fast response. 
To obtain good valve-controlled cylinder system per-
formance, it is often necessary to optimise the design 

and verification of system parameters and control algo-
rithms. Due to the cost of a prototype and trial, a simu-
lation model is usually used to replace a prototype to 
design and verify the optimisation scheme. The accuracy 
of a simulation model directly affects the effectiveness of 
the optimisation scheme, and the accurate estimation of 
parameters is the premise for establishing a high-fidelity 
valve-controlled cylinder system simulation model.

Valve-controlled cylinder system simulation model 
parameter estimation requires the support of system 
data. Parameter estimation research uses the load data as 
the model input condition to optimise the error between 
the simulation results and the system tested data. The 
smaller the error between the two, the more accurate the 
parameter estimation results. Parameter estimation is a 
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simulation model parameter optimisation problem. Yan 
et al. [1] estimated the model parameters of a valve-con-
trolled cylinder system using the recursive least squares 
method. Based on this model, the maximum error in pre-
dicting the general trajectory tracking speed was 13%. 
Wang et  al. [2] estimated the parameters of a discrete 
model of a valve-controlled cylinder system using the 
Particle Swarm Optimization (PSO) algorithm. A com-
parison with the results obtained using the least squares 
method demonstrated the parameter estimation capabil-
ity of the PSO algorithm. Aboelela et al. [3] estimated the 
parameters of a valve-controlled cylinder system using 
the Matlab/Simulink parameter identification toolbox, 
achieving satisfactory identification results. Similarly, Liu 
et  al. [4] estimated the parameters of a hydraulic drive 
unit using the Matlab/Simulink parameter identification 
toolbox. Although the integrated error in this study was 
only 1.51%, the fitting between the simulation and exper-
imental results was moderate. Among these parameter 
estimation studies, the Matlab/Simulink parameter iden-
tification toolbox was found to be the most convenient 
tool, and the PSO algorithm yielded the best results. Essa 
et  al. [5] also discussed a parameter estimation method 
for a valve-controlled cylinder system based on a black 
box state space model. However, black box models lack 
any internal knowledge of the system. In other studies on 
parameter estimation of hydraulic systems, Nápoles-Báez 
et al. [6] estimated the parameters of a hydraulic actuator 
using the Matlab/Simulink parameter identification tool-
box. Lu et al. [7] determined the optimal parameters of a 
Pump-Motor Servo System (PMSS) PID speed controller 
based on a hybrid Grey Wolf Optimization (GWO) and 
Particle Swarm Optimization (PSO) algorithm, achieving 
constant speed control of the PMSS.

More importantly, data are the benchmark for param-
eter estimation of a valve-controlled cylinder system 
model. Only accurate data corresponding to the actual 
operating conditions can ensure the accuracy of param-
eter estimation results. The aforementioned research on 
parameter estimation employed various optimization 
algorithms, all conducted based on bench tests, mak-
ing the bench test data the reference for parameter esti-
mation. While bench test data offers the advantage of 
convenient collection, it falls short in simulating actual 
operating conditions of the system, leading to a discrep-
ancy between the test data and real operating condi-
tions [8]. Consequently, there is an inherent limitation 
in benchmarking parameter estimation research solely 
based on bench test data. Operating data, on the other 
hand, originates from the actual system operation pro-
cesses of the system and includes real load conditions and 
personalized environmental information [9, 10]. Never-
theless, acquiring direct measurements of operating data 

from control valves poses a complex and formidable chal-
lenge. This task entails the installation of various sensors, 
including flow rate sensors, and the intricate design and 
arrangement of external piping systems. External piping 
introduces substantial pressure losses, leading to conse-
quential measurement inaccuracies. Compounding the 
challenge are limitations in operational space, intricate 
equipment structures, and adverse working conditions, 
further complicating the acquisition of precise control 
valve operating data. Consequently, attaining accurate 
control valve operating data results necessitates substan-
tial time and financial resources. Existing research on 
construction machinery operating data does not involve 
collecting control valve operating data [11, 12]. Feng 
et al. [13] estimated the model parameters of a valve-con-
trolled cylinder system through cylinder operating data. 
Since cylinder displacement data are not the direct con-
trol valve data, this method causes deviations in control 
valve parameter estimation. Whether bench test or oper-
ating data are used in parameter estimation research, the 
estimation results accuracy is affected to varying degrees. 
Suppose a reasonable method can be selected to fuse the 
two data so the parameter estimation includes both the 
control valve output data and the actual load information. 
In that case, the system parameter estimation results will 
be more accurate.

In studying the model parameter estimation of valve-
controlled cylinder systems, model parameter estimates 
obtained based on bench test or operating data can be 
regarded as prior information for the final parameter esti-
mates. Research on model parameter estimation using 
these two sets of prior information meets the requirements 
of bench test and operating data fusion. If there are mul-
tiple priors regarding the parameters to be estimated, a 
common approach for fusing prior information is to aver-
age all the multiple priors [14]. However, the deviations of 
the different opinions are not well quantified in the aver-
aging approach. Pooling methods such as the linear and 
geometric pooling methods allow unequal weights for 
each prior and emphasize the diversity of multiple priors 
[15–17]. Based on the geometric pooling method, Poole 
et al. [18] pioneered the incorporation of Bayesian theory 
to combine distinct prior information, enabling the esti-
mation of system performance parameters. Specifically, 
Bayesian theory is highly regarded in parameter estima-
tion research because it can update the probability distri-
bution of unknown variables by integrating information 
from multiple data sources [19, 20]. Yang et  al. [21] pro-
posed an adaptive Bayesian method based on geomet-
ric pooling for evaluating the performance of products 
with hierarchical structural characteristics. Yang et  al. 
[22] fused inconsistent prior information using Bayes-
ian theory and geometric pooling methods. The proposed 
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approach shows significant advantages in parameter esti-
mation and reliability assessment. Jia et  al. [23] proposed 
a Bayesian-based multi-level system analysis approach for 
fusing multi-source data at the lower level, resulting in the 
posterior distribution of model parameters. As mentioned 
earlier, combining pooling methods and Bayesian theory 
has proven to be a reliable approach for system data fusion. 
Currently, this method is widely used in system reliability 
estimation. Furthermore, it has also been applied in animal 
population studies [18, 24], urban simulation [25], climate 
forecasting [26], and other fields. However, its application 
in parameter estimation research on valve-controlled cyl-
inder systems has not been reported thus far. Addressing 
the limitations in the research of model parameter estima-
tion for valve-controlled cylinder systems, as well as lever-
aging the advantages of data fusion method, we propose a 
data fusion method based on pooling fusion and Bayesian 
theory for estimating the parameters of valve-controlled 
cylinder systems.

In summary, this study aims to fuse bench test and oper-
ating data using the pooling method and Bayesian theory 
to utilize the information from both data fully. This data 
fusion method will be used to estimate and analyse model 
parameters for valve-controlled cylinder systems. The 
remainder of this paper is arranged as follows: Section  2 
establishes a simulation model of the valve-controlled 
cylinder system and analyzes the model parameters; Sec-
tion 3 introduces the test bench and operating data fusion 
method; Section  4 data acquisition; Section  5 results and 
discussion. Section 6 summarises this paper.

2  Valve‑Controlled Cylinder System Modelling 
and Parameter Analysis

The research object of this study is the valve-controlled 
cylinder system of an excavator boom. It is a typical 
complex nonlinear system composed of a pilot handle, 
control valve and cylinder, as shown in Figure 1. During 
boom lifting, the pilot handle controls the pilot pressure 
signal PXAb to drive the control valve spool to move and 
open the valve. The oil flows into the cylinder through 
the P-A circuit, drives the cylinder to move, and returns 
to the tank through the B-T circuit. Similarly, during the 
boom lowering process, the pilot pressure signal is PXBb, 
and the control valve and cylinder move opposite to the 
lifting process. This research studies the mathematical 
model of the control valve and cylinder in the system 
without considering the pilot handle dynamic model.

The dynamic equation of the control valve is as follows:

(1)PpilotAv − F0 = mv
d2xv

dt2
+ Bv

dxv

dt
+ Kvxv ,

where Ppilot is the pilot pressure, Av is the valve spool 
cross-sectional area, F0 is the external force applied to 
the control valve. The valve spool is primarily subjected 
to static pressures, such as spring preload, and the impact 
of transient fluid dynamics and frictional forces on the 
control valve was ignored [27]. And mv is the mass of the 
valve spool, Bv is the damping coefficient, Kv is the spring 
stiffness, and xv is the displacement of the valve spool.

The flow rate equation at the outlet of the control 
valve is as follows:

The flow rate equation at the inlet of the control valve 
is as follows:

where Cq is the flow rate coefficient, W is the overflow 
area, pp is the main pump outlet pressure, pT is the tank 
pressure, pA is the cylinder large cavity pressure, and pB is 
the cylinder small cavity pressure.

The overflow area W is calculated using the area 
equivalent formula [28], as shown in Figure 2.

(2)q1 =















CqW
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2(pp − pA)/ρ, xv > 0,

0, xv = 0,

CqW
�

2(pA − pT )/ρ, xv < 0.

(3)q2 =















CqW
�

2(pB − pT )/ρ, xv > 0,

0, xv = 0,

CqW
�

2(pp − pB)/ρ, xv < 0,

Figure 1 Valve-controlled cylinder system
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Considering the cylinder leakage characteristics and 
the compressibility of hydraulic oil, the flow rate equa-
tion at the cylinder inlet is:

The cylinder outlet flow rate equation is

where AA and AB are the piston areas of cylinder’s large 
and small cavities, y is the displacement of the cylinder, 
Ci and Ce are the cylinder’s internal and external leakage 
coefficients, respectively, βe is the equivalent bulk elas-
tic modulus of hydraulic oil, V01 and V02 are the initial 

(4)

{

q1 = AA
dy
dt

+ Ci(pA − pB)+ CepA + VA
βe

dpA
dt

,

VA = VA0 + AAy.

(5)

{

q2 = AB
dy
dt
−Ci(pA − pB)− CepB − VB

βe

dpB
dt

,

VB = VB0 − ABy,

volumes of large and small cavities, and PA and PB are the 
pressures in cylinder’s large and small cavities.

The expressions of VA0 and VB0 are as follows:

where VAd and VBd are the dead zone volumes of the large 
and small cavities of the cylinder, respectively, L is the 
maximum stroke of the cylinder, and L0 is the initial posi-
tion of the cylinder.

Based on the load characteristics of the cylinder, the 
force balance equation of the cylinder is described as 
follows:

where M is the total mass of the cylinder and the load, Bp 
is the damping coefficient of the cylinder, K is the load 
stiffness, Ff is the coulomb friction, Fl is the load force. In 
this paper, the minor friction force Ff relative to the load 
force Fl is ignored in a valve-controlled cylinder system.

According to Eqs. (1) to (7), a valve-control cylinder 
system block diagram [29–31] is established, as shown 
in Figure 3, from which the valve-controlled cylinder sys-
tem simulation model is established.

In the system model, the control valve parameters 
include Av, F0, mv, Bv, Kv, Cq,ρ , while q1 (q2) represent 
the control valve output variables, corresponding to the 
valve spool displacement and flow rate at the valve port, 
respectively. Parameters in the cylinder include AA, AB, 
Ci, Ce,βe , VAd, VBd, L0, M, Bp and K. S is the output vari-
able of the cylinder, representing the displacement of the 

(6)
{

VA0 = VAd + AAL0,
VB0 = VBd + AB(L− L0),

(7)AApA − ABpB = M
dy2

dt
+ Bp

dy

dt
+ Ky+ Ff + Fl ,

Figure 2 Overflow area of the control valve

Figure 3 Valve-controlled cylinder system block diagram



Page 5 of 17Su et al. Chinese Journal of Mechanical Engineering           (2024) 37:38  

cylinder. The description, experience or measured value 
of each parameter is listed in Table 1.

The empirical values of F0, Bv, Kv, Cq, Ci, Ce,βe and 
Bp in the valve-controlled cylinder system simulation 
model are inaccurate, so accurate values need to be 
obtained through parameter estimation research. Av, 
AA, AB, VAd and VBd are measurable design parameters 
of the component, and L0 is the initial value of the cyl-
inder, which shall be measured and recorded before 
each test.

The pump-valve bench test can collect data xv, q1 
(q2), pp and pA through which the control valve model 
parameters can be estimated. However, pp and pA are 
simulated loads; the difference between them and the 
operation conditions causes deviations in the control 
valve parameter estimation. In addition, the pump-
valve bench test cannot collect cylinder data, and the 
cylinder parameters cannot be estimated through the 
bench test data. On the other hand, under the opera-
tion conditions, xv and q1 (q2) are challenging to collect, 
and only the cylinder operating data can be used to 
estimate the parameters in the valve-controlled cylin-
der system model. Since the cylinder operating data are 
indirect control valve data, this leads to a deviation in 
the control valve parameter estimation.

Whether bench test or operating data are used, a devia-
tion in parameter estimation results will occur. Consider 

the fusion of the two parameter estimation results to 
make the parameter estimation include both actual load 
data and control valve data. A comparison between the 
three methods is shown in Figure 4.

3  Parameter Estimation Method Based on Bench 
Test and Operating Data Fusion

The proposed data fusion method in this study is based 
on the pooling method and Bayesian theory. For the 
continuous parameter vector θ, the posterior sup-
ported by the system tested data D can be expressed by 
the Bayesian formula as follows [32–34]:

where p(θ) is the prior probability distribution of the 
parameter vector θ , p (D|θ) is the joint probability den-
sity of the parameter vector θ and the system tested data 
D, and p(D) =

∫

p(D|θ)p(θ)dθ is the normalisation con-
stant. When a simulation model is a group of parameter 
vectors θ*, the relationship between the system tested 
data and the simulation results is:

where Ti and Si are the system tested data and simula-
tion results, ϕi is a Gaussian random number with a mean 

(8)p(θ |D ) =
p(D|θ )p(θ)

p(D)

(9)Ti = Si + ϕi, i = 1, 2, ..., N ,

Table 1 Parameters of the valve-controlled cylinder system

Parameter Description Empirical/measured values Unit

Av The spool cross-sectional area 61.5 mm2

F0 External force on spool 300 N

mv Spool mass 2 kg

Bv Damping coefficient 280 N·s/m

Kv Spring stiffness 120 N/mm

ρ Hydraulic oil density 850 kg/m3

Pp Pump pressure Measurement data MPa

PT Tank pressure Measurement data MPa

Cq The flow rate coefficient 0.7 –

xv Spool displacement Measurement data mm

q1, q2 Flow rate at the valve port Measurement data L/min

AA, AB Piston areas of cylinder’s large and small cavities 1.13 ×  104, 5.6 ×  103 mm2

pA, pB Pressure of cylinder’s large and small cavities Measurement data MPa

Ci, Ce Cylinder internal and external leakage coefficient 365, 320 mm3/MPa/s

βe Hydraulic oil equivalent bulk modulus 855 MPa

VAd, VBd Dead volumes of cylinder large and small cavities 6.65×105, 4×105 mm3

L0 Initial position of cylinder 0.9 m

M Cylinder and load total mass 2700 kg

Bp Cylinder damping coefficient 86000 N·s/m

K Load stiffness 0 N/mm

S Cylinder displacement Measurement data m



Page 6 of 17Su et al. Chinese Journal of Mechanical Engineering           (2024) 37:38 

value of zero and variance of σ 2, i is the time sample node 
number, and N is the total number of time sample nodes.

The maximum likelihood function of parameter esti-
mates is as follows:

The mean square error (MSE) function between 
the simulation output data and system tested data is 
defined as:

Based on the likelihood function, the posterior esti-
mation result of the parameters obtained by continu-
ously updating the prior data is:

where j represents the parameter index, take as 1, 2, 3,…, 
p, p is the total number of parameters.

Eq. (12) is a general expression of the posterior prob-
ability distribution of θj, and it is not easy to obtain the 
analytical solution of independent samples through it 
[35, 36]. The relevant sample sequence representing a 
posterior distribution can be obtained by the Markov 

(10)

p
(

D|θ , σ 2
)

=
1

√
2πσ 2

exp

(

−1

2σ 2

N
∑

i=1

(Ti − Si)
2

N

)

.

(11)Q =
1

N

N
∑

i=1

(Ti − Si)
2.

(12)
p
(

θj|D
)

= ∫ p
(

θ , σ 2|D
)

dθ−jdσ
2 ∝

∫ p
(

D|θ , σ 2
)

p(θ)dσ 2dθ−j ,

Chain Monte Carlo (MCMC) sampling method. The 
process is as follows [32, 37]:

(1) Set the total number of iterations Nn, ’burn in’ itera-
tion number Nb and parameter vector length p. Ini-
tialize the Markov chain k=0, extract the parameter 
vector from the parameter prior distribution N(θ): θ
*(0)=(θ1

*,θ2
*,…,θp

*), define the random walk interval 
length Lj of each parameter, calculate Q(θ*(0)) and 
the sample variance subject to the inverse gamma 
distribution [38]: σ 2(0)=IG(N/2+1, Q(θ*(0))/2);

(2) k=k+1, update each parameter in the param-
eter vector according to θj

*=θj (k−1) +2Lj × U 
(−1 1). Calculate the acceptance function α=p(θ∗j
)/p(θ j−1)exp((−0.5/σ2(k−1))×(Q(θ*)−Q(θ j−1))), 
where θ*=(θ1(k),…, θj

*,  θj+1(k−1),…, θp(k−1)),  θ j−1

=(θ1(k),…, θj−1(k), θj(k−1), θj+1(k–1),…, θp(k−1));
(3) Generate a random number αn in uniform distribu-

tion U (0 1). When αn<α, θj(k)=θ*, Lj=1.01Lj; other-
wise, θj(k)=θj(k−1), Lj=Lj/ 1.007;

(4) After each iteration completes the parameter 
update, calculate Q(θ(k)), and extract the ran-
dom number from the inverse gamma distribu-
tion IG(N/2 +1, Q(θ(k))/2) as the variance σ2(k) of 
the kth  iteration, where θ(k)=(θ1(k), θ2(k), θ3(k),…, 
θp(k));

(5) Repeat steps (2) to (4). Stop Lj adjustment when 
k>Nb; when k>Nn, stop the update of θj

*. Remove 

Figure 4 Comparison of different parameter estimation methods
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the results of the previous Nb iteration and record 
the remaining parameter vector θ as the posterior 
distribution p (θ) of the parameter.

Based on Bayesian theory and the MCMC sampling 
method, the prior distribution (prior1, prior2 and prior3) 
for each parameter is obtained separately using bench 
test and operating data as benchmarks. The pooling 
method is then applied to fuse the different prior infor-
mation, followed by another round of Bayesian inference 
to estimate the model parameters. This process yields 
the final estimates of the model parameters (θ1, θ2) and 
determines the contribution of each type data through 
weighting coefficients k1. This constitutes the method-
ology for estimating model parameters by combining 
bench test and operating data. The specific implementa-
tion steps are as follows:

Step 1: Assume that the initial prior distribution of the 
control valve model parameters is a uniform distribution 
U1 ( θL1j1θ

U
1j1

 ), according to the empirical values in Table 1. 

Here, θL1j1 represents the minimum values for the control 
valve j1th parameter, θU1j1 represents the maxmum values 
for the control valve j1th parameter, and j1 takes values of 
1, 2,…, 4. Based on the bench test data of the control 
valve, the distribution of the control valve model param-
eters (prior1 ( θ1) ) is obtained through Bayesian theory, 
which is an estimated value lacking actual load 
information.

Step 2: Similarly, the control valve and hydraulic cylin-
der parameters are set as uniform distributions U1 
( θL1j1θ

U
1j1

 ) and U2 ( θL1j2θ
U
1j2

 ), respectively, based on the 

empirical values provided in Table 1. Here, θL1j2
 represents 

the minmum value for the cylinder j2th parameter, θU1j2 
represents the maxmum value for the cylinder j2th 
parameter, and j2 takes values of 1, 2,…, 4. Based on the 
operating data of the cylinder, the distribution of the con-
trol valve and cylinder parameters (prior2 ( θ1 ) and prior3 
( θ2) ) are obtained through Bayesian theory. These distri-
butions incorporate actual load information.

Step 3: After obtaining the distributions of the control 
valve parameters (prior1 ( θ1 ) and prior2 ( θ1) ), a geometric 
pooling method [17] is employed to fuse these distribu-
tions, ensuring that the parameter estimates encompass 
both the control valve output data and the actual load 
information. The pooled result is denoted as prior*:

where ki is the weight coefficient, representing the contri-

bution of priori to prior*, 
2
∑

i=1

ki = 1 , and its prior distribu-

tion can be set as a uniform distribution U (0, 1) [21].
Step 4: Take the distributions prior*(θ1 ) and prior3 ( θ2 ) 

as new prior information and take the cylinder operat-
ing data as the benchmark to estimate the system model 
parameters through Bayesian theory. Obtain the final 
estimated values of the system model parameters vec-
tor θ1, θ2 and weight coefficient vector k1. The process is 
shown in Figure 5.

In Figure  5, prior1 ( θ1 ) and prior2 ( θ1 ) and prior3 ( θ2) 
are obtained using the MCMC sampling method based 

(13)
prior ∗ (θ1) =

2
∏

i=1

priori(θ1)
ki

= prior1(θ1)
k1prior2(θ1)

1−k1 ,

Figure 5 Valve-controlled cylinder system parameter estimation based on the data fusion method



Page 8 of 17Su et al. Chinese Journal of Mechanical Engineering           (2024) 37:38 

on the Bayesian posterior estimation in Eq. (12). The 
Bayesian posterior estimation expression in Step 4 is 
updated to Eq. (14). The estimation results of the system 
model parameters vector θ1, θ2 and weight coefficient 
vector k1 are also obtained through the MCMC sampling 
method.

4  Data Acquisition
4.1  Operating Data Acquisition
The operating data acquisition test was conducted at an 
excavator manufacturing company’s standard test site, 
which complies with testing standards. A prototype of a 
medium-sized positive flow control system excavator [39, 
40] was employed for the experiment, primarily targeting 
data acquisition such as main pump pressure, boom cyl-
inder pressure and displacement. Detailed information 
regarding the measurement points is provided in Table 2. 
Data was recorded and stored via a Dewe-43 data acqui-
sition device with a frequency of 500 Hz.

The test conditions comprised three types: single 
action of the boom using fast operation, single action of 
the boom using slow operation, and excavation opera-
tion. They are known simply as fast boom operation, 

(14)

p
(

θj|D
)

= ∫ p
(

θ , σ 2|D
)

dθ−jdσ
2

∝ ∫ p
(

D|θ , σ 2
)

prior ∗ (θj1)

prior3(θj2)dσ
2dθ−j1dθ−j2.

slow boom operation, and excavation. During fast boom 
operation conditions, the pilot signal resemble a step, 
while slow boom operation conditions resemble a ramp 
signal. The excavation condition utilises ordinary soil as 
the working material. Each test consisted of three cycles, 
and a total of 20 tests were performed for each operation 
condition. The experimental arrangement is depicted in 
Table 3.

Among the three operation conditions, the excavation 
operation load is the worst, followed by the fast boom 
operation, while the slow boom operation is the most 
stable. The experimental site and sensor layout are illus-
trated in Figure 6.

4.2  Bench Test Data Acquisition
Bench test data collection for the control valve was car-
ried out in accordance with the parameter estimation 
requirements of the model for the valve-controlled cyl-
inder system. A pump-valve test bench was utilized to 
perform load simulation on the pump and control valve, 
enabling concurrent measurement of the control valve 
spool displacement (xv) and flow rates (q1 (q2)) through 
the valve ports. The pump-valve test bench principle is 
depicted in Figure 7(a). In the test, the motor drives the 
pump, while the boom valve and pump are controlled 
by the pilot pressure (Ppilot). The control valve load is set 
using Po1, measured via P2, while the pump’s outlet pres-
sure is measured by pressure sensor P1. Valve flow rate 
and spool displacement are collected by flow rate sensor 
Q1 and displacement sensor Xs, respectively. Pilot pres-
sure (Ppilot) is collected by pressure sensor P3. All test 
data are recorded using Dewe-43 data acquisition equip-
ment. Figure 7(b) illustrates the arrangement of the test 
bench.

Similarly, the test bench primarily collected experimen-
tal data on the boom cylinder control valve under fast 
boom operation conditions, slow boom operation con-
ditions, and excavation conditions. The pilot signals for 
each condition are the same as those used during operat-
ing data acquisition experiments. The maximum load of 
the control valve is set to 300 bar. Each test consisted of 
3 cycles, and 20 tests were performed for each operation 
condition. Detailed information about the measurement 
points of the bench test is presented in Table 4.

Table 2 Measurement point details

Measurement points Sensors performance

Pump pressure Range: 0–60 MPa,
Accuracy: ±0.5%F.S

Tank pressure Range: 0–20 MPa,
Accuracy: ±0.5%F.S

Boom large cavity pressure Range: 0–60 MPa,
Accuracy: ±0.5%F.S

Boom small cavity pressure Range: 0–60 MPa,
Accuracy: ±0.5%F.S

Boom cylinder displacement Range: 0–3000 mm,
Accuracy: ±0.015%F.S.

Table 3 Experimental conditions description

Conditions Pilot signal Excavated material Experimental number

Fast boom operation Step signal Idle condition 3 cycles/time, 20 times

Slow boom operation Slope signal Idle condition 3 cycles/time, 20 times

Excavation operation Excavation operation pilot signal Ordinary soil 3 cycles/time, 20 times
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5  Results and Discussion
5.1  Parameter Estimation Results for Slow Operating 

Conditions
Using the slow operating condition as a case study, this 
paper conducts an in-depth analysis and discussion on 
the estimation of model parameters in the valve-con-
trolled cylinder system. The obtained parameter estima-
tion results are fitted to a normal distribution. When 
the bench test and operating data are taken as refer-
ences respectively, the estimation results of the control 
valve parameters are shown in Figure  8 as prior1 and 
prior2. The parameter estimation result of the control 
valve, obtained using the data fusion method, is shown 
as fusionv in Figure 8. It can be seen from Figure 8 that 
prior1, prior2 and fusionv of each parameter have differ-
ent distributions. Prior2 exhibits the highest variance, 
displaying a dispersed distribution, while prior1 dem-
onstrates a comparatively smaller variance and a more 
centralized distribution. Fusionv exhibits a mean value 
in proximity to that of prior2, while its variance closely 
resembles that of prior1. High consistency exists between 
the frequency distribution histogram and the probability 
density curve of fusionv, indicating the stability and accu-
racy of parameter estimation results derived from the 
data fusion method. Adopting the mean value of fusionv 
as the final estimated parameters for control valve.

The 95% confidence interval of the control valve 
parameter estimation results before and after the 
fusion method is shown in Figure 9. It can be seen from 

Figure  9 that the confidence intervals of prior1, prior2 
and fusionv are different, and the relationship between 
their confidence intervals is prior1_interval<fusionv_inte
rval <prior2_interval. Although the Bv confidence inter-
val result differs from the above conclusion, the Bv con-
fidence interval range is small, and the gap between them 
can be ignored.

To obtain the mean values and 95% confidence inter-
vals for each weight coefficient, as shown in Figure  10. 
Taking the mean value as the estimation result of the 
weight coefficient, k1Cq is 0.382, indicating that the bench 
test data has a small contribution to the estimation result 
of Cq. In contrast, the operating data have a significant 
contribution to them. This result is consistent with the 
characteristics that Cq is greatly affected by the load. 
However, k1Bv and k1Kv are all close to 0.5, indicating that 
the contributions of the bench test and operating data to 
the estimation results of Bv and Kv are equal. This seems 
to be related to the fact that they are the inherent attrib-
ute parameters of the control valve. The value of k1F0 is 
0.456, and the contribution of the operating data to the 
estimated result is slightly higher than that of the bench 
test data.

Before and after applying the data fusion method, the 
estimation of cylinder parameters is based on cylinder 
operating data, while the prior information remains the 
same. The estimation result of the cylinder parameters 
prior3 and fusionc exhibit little change, as shown in Fig-
ure 11. The slight change in cylinder parameters is caused 

Figure 6 Experiment for operating data acquisition
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by the change in parameters Cq before and after the data 
fusion method. They are connected through the flow rate 
continuity equation.

Figure 12 presents the 95% confidence intervals of the 
cylinder estimated parameters. Similarly, the confidence 

intervals exhibit small deviation, the variation in Cq like-
wise influences the differences between them.

5.2  Parameter Estimation Results of Other Conditions
Using the same method, the parameters of the valve-
controlled cylinder system model were estimated and 
analyzed under fast boom operation and excavation con-
ditions. The estimation results under fast boom opera-
tion conditions are shown in Tables 5, 6 and 7. While the 
parameter estimates and weight coefficients slightly differ 
from those obtained under slow boom operation condi-
tions, it can be observed from the tables that they exhibit 
similar trends.

The estimation results under excavation operation con-
ditions are shown in Tables  8, 9 and 10. Although the 
estimated values differ between fast and slow boom oper-
ation conditions, they exhibit similar trends.

5.3  Comparison of Different Parameter Estimation 
Methods

Based on the data obtained in Section  4, the parameter 
estimation of the system model is studied through the 
data fusion method, the Bayesian method [33, 38] and 
the PSO algorithm [2]. Notably, the latter two methods 
utilize cylinder operating data as their benchmark. Sub-
sequently, leveraging the outcomes of the parameter esti-
mation, a simulation model is developed to compute the 
cylinder displacement across diverse working conditions, 
and compare the model calculation results with the test 
results, as shown in Figure  13. It can be seen from Fig-
ure 13 that for all working conditions, the results of the 
parameter estimation method using the PSO algorithm 
have the worst coincidence with the test results. The 
above research has demonstrated that bench test and 
operating data contribute significantly to estimating con-
trol valve parameters. Due to the difficulty in collecting 
operating data of the control valve, the parameter esti-
mation process based on operating data and the Bayes-
ian method lacks information regarding the control valve. 
Additionally, the displacement data of the hydraulic 

Figure 7 Test bench description: (a) Test bench principle diagram, 
(b) Test bench picture

Table 4 Bench test measurement point details

Measurement points Sensor performance

Pump pressure Range: 0–60 MPa,
Accuracy: ±0.5%F.S

Control valve flow rate Range:16–600 L/min,
Accuracy: ±0.5%F.S.

Control valve pressure Range: 0–60 MPa,
Accuracy: ±0.5%F.S

Valve spool displacement Range: 0–15 mm,
Accuracy: ±0.5%F.S
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cylinder is not a direct measurement of the control valve, 
leading to biases in the estimated control valve parame-
ters and affecting the accuracy of the valve-controlled cyl-
inder system model. The data fusion method integrates 
the actual load data and the control valve output data, 
making the parameter estimation results more accurate. 

Figure 8 Estimation results for the control valve parameters

Figure 9 95% confidence intervals of control valve parameter 
estimation results

Figure 10 95% confidence interval of k1
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Consequently, the simulation results of the valve-con-
trolled cylinder system model-based data fusion method 
exhibit good agreement with the test results.

Each parameter estimation method’s model accuracy 
value Q is calculated using Eq. (11), and the results are 
listed in Table 11.

In all working conditions, the relationship between 
the model accuracy obtained using the three meth-
ods is Qfusion<Qbayesain<QPSO, indicating that the model 

Figure 11 Estimation result for cylinder parameters

Figure 12 Cylinder parameter estimation results’ 95% confidence 
intervals
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accuracy based on the data fusion method is the high-
est. Moreover, �Qmaxfusion<�QmaxBayesain<�QmaxPSO , 
indicating that the parameter estimation result based 
on the data fusion method is the most stable. In addi-
tion, the relationship between the model accuracy 

values of different operation conditions in all methods 
is QSlow< QFast< QExcavation, indicating that the worse 
the working conditions, the worse the model accuracy. 
This proves the critical role of the data fusion method.

Table 5 Parameter estimation results of control valve under fast boom operation conditions

Models Results Cq Bv Kv F0

Prior1 95% confidence interval [0.688 0.762] [299.352 300.108] [130.328 131.128] [260.142 322.860]

Mean value 0.725 299.730 130.728 291.501

Prior2 95% confidence interval [0.642 0.725] [299.108 299.694] [129.064 130.158] [254.234 347.906]

Mean value 0.6835 299.401 129.611 301.070

Fusionv 95% confidence interval [0.673 0.723] [298.977 300.001] [129.705 130.525] [266.306328.612]

Mean value 0.698 299.489 130.115 297.459

Table 6 Parameter estimation results of weight coefficients under fast boom operation conditions

Results k1Cq k1Bv k1Kv k1F0

95% confidence interval [0.082 0.602] [0.221 0.798] [0.204 0.854] [0.129 0.754]

Mean value 0.342 0.510 0.529 0.442

Table 7 Parameter estimation results of cylinder under fast boom operation conditions

Models Results Ci Ce βe Bp

Prior3 95% confidence interval [346.107 425.289] [231.243 370.517] [285.347 1661.267] [823461.461 826713.539]

Mean value 385.698 300.880 973.307 825087.500

Fusionc 95% confidence interval [351.056 426.120] [231.289 365.693] [418.262 1510.826] [823685.996 826719.254]

Mean value 388.588 298.491 964.544 825202.625

Table 8 Parameter estimation results of control valve under excavation operation conditions

Models Results Cq Bv Kv F0

Prior1 95% confidence interval [0.689 0.750] [299.352 300.298] [130.678 131.130] [259.142 322.160]

Mean value 0.720 299.825 130.904 290.651

Prior2 95% confidence interval [0.642 0.728] [299.228 299.924] [129.144 130.628] [253.514 347.886]

Mean value 0.685 299.576 129.886 300.700

Fusionv 95% confidence interval [0.674 0.722] [299.157 300.121] [130.130 130.585] [266.326 329.452]

Mean value 0.698 299.639 130.358 297.889

Table 9 Parameter estimation results of weight coefficients under excavation operation conditions

Results k1Cq k1Bv k1Kv k1F0

95% confidence interval [0.078 0.670] [0.216 0.788] [0.198 0.850] [0.164 0.738]

Mean value 0.374 0.502 0.524 0.451
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6  Conclusions
To effectively use the advantages of bench test and oper-
ating data in research on the estimation of simulation 
model parameters, this paper proposed a model param-
eter estimation method for bench test and operating data 
fusion based on Bayesian theory and pool method. By 
using the data fusion method, valve-controlled cylinder 
system model parameters estimation were studied, and 
the following research conclusions were drawn:

1 Taking slow boom operation conditions as an exam-
ple, variance in estimation results based on operat-
ing data (prior2) is the largest, while for bench test 
data (prior1), it is small. Prior1 and prior2 have vary-
ing degrees of influence on fusionv. The relationship 
between the confidence intervals of prior1, prior2 and 
fusionv is prior1_interval< fusionv_interval< prior2_
interval.

2 The weighting coefficient vector k1 was obtained for 
slow boom operation conditions. From the weight 
coefficient estimation results, the bench test data 
contribute less to the estimation results of Cq, while 
the operating data contribute more. The contribution 

of bench test and operating data to Bv and Kv estima-
tion results is similar, and the contribution of oper-
ating data to F0 estimation results is slightly higher 
than that of the bench test data.

3 Using operating data as a benchmark, it is possible 
to obtain relatively accurate estimates of the cylin-
der parameters, and there is a high level of consist-
ency between prior3 and fusionc. After the data fusion 
method, the few changes in the parameter results are 
caused by changes in the Cq estimation results.

4 Parameters of the valve-controlled cylinder system 
model were estimated under fast boom operation 
and excavation conditions simultaneously. Estimated 
values of parameters slightly differ among the three 
conditions, yet exhibit consistent patterns and trends.

5 Compared with the Bayesian method and the PSO 
algorithm, the simulation model results based on 
the data fusion method coincide best with the test 
results, and the model accuracy is the highest. In 
addition, the worse the operation conditions, the 
more inaccurate the parameter estimation results. 
This proves the importance of data fusion in param-
eter estimation research.

Table 10 Parameter estimation results of cylinder under excavation operation conditions

Models Results Ci Ce βe Bp

Prior3 95% confidence interval [346.107 423.766] [231.023 370.157] [290.547 1665.167] [823382.761 826783.039]

Mean value 384.9365 300.590 977.857 825082.900

Fusionc 95% confidence interval [352.196 426.252] [230.789 364.493] [420.202 1518.626] [823663.596 826792.504]

Mean value 389.224 297.641 969.414 825228.050
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Figure 13 Comparison of cylinder displacement simulation results
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