TableĀ 16 Limb expression for type T-H (referring TablesĀ 8, 10 and 12)

Parallel limb 1 Parallel limb 2 Parallel limb 3 Serial limb Other limb Condition Index
GF21 GF6 GF5 / / C-TH-1, C-TP-1
GF21 GF6 GF6 / / C-TH-2, C-TP-1
GF12 GF16 GF1 GF1 GF16 / C-TP-6, C-TP-2
GF12 GF16 GF2 GF2 GF16 $$\parallel {\text{R}}_{{{\upalpha }}}^{j} ,j = 2,3,4$$ C-TP-10, C-TP-2
GF12 GF10 GF3 GF3 GF16 $$\parallel {\text{R}}_{{{\upalpha }}}^{j} ,j = 2,3,4$$ C-TP-13, C-TP-2
GF12 GF16 GF3 GF3 GF16 $$\parallel {\text{R}}_{{{\upalpha }}}^{j} ,j = 2,3,4$$ C-TP-14, C-TP-2
GF18 GF4 GF1 GF1 GF16 $$\parallel {\text{R}}_{{{\upalpha }}}^{j} ,j = 1,5$$ C-RH-6, C-TP-3
GF18 GF4 GF2 GF2 GF16 $$\parallel {\text{R}}_{{{\upalpha }}}^{j} ,j = 1,5$$ C-RH-9, C-TP-3
GF18 GF4 GF3 GF3 GF16 $$\parallel {\text{R}}_{{{\upalpha }}}^{j} ,j = 1,5$$ C-RH-11, C-TP-3
GF21 GF4 GF1 GF1 GF10/GF16 $$\parallel {\text{R}}_{{{\upalpha }}}^{j} ,j = 1,5$$ C-RH-6, C-TP-4/ C-TP-5
GF21 GF4 GF2 GF2 GF10/GF16 $$\parallel {\text{R}}_{{{\upalpha }}}^{j} ,j = 1,5$$ C-RH-9, C-TP-4/ C-TP-5
GF21 GF4 GF3 GF3 GF10/GF16 $$\parallel {\text{R}}_{{{\upalpha }}}^{j} ,j = 1,5$$ C-RH-11, C-TP-4/ C-TP-5