Skip to main content

TableĀ 3 Details of Eq. (34)

From: A Novel Integrated Stability Control Based on Differential Braking and Active Steering for Four-axle Trucks

Details of Eq. (34)
\(x\left( k \right) = \left[ {\begin{array}{*{20}c} {\dot{\psi }\left( k \right)} & {\dot{\varphi }\left( k \right)} & {\varphi \left( k \right)} \\ \end{array} } \right]^{\text{T}}\), \(u\left( k \right) = \left[ {\begin{array}{*{20}c} {M_{zs} } & {F_{ys} } \\ \end{array} } \right]^{\text{T}}\),
\(y\left( k \right) = \left[ {\begin{array}{*{20}c} {\dot{\psi }\left( k \right)} & {LTR\left( k \right)} \\ \end{array} } \right]^{\text{T}}\),
\(A = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & {1 - \frac{CT}{{J_{x} }}} & { - \frac{{T\left( {K - ghm_{s} } \right)}}{{J_{x} }}} \\ 0 & T & 1 \\ \end{array} } \right]\),
\(B = \left[ {\begin{array}{*{20}c} {\frac{1}{{J_{z} }}T} & 0 \\ 0 & {\frac{h}{{J_{x} }}T} \\ 0 & 0 \\ \end{array} } \right]\), \(C = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & {K_{{\dot{\varphi }}} } & {K_{\varphi } } \\ \end{array} } \right]\), \(D = \left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & {\frac{{K_{ay} }}{m}} \\ \end{array} } \right]\)