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Abstract Design of a robust production facility layout

with minimum handling cost (MHC) presents an appro-

priate approach to tackle facility layout problems in a

dynamic volatile environment, in which product demands

randomly change in each planning period. The objective of

the design is to find the robust facility layout with mini-

mum total material handling cost over the entire multi-

period planning horizon. This paper proposes a new

mathematical model for designing robust machine layout in

the stochastic dynamic environment of manufacturing

systems using quadratic assignment problem (QAP) for-

mulation. In this investigation, product demands are

assumed to be normally distributed random variables with

known expected value, variance, and covariance that ran-

domly change from period to period. The proposed model

was verified and validated using randomly generated

numerical data and benchmark examples. The effect of

dependent product demands and varying interest rate on the

total cost function of the proposed model has also been

investigated. Sensitivity analysis on the proposed model

has been performed. Dynamic programming and simulated

annealing optimization algorithms were used in solving the

modeled example problems.

Keywords Robust layout � Dynamic stochastic

environment � Manufacturing system � Dynamic

programming

1 Introduction

Facility layout problem (FLP) is one of the most critical

issues in the design of manufacturing systems because it

significantly affects the total manufacturing cost. Material

handling cost (MHC) is one of the most appropriate mea-

sures to evaluate the efficiency of a facility layout. The

MHC forms 20%–50% of the total manufacturing cost and

it can be decreased by at least 10%–30% by an efficient

layout design [1]. According to the nature of the product

demands and time planning horizon, the FLP can be cat-

egorized into static (single period) facility layout problem

(SFLP), dynamic (multi-period) facility layout problem

(DFLP), stochastic static facility layout problem (SSFLP),

and stochastic dynamic facility layout problem (SDFLP).

In SFLP, the flow of materials is deterministic and constant

over the entire time planning horizon. DFLP includes

deterministic, constant, and different flow of materials in

each period. In SSFLP, the product demands are random

variable so that their parameters are fixed throughout the

single time period planning horizon. SDFLP is a multi-

period layout problem including different stochastic

demand scenarios in each period. The objective of SFLP

and SSFLP is to design an optimal layout in such a way

that the total MHC is minimized. DFLP and SDFLP have

the aim of designing an optimum layout for each period of

the planning horizon by minimizing the total material

handling and rearrangement costs. In fact, considering each

period as a stage, the multi-period problem can be con-

sidered as a multi-stage dynamic system with optimal
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behavior from stage to stage. Design of dynamic, robust,

and static layouts are three different approaches to deal

with a multi-period facility layout problem. The methods

are described as follows.

Dynamic approach: Using this method, an optimal

layout is designed for each period so that the total material

handling and rearrangement costs is minimized [2]. In

practice, because rearrangement of facilities is a costly

process, the dynamic approach is a well-known method for

design of the optimal layout in dynamic environments.

Robust approach: In the robust layout design approach,

only one robust layout is designed for the entire time

planning horizon with different stochastic demand scenar-

ios. Actually, this layout is used for each period and

thereby, there is no rearrangement cost in this approach.

The robust layout is not necessarily an optimal layout for a

particular time period, but it is the best layout over the

entire time planning horizon so that the total MHC is

minimized. Therefore, the robust approach has the advan-

tage of lack of rearrangement cost and the disadvantage of

not having an optimal layout for each period. This method

is appropriate for environments where the facility rear-

rangement cost is high.

Static approach: Each period is considered as a static

problem so that it is solved regardless of other periods’

data. In fact, using this method, an optimal layout is

designed for each period without considering the facility

relocating cost and the layout configuration can be easily

changed from period to period. The static approach is

suitable for cases with low facility rearrangement cost.

Modern manufacturers such as cellular and flexible

manufacturing systems (CMS and FMS) rely on the phi-

losophy of group technology (GT) so that a family of parts

are produced. Using GT, the parts, which are similar in

design and manufacturing process requirements, are

grouped into one family to achieve some benefits such as

reduction in material handling, set up time, and work-in-

process inventories. In these systems, different kinds of

material handling devices such as conveyor, automated

guided vehicle (AGV), rail guided vehicle (RGV), and

rotating robot arm can be used [3]. This paper aims to

design of a robust layout of machines placed in a cell or

shop floor in a stochastic dynamic environment of manu-

facturing systems.

Simulated annealing (SA) is an algorithm that is used

to simulate the physical annealing process of solids in

statistical mechanics starts with a known or randomly

generated initial solution and a high initial value of

temperature. It is formed by two loops namely, the inner

loop to search for a neighboring solution, and the outer

loop for decreasing the temperature to reduce the prob-

ability of accepting the non-improving neighboring

solutions in the inner loop [4].

2 Literature Review

IRAPPA-BASAPPA, et al [5], designed a robust

machine layout for the DFLP using the quadratic

assignment formulation. MADHUSUDANAN-PILLAI,

et al [6], proposed a SA algorithm to solve their robust

layout design model. SOOLAKI, et al [7], solved a cell

design problem in an uncertain environment of manu-

facturing systems by developing a robust optimization

model. FORGHANI, et al [8], minimised the total inter

and intra-cell MHC to design a robust facility layout in

cellular manufacturing systems regarding random

demands. NEGHABI, et al [9], proposed a new model

and adaptive algorithm for designing a robust facility

layout assuming unknown facilities’ length and width in

advance. NEMATIAN [10] designed a robust single row

facility layout assuming fuzzy stochastic variables.

POURVAZIRI, et al [11], developed a hybrid multi-

population genetic algorithm to cope with the dynamic

facility layout problem. AZADEH, et al [12], solved a

dynamic layout problem having equal-sized facilities

using data envelopment analysis and diversification

strategy of tabu search algorithm. FAZLELAHI, et al

[13], suggested a model to design a robust facility layout

in dynamic environment utilizing a permutation-based

genetic algorithm. DERAKHSHAN ASL, et al [14],

dealt with static and dynamic facility layout problems

having unequal-sized facilities by using a modified par-

ticle swarm optimization approach. SEE, et al [15],

applied an ant colony algorithm for solving facility

layout problems modeled as a quadratic assignment

problem (QAP). LEE, et al [16], used genetic algorithm

to solve a facility layout problem formulated as QAPs.

3 Problem Formulation

3.1 Assumptions

1. Equal-sized machines are assigned to the same number

of known locations.

2. The discrete representation of the SDFLP is

considered.

3. Demands of products are assumed to be dependent

normally distributed random variables with known

expected value, variance, and covariance that ran-

domly change from period to period. Some reasons for

assuming normal distribution for the demands are as

follows: Many real world data naturally follow a

normal distribution [17]. Several distributions such as

binomial and Poisson distributions can be approxi-

mated to a normal distribution under particular condi-

tions. Product demands have also been considered as
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normally distributed random variables in layout design

problems in a number of previous studies as given in

Refs. [18–22].

4. The confidence level, which represents the decision

maker’s attitude about uncertainty in product demands,

is considered.

5. The parts are moved in batches between machines by

material handling devices. Table 1 displays some

examples of batch production in previous studies.

6. Time value of money is considered.

7. There is no constraint for dimensions and shapes of the

shop floor.

8. Machines can be laid out in any configuration such as

rectangular configurations as shown in Fig. 1, where

L1,…, L12 are the known machine locations.

9. The data on number of machines, number of periods,

machine sequence, present value of part movement

cost, transfer batch size, distance between machine

locations, money interest rate for each period (year),

present value of machine rearrangement cost, the

expected value, variance, and covariance of part

demands in each period are known as inputs of the

model.

3.2 Parameters and Indexes

The parameters and indexes used in this model are shown

in Table 2.

3.3 Proposed Model

In the robust layout design method, a dynamic (multi-pe-

riod) layout problem is converted to a static (single period)

problem. Therefore, according to the assumptions (1) and

(2), the following 0-1 integer programming form of the

quadratic assignment problem (QAP) formulation sug-

gested by KOOPMANS, et al [27] is used to develop the

robust machine layout design model for the SDFLP:

Minimize
XM

i¼1

XM

j¼1

XM

l¼1

XM

q¼1

fijdlqxilxjq ð1Þ

Subject to :

XM

i¼1

xil; 8l
ð2Þ

XM

l¼1

xil; 8i ð3Þ

xil ¼
1 if facility i is assigned to location l

0 otherwise

�
ð4Þ

The objective function Eq. (1) is a quadratic function of

the decision variables. In this equation, fij denotes the flowof

materials between facilities i and j. The distance between

locations l and q is denoted by dlq. In fact, the objective

Table 1 Examples of batch production in previous studies

Manufacturing system Reference No.

FMS [3, 23, 24]

CMS [5, 6, 25, 26]

L1 L2  L4 

 L6 L7 L8 

L9 L10 L11 L12 

Fig. 1 Rectangular configurations

Table 2 Notations of the proposed model

Notation Description

K Number of parts

M Total number of machines/machine locations

T Number of periods under consideration

k Index for parts (k = 1, 2,…, K)

t Index for period (t = 1, 2,…, T)

i, j Index for machines (i, j = 1, 2,…, M); i = j

l, q Index for machine locations (l, q = 1, 2,…, M); l = q

Nki Operation number for the operation done on part k by

machine i

fijk Materials flow for part k between machines i and j

fij Materials flow for all parts between machines i and j

Dtk Demand for part k in period t

Bk Transfer batch size for part k

Ctk The movement cost per batch size per unit distance for

part k

Ck Present value of the movement cost per batch for part k

Ir Interest rate

dlq Distance between machine locations l and q

xil Decision variable of the model

C(p) Total MHC for layout p

Zp Standard normal Z value for percentile (confidence level)

p

E() Expected value of a parameter

Var() Variance of a parameter

Cov () Covariance

U(prm, p) Maximum value (upper bound) of C(p) with the

confidence level p

OFVrm Total cost of the robust machine layout
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function represents the total MHC, which is calculated as the

summation of the product of materials flow between facili-

ties and distance between the locations of these facilities.

The linear constraints (2) and (3) ensure that each location

must contain only one facility and each facility must be

assigned to exactly one location respectively. Eq. (4) repre-

sents the 0-1 integer decision variables that are the solutions

of the problem so that they determine the location of each

facility. The robust layout for this multi-period machine

layout problem is designed in such a way that the average

flow of each part in different periods is considered as the part

flow for the entire time planning horizon. The flow of

materials for part k betweenmachines i and j in period t ftijk
� �

can be calculated by using Eq. (5), where the condition

Nki - Nkj

�� �� ¼ 1 refers to two consecutive operations, which

are done on part k by machines i and j. The flow of part

k between machines i and j over the time planning horizon

fijk
� �

is given in Eq. (6), which is reformed as Eq. (7) by

combining with Eq. (5). According to Eq. (5), in Eq. (7) and

the subsequent equations resulting from this equation, the

condition Nki � Nkj

�� ��¼1 should be considered. The total flow

between machines i and j resulting from all parts fij
� �

is

calculated by Eq. (8), which is written as Eq. (9), after

combining with Eq. (7). In Eq. (9), Dtk is a normally dis-

tributed random variable with the expected value E Dtkð Þ and
variance Var Dtkð Þ. Therefore, fij is a normally distributed

random variable with the expected value and variance given

in Eqs. (10) and (11) respectively.

ftijk ¼
Dtk

Bk

Ctk if Nki � Nkj

�� �� ¼ 1

0 otherwise

(
ð5Þ

fijk ¼

PT

t¼1

ftijk

T
ð6Þ

fijk ¼
1

T

XT

t¼1

Ctk

Bk

Dtk ð7Þ

fij ¼
XK

k¼1

fijk ð8Þ

fij ¼
XT

t¼1

XK

k¼1

Ctk

T � Bk

Dtk ð9Þ

EðfijÞ ¼
XT

t¼1

XK

k¼1

Ctk

T � Bk

E Dtkð Þ ð10Þ

VarðfijÞ ¼
XT

t¼1

XK

k¼1

Ctk

T � Bk

� �2

VarðDtkÞ
 

þ2
XK

k¼1

XK

k0¼kþ1

Ctk � Ctk0

T2 � Bk � Bk0
covðDtk;Dtk0 Þ

! ð11Þ

In Eq. (1), considering the flow of parts as a normally

distributed random variable causes the total MHC of the

robust layout prm (i.e., C prmð Þ) to be a normally distributed

random variable as well [28]. The expected value and vari-

ance of C prmð Þ are given in Eqs. (12) and (13), respectively.
Sincewe consider time value ofmoney,Ctk can be calculated

using Eq. (14). For a given robust machine layout prm if the

decision maker considers U prm; pð Þ as the maximum value

(upper bound) of C prmð Þ with the confidence level p, then

U prm; pð Þ given in Eq. (15) can be minimized instead of

minimizing C prmð Þ [29–31].

E C prmð Þð Þ ¼
XM

i¼1

XM

j¼1

EðfijÞ
XM

l¼1

XM

q¼1

dlqxilxjq ð12Þ

Var C prmð Þð Þ ¼
XM

i¼1

XM

j¼1

VarðfijÞ
XM

l¼1

XM

q¼1

dlqxilxjq

 !2

ð13Þ

Ctk ¼ Ckð1þ IrÞt ð14Þ

Uðp; pÞ ¼ EðCðpÞÞ þ Zp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðCðpÞÞ

p
ð15Þ

Using Eqs. (10)-(15) the mathematical model for

obtaining the robust machine layout prm in the SDFLP can

be written as the following:

Minimization of

OFVrm ¼

PM

i¼1

PM

j¼1

PK

k¼1

PT

t¼1

Ckð1þ IrÞt

T :Bk

EðDtkÞ
PM

l¼1

PM

q¼1

dlqxilxjq

þZp
PM

i¼1

PM

j¼1

PT

t¼1

PK

k¼1

Ckð1þ IrÞt

T:Bk

� �2

VarðDtkÞþ

2
PK

k¼1

PK

k0¼kþ1

Ck:Ck0 ð1þ IrÞ2t

T2:Bk:Bk0
covðDtk;Dtk0 Þ

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

PM

l¼1

PM

q¼1

dlqxilxjq

 !
20

BBBB@

1
CCCCA

1=2

2
66666666664

3
77777777775

ð16Þ
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Subject to: Eqs. (2)-(4).

Eq. (16) symbolized by OFVrm denotes the objective

function (also termed cost function) of the robust machine

layout design model. In this model, all parameters, which

are defined in Table 2, are known in advance. In fact, this

model is deterministic, although part demands, which have

the known expected value and variance in each period, are

random variables. However, the optimal values of the

unknown 0-1 integer decision variables xil are obtained by

solving the model. The optimal location of each machine is

thus determined and in turn, the robust machine layout prm
is obtained throughout the time planning horizon.

4 Verification and Validation of the Proposed
Model

This section aims to verify and validate the proposed model

using numerical examples (i.e., to generate a large number

of test problems at random), benchmark (data from litera-

ture), real case studies, and sensitivity analysis methods.

The effect of assuming dependent part demands and time

value of money (interest rate) on total cost of the proposed

model is also investigated. Rectangular layout configura-

tion is considered by computing rectilinear distance

between centers of machines. Dynamic programming (DP)

method is used for solving the randomly generated and

benchmark problems discussed in sections 4.1 and 4.2

respectively. This is done because DP is an exact method to

find the optimal solution of the problems. Therefore, the

model validation and analysis carried out in the two

aforementioned sections will be more secure than the meta-

heuristic approaches such as simulated annealing (SA)

algorithm used to solve the problems. It is essential to note

that the obtained solution using meta-heuristics is not

necessarily an optimal solution, particularly for large-sized

problems. However, the real case study is solved using the

SA algorithm due to the size of the problem because DP

cannot solve it in a reasonable time. This algorithm is

coded in MATLAB and run using a PC with an Intel

2.10 GHz CPU and 3 GB RAM.

4.1 Numerical Examples

To validate the proposed model, 104 different-sized ran-

domly generated test problems with 2 \M \9 and

1 \T \7 are applied to the proposed model. The test

problems are also solved in accordance with the static

layout design approach. By doing so, for each model, 104

cost function values, which are considered as samples of a

population, are obtained.

As we know from statistics, the 100 � 1� að Þ% confi-

dence interval for difference between means of two pop-

ulations is calculated as Eq. (17), where n1 and n2 are

sample size, x1 and x2 are sample means, r21 and r22 are

sample variances, and za=2 is standard normal Z value so

that Pr �za=2 � Z� za=2
� �

¼ 1� a. The sample mean and

sample variance are given in Eqs. (18) and (19)

respectively.

ðx1 � x2Þ � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s

\l1 � l2\ðx1 � x2Þ

þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s

ð17Þ

x ¼

Pn

i¼1

xi

n
ð18Þ

r2 ¼ 1

n� 1

Xn

i¼1

xi � xð Þ2 ð19Þ

Using Eq. (17), the 95% confidence intervals for the

difference between the populations are calculated as fol-

lows: �14250\lr � ls\ 15840, where lr and ls are the

mean value of the cost function of the robust model and the

static model, respectively.

As we know, the static approach generates an optimal

layout for each period. Therefore, it is used as a benchmark

to evaluate the performance of the robust layout. The

obtained confidence interval is almost a symmetric interval.

Thereby, the cost function values of each period for the

robust and static layouts are near to each other. To illustrate

the conclusion, a numerical example is constructed by using

a test problem taken from BALAKRISHNAN, et al [32] in

such a way that the flow matrix is considered as the matrix

of expectation of flow denoted by E. The matrix of variance

of flow denoted by V is computed by V ¼ E=3. Additional

input data of this problem are as follows: it includes six

facilities and five periods. As mentioned, rectangular layout

configuration is considered by computing rectilinear dis-

tance between centers of machines. This problem is applied

to the robust and static models by considering a 0.75 per-

centile level. Finally, the numerical example is solved using

DP algorithm and the results are shown in Table 3.

As mentioned in Section 1, the static and robust

approaches are suitable for facility layout design in the

cases of low and high rearrangement costs, respectively. It

is difficult to relate MHCs with rearrangement costs.

However, we assume that the aforementioned conditions

for rearrangement costs allowing us to use the static and

robust approaches are met in advance. In fact, since neither

the static model nor the robust model consider the facility

rearrangement cost value, there is no need to mention them
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here. In the static approach, each period is solved sepa-

rately regardless of data from other periods as well as

ignoring the low rearrangement cost. Using this approach

an optimal layout, which can be easily changed from per-

iod to period, is obtained for each period. On the other

hand, using the proposed robust layout design model with

the objective function given in Eq. (16), only grants one

layout for the entire time planning horizon. As shown in

Table 3, each of the five periods has different layouts using

the static approach. However, the robust layout [564123] is

obtained for the whole time planning horizon by using the

robust model.

Thereby, the static layout suffers from the rearrange-

ment cost from period to period, while the robust layout is

free of this cost. To evaluate the behavior of the robust

layout [564123], which is fixed throughout the planning

horizon, we calculate its MHC in each period and in the

entire planning horizon. Then, the MHC of the layouts

obtained by the static approach is also computed for each

period and throughout the planning horizon. As mentioned,

the static approach generates an optimal layout for each

period, and thereby it can be used as a benchmark for

evaluating the performance of the proposed robust layout.

The MHC of each period for static and robust approaches is

compared with each other in Fig. 2. On comparison, in

each period, the MHC of the robust layout is larger than

that of the static layout. Therefore, the robust layout is not

necessarily an optimal layout for each period. The results

also show that in most periods, the MHC of the robust

layout is close to that of the static layout, which is the

optimal value. In addition, considering the whole time

planning horizon, the difference between the total costs of

the robust layout (132582) and the static one (122505) is

7.6%. The MHC results in most periods for random

demands, however, are relatively close to the optimal value

of the static layout, as shown in Fig. 2. Over the entire

planning horizon, the difference between the total costs of

the robust layout (132582) and the static one (122505) is

7.6%, making the robust layout reasonably efficient for the

whole time planning given the randomly varying demands

now.

4.2 Benchmark Study

Since there is no historical data on the expectation and

variance of demands in each period, the proposed model is

tested in a deterministic environment by comparing it with

the previous approaches as benchmark data. To this end, a

50% percentile level (p = 50%) equivalent of zp = 0 is

applied to the model. By doing so, the second term of the

objective function given in Eq. (16) containing variance of

parts demand is ignored. This also implies that the data on

the variance of the part demands in each period are not

required. Hence, the demand of parts in each period, which

is known in the deterministic case, is regarded as the

expectation of parts demand in the proposed model. For

simplicity and without losing the generality of the proposed

model, independent product demands are considered, and

thereby there is no correlation between demands. As a

result, in Eq. (16), the term covariance is zero. The data set

used for testing the proposed model is taken from

Table 3 Results of the example for robust, and static models

Model Period Optimal

layout

Total cost

in each

period

Total cost in

planning

horizon

Robust 1 5 6 4 1 2 3 26605 132582

2 5 6 4 1 2 3 25291

3 5 6 4 1 2 3 24541

4 5 6 4 1 2 3 28107

5 5 6 4 1 2 3 29038

Static 1 6 2 1 3 4 5 25066 122505

2 5 6 3 1 2 4 24752

3 5 2 3 4 6 1 23883

4 4 5 1 2 6 3 25184

5 5 4 3 2 6 1 23620

Fig. 2 Total cost of static and robust layouts in each period
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YAMAN, et al [33]. The input data are as follows: The

problem includes nine machines and five periods. Data on

machine sequence and part demand in different periods are

given in Tables 4 and 5, respectively. Rectangular layout

configuration is considered so that location grid of 3 9 3 is

used as facilities locations. Part movement cost, and batch

size are set to ten and one, respectively.

As mentioned, MADHUSUDANAN-PILLAI, et al [6].

proposed an SA algorithm to solve their robust layout

design model, which is termed MP-SA hereafter. Another

heuristic method was developed by IRAPPA-BASAPPA,

et al [5]. to solve their model, which is denoted by I-M

hereafter.

YAMAN, et al’s [33] problem is applied to the proposed

robust machine layout model. To calculate the MHC of

each period, the obtained robust layout is applied to the

demands data in different periods of the planning horizon.

Table 6 shows the results of the proposed robust layout

design model and the previous methods. On comparison,

the proposed model has the best performance with respect

to the I-M and MP-SA methods in each period. In addition,

the proposed robust model can be applied to both deter-

ministic and stochastic environments, whereas the model

developed by IRAPPA-BASAPPA, et al [5] can only be

used for deterministic environment. Table 7 shows the total

MHC over the entire planning horizon obtained by the

proposed robust model and the previous approaches

including the MAIN method suggested by CHAN, et al

[34], the I-M, and MP-SA methods. Based on the various

results, the proposed robust model has the best perfor-

mance so that it leads to 2.7% improvement in total cost

with respect to MP-SA method, which is the best previous

method. It is necessary to mention that in this section, to

validate the proposed robust model only one test problem

taken from the literature is solved. Therefore, unlike the

approaches done in section 4.1, there is no need to state the

significant level for the 2.7% improvement in total cost.

Tables 6 and 7 are examples of using our proposed model

in the deterministic case.

Facility layout design application example

According to KRISHNAN, et al [35], in the real

world case study, six parts are processed using 21 equal-

sized machines 350 � 350ð Þ: Part movement cost and

machine rearrangement cost are presumed to be

$3.75/foot and zero respectively. An aisle space of 10

feet is assumed to be considered around each machine.

Euclidean distance between centers of machines is con-

sidered in the case study. The data on yearly part

demands, which are given in Table 8, are considered as

the expectation of the part demands. Since there is no

data on variance of part demands, a 50% percentile

p equivalent of zp = 0 is considered. Machine sequence

data are given in Table 9. The data of the problem are

applied to the proposed robust machine layout design

model and is solved using an SA algorithm. SA is an

Table 4 Data on machine sequence

Part No. Machine sequence

1 1 ? 3?5 ? 7?2 ? 7?9

2 1 ? 4?2 ? 5?6 ? 8?9

3 1 ? 5?7 ? 8?5 ? 6?2 ? 9

4 1 ? 2?4 ? 6?7 ? 8?2 ? 3?9

5 1 ? 7?6 ? 4?2 ? 8?3 ? 5?6 ? 9

Table 5 Part demand in different periods

Part No. Period

1 2 3 4 5

1 10 35 90 40 55

2 30 50 25 65 20

3 45 15 40 70 15

4 70 80 55 90 85

5 85 60 70 20 30

Table 6 MHC of the robust model and previous approaches

Approach Period Planning horizon

1 2 3 4 5

I-M 28800 27200 31200 32350 22350 141900

MP- SA 27800 26400 29500 31300 22000 137000

Proposed robust model 26900 26100 28700 29900 21700 133300

Table 7 Total MHC of the robust model and previous approaches

Approach Chan I-M MP-SA Proposed robust model Change with respect to MP-SA %

Total cost 145700 141900 137000 133300 -2.7
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intelligent approach that has been widely used to solve

the FLP. It is a simulation of physical annealing process

of solids in statistical mechanics, which starts with a

known or randomly generated initial solution and a high

initial value of temperature. It is formed by two loops,

namely, the inner loop to search for a neighboring

solution, and the outer loop for decreasing the temper-

ature to reduce the probability of accepting the non-

improving neighboring solutions in the inner loop.

Table 10 shows the results of our method and that of the

best previous one including the cost associated with each

period and the total cost over the whole time planning

horizon. As shown in Table 10, the obtained robust

machine layout leads to 7.35% improvement with

respect to the best previous one proposed by KRISH-

NAN, et al [35]. Using the same reason as in previous

section, there is no need to state the significant level for

the 7.35% improvement.

4.3 Sensitivity Analysis

In this section, sensitivity analysis is performed for

validating the proposed model and to rank the inputs of

the model in terms of the degree of their impact on the

output of the model (objective function). Sensitivity of

the output of the proposed robust machine layout

design model with respect to the input parameters

including expectation of materials flow, variance of

materials flow, and confidence level is investigated by

using one-way analysis of variance (ANOVA). Using

this technique, the null and alternative hypotheses are

usually tested by using the F-test. The null hypothesis

states that the means amongst two or more groups are

equal and the alternative one indicates that at least two

means are different. In ANOVA, it is assumed that the

mean of the model outputs for each group is normally

distributed random variable with approximately the

same variance. Considering the assumptions, the F-

value is statistically important at p\5% and the null

hypothesis is rejected [36]. In ANOVA, an input and an

output of a model are referred to as a ‘‘factor’’ and a

‘‘response variable’’ respectively [37]. The factors are

ranked according to the F-values [38]. Inputs with

higher F-values are more sensitive factors, which more

strongly affect the output of a model. The aim of one-

way ANOVA is to realize whether data from several

groups have the same mean.

To perform the sensitivity analysis, 100 randomly gen-

erated test problems are applied to the proposed model in

Table 8 Expectation of part demands for real case study

Year Part

A B C D E F

2002 15 8 18 18 16 17

2003 19 25 25 21 27 21

2004 33 37 39 43 39 42

2005 58 64 58 56 58 57

2006 46 46 46 46 46 46

Table 9 Machine sequence for real case study

Part Machine sequence

A 10 ? 12 ? 13 ? 5 ? 18 ? 14 ? 21 ? 15 ? 1 ? 11 ? 19 ? 20

B 10 ? 12 ? 5 ? 4 ? 18 ? 14 ? 21 ? 14 ? 18 ? 15 ? 1 ? 11 ? 19 ? 20

C 10 ? 8 ? 9 ? 10 ? 5 ? 18

D 3 ? 4 ? 10 ? 8 ? 9 ? 10 ? 4 ? 18

E 2 ? 10 ? 8 ? 9 ? 10 ? 5 ? 18

F 15 ? 17 ? 6 ? 2 ? 16 ? 9 ? 10 ? 7 ? 5 ? 18

Table 10 Results of real case study

Year Approach

Krishnan Robust model & SA algorithm Percentage Savings (%)

2002 $194,638.76 $165,816 14.80

2003 $211,428.07 $200,324 5.25

2004 $347,675.62 $343,410 1.22

2005 $464,675.32 $480,124 3.20

2006 $560,878.42 $458,821 18.20

Total Cost $1,779,296.19 $1,648,495 7.35

414 G MOSLEMIPOUR et al.

123



three different cases, namely, Cases E, V, and P, which

investigate the sensitivity of the objective function of the

model with respect to expectation of materials flow (matrix

E), variance of materials flow (matrix V) and confidence

(percentile) level (p) respectively. The input data are as

follows: For each test problem, the expectation and vari-

ance of part demands (E and V) are randomly generated

with uniform distribution so that E 2 ð1000; 10000Þ and

V 2 ð1000; 3000Þ. Besides, the number of machines and

the number of periods are six and three respectively

M ¼ 6; T ¼ 3ð Þ.
In Case E, matrix E is changed by E0 ¼ E þ r � E,

whereas matrix V and confidence level p remain unchanged.

Considering nine different values of r 2 A ¼
01; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9f g leads to generate

nine different matrices E. Each test problem is solved for

each of the nine different Es so that the optimal value of each

objective function corresponds to each E is obtained. Simi-

larly, in Case V, matrix V is changed by V 0 ¼ V

þr � V ,whereas matrix E and confidence level p remain

unchanged. Considering the nine aforementioned values of

r leads to generate nine different matrices V. Each test

problem is solved for each of the nine different V so that the

optimal value of each objective function corresponding to

each V is obtained. Finally, in Case P, the confidence level

p is set to each element in A while matrices E and V remain

unchanged. Similar to the two former cases, each test prob-

lem is solved for each of the nine different p values so that the

optimal value of each objective function corresponding to

each p is obtained. In fact, each case includes nine groups

(populations) and each group contains 100 samples of

objective function values. Each case, group, and sample is

denoted by k, g, and s, respectively, where k ¼ E;ð
V; PÞ; g ¼ 1; 2; . . .; 9ð Þ, and s ¼ 1; 2; . . .; 100ð Þ. Mean of

samples within group g in case k is represented by lkg. As

mentioned, the condition of having normal distribution for

the mean of each group is necessary for ANOVA. To meet

this condition, 100 randomly generated test problems are

considered. This is due to the central limit theorem (CLT),

which states that the average of a sufficiently large number

(for example, � 30Þ of independent random variables fol-

lows normal distribution [39].

The aim of this section is to test the hypothesis given

in Table 11 using ANOVA. Using MATLAB software,

ANOVA is applied to the results of the randomly gen-

erated test problems for testing the aforementioned

hypothesis. The results of ANOVA are given in

Table 12. According to the results including F-values

and P-values, the null hypothesis H0 is rejected. In other

words, as expected, different values of input parameters

containing expectation of product demands, variance of

product demands, and confidence level lead to designing

different facility layout. Therefore, the model validation

concludes. As mentioned, the input with higher F-value

is the more sensitive parameter. According to F-values in

Table 12, the expectation of product demand and the

variance of product demand are the most and least

sensitive parameters, respectively. This is because of

FE ¼ 7:98ð Þ[ FP ¼ 3:05ð Þ[ FV ¼ 0:37ð Þ, where

FE;FV , and Fp are F- values in the Cases E, V, and P

respectively. Experimentally, we concluded that changes

in the parameters including number of machines, number

Table 11 Hypotheses needed for sensitivity analysis using ANOVA

Case Case description Hypothesis

E E0 ¼ E þ r � E
V 0 ¼ V

p ¼ 0:75

HE
0 : lE1 ¼ lE2 ¼ � � � ¼ lE9

HE
1 : At least two means are different

V E0 ¼ E

V 0 ¼ V þ r � V
p ¼ 0:75

HV
0 : lV1 ¼ lV2 ¼ . . . ¼ lV9

Hv
1 : At least two means are different

P E0 ¼ E

V 0 ¼ V

p ¼ r

HP
0 : lP1 ¼ lP2 ¼ . . . ¼ lP9

HP
1 : At least two means are different

Table 12 Results of ANOVA (SS means sums of squares; df means degrees of freedom; MS means mean squares; F = SS/df)

Case Source SS df MS F Prob[F (P -value)

E Columns 1.02691017 8 1.2891016 7.98 2.007910-10

Error 1.43191018 891 1.6191015

Total 1.53491018 899 –

V Columns 2.59391015 8 3.2491014 0.37 0.9361

Error 7.78791017 891 8.7491014

Total 7.81391017 899 –

P Columns 1.39491016 8 1.7491015 3.05 0.0022

Error 5.08991017 891 5.7191014

Total 5.22991017 899 –
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of periods, confidence level, and the range in which the

expectation and variance of product demands are ran-

domly generated can change the sensitivity ranking of

the inputs studied in this section.

5 Demands Correlation and Interest Rate Affects
Total Cost

In this section, the effect of assuming dependent part

demands and time value of money (interest rate) on

total cost of the proposed model is investigated. To this

end, a numerical example with input data given in

Table 13 is applied to the model. For the known solu-

tion, the values of objective function of the proposed

model is calculated by considering different p percentile

levels in the three following cases: (i) independent

demands with no interest rate, (ii) dependent demands

with no interest rate, and (iii) independent demands

with non-zero interest rate. The results are shown in

Table 14.

Using the results, the curve of the total cost with respect

to confidence level is plotted in Fig. 3. The figure indicates

that non-zero interest rate leads to increased total cost over

the range of uncertainty. As shown in the figure, the cost

function has the same value for p ¼ 0:5 for both inde-

pendent and dependent demands, because this percentile

level, which is equivalent of zp ¼ 0, leads to ignoring the

second term of the objective function of the proposed

model given in Eq. (16). According to the equation, the

second term of the objective functions is variance of MHC,

which is function of demands correlation indicated by

covariance. Therefore, by ignoring this term, demands

correlation does not affect the total cost. In other words, if

the user-defined percentile level is 0.5, independency or

dependency of demands does not affect the total cost. It is

necessary to state that in Eq. (16), for independent and

dependent demands, the term of covariance is zero and

non-zero respectively. Besides, the total cost is decreased

for p\0:5 (equivalent of zp\ 0) and increased for p[ 0:5

(equivalent of zp [ 0) percentile levels by considering

dependent demands.

6 Conclusions

In this paper, a novel QAP-based mathematical model

was proposed for design of a robust machine layout for

the SDFLP. The proposed model was validated by using

numerical examples, benchmarks, and sensitivity analysis

methods. The effect of assuming dependent part demands

and interest rate on total cost of the proposed model was

investigated. According to the findings, the following

Table 13 Example for analyzing demands correlation and interest rate

Variance- covariance matrix Expectation of part demand Machine sequence

Part No. 1 2 3 Period 1 Period 2

1 10,000 640 4000 1000 1500 1 ? 2?3

2 100 4000 10,000 15,000 2 ? 3

3 2500 5,000 7500 1 ? 2

Machine relocating cost = 1000 Interest rate = 10%

Table 14 Total cost for three cases

P Case

i ii iii

0.1 3960.7 3841.7 4573.4

0.2 4060.2 3982 4706.3

0.3 4132.5 4084.1 4803

04 4193.5 4170.3 4884.5

0.5 4250 4250 4960

0.6 4308.8 4332.9 5038.5

0.7 4369.8 4419.1 5120.1

0.8 4442.1 4521.1 5216.7

0.9 4541.5 4661.5 5349.6

Fig. 3 Demands correlation and time value of money
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conclusions were obtained: (i) The robust layout is a good

layout for all periods in the planning horizon, although it

is not necessarily an optimal layout for each period. (ii)

According to the cost values in each period and the total

cost value in the planning horizon, the robust layout

obtained by solving the proposed model, has the best

performance with respect to the previous models in lit-

erature. (iii) The proposed robust model can be applied to

both deterministic and stochastic environments, whereas

the previous models can only be used for deterministic

environments. The Raytheon Aircraft Company studied

by KRISHNAN, et al [34] was a real world FLP

including 21 equal-sized machines that was solve by our

proposed model. On the basis of findings, the obtained

robust machine layout leads to 7.35% improvement with

respect to the best previous one proposed by KRISHNAN,

et al [34]. (iv) Sensitivity analysis indicated that different

values of input parameters containing expectation of

product demands, variance of product demands, and

confidence level lead to design of different facility layout.

Besides, the expectation of product demand and the

variance of product demand are the most sensitive and the

least sensitive parameters, respectively. However, changes

in the parameters including number of machines, number

of periods, confidence level, and the range in which the

expectation and variance of product demands are ran-

domly generated can change the sensitivity of the inputs.

(v) Considering nonzero interest rate leads to increased

total cost over the range of uncertainty. (vi) The total cost

is decreased for p\0:5 (equivalent of zp\ 0) and

increased for p[ 0:5 (equivalent of zp [ 0) by consid-

ering dependent demands. Besides, the numerical exam-

ples solved in Sections 4.3 and 5 indicate that the

proposed model is applicable to stochastic environment.

7 Limitation and Future Works

Since the proposed model was developed based on the

QAP formulation, it can be applied to any manufacturing

systems, particularly the modern ones such as cellular

manufacturing systems (CMS) and flexible manufacturing

systems (FMS) with equal-sized facilities. The assumption

of equal-sized facilities can be regarded as a restriction or

a weakness. However, it can be justified as follows: in

practice, there are some manufacturing systems such as the

real case mentioned in Section 4.2 and the Vought Aero-

space Company in Dallas, Texas [3] with equal-sized

facilities.

As another subjective limitation, the same machining

time on each machine may also be deduced from the

assumption of equal-sized machines, which seem to be

identical. Conversely, the equal-sized machines can be

multi-functional machines such as the ones used in FMSs.

Considering so, the machining time on each machine is

not necessary the same and depends on the process done

by machine in accordance with production process.

According to GROOVER [3], some real world examples

of the FMSs established in the United States of America

are as follows: Vought Aerospace in Dallas, Texas;

Flexible Fabricating systems for automated sheet-metal

processing; IngersollRand Company in Roanoke, Virginia;

Assembly FMS installed by Allen-Bradley Company;

John Deer American Corporation that manufactures agri-

cultural machines; General Electric Company; and

Caterpillar Tractor.

If the production horizon increases, such as

12 months 9 5 years, the number of variables in the

problem formulation will sharply increase and, as expec-

ted, the computational time will increase and/or the SA

algorithm may yield a poor solution quality. It is also

essential to mention that since the SA algorithm is a ran-

domly local search technique, it can solve the large-sized

problems in a reasonable computational time so that a sub-

optimal solution can be obtained.

In this study, alternate process plans have not been

considered. Considering alternate process plans leads to

increasing the complexity of the proposed models and in

turn to increasing the computational time. Some other

constraints and issues such as unequal-sized machi-

nes/cells, adding and removing machines in different

periods, closeness ratio, aisles, budget constraint for total

cost, machine reliability and deadlock problem can be

considered in future studies.
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