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Abstract This paper provides the static and dynamic pull-

in behavior of nano-beams resting on the elastic foundation

based on the nonlocal theory which is able to capture the

size effects for structures in micron and sub-micron scales.

For this purpose, the governing equation of motion and the

boundary conditions are driven using a variational

approach. This formulation includes the influences of

fringing field and intermolecular forces such as Casimir

and van der Waals forces. The differential quadrature (DQ)

method is employed as a high-order approximation to

discretize the governing nonlinear differential equation,

yielding more accurate results with a considerably smaller

number of grid points. In addition, a powerful analytical

method called parameter expansion method (PEM) is uti-

lized to compute the dynamic solution and frequency-am-

plitude relationship. It is illustrated that the first two terms

in series expansions are sufficient to produce an accept-

able solution of the mentioned structure. Finally, the effects

of basic parameters on static and dynamic pull-in insta-

bility and natural frequency are studied.

Keywords Static and dynamic pull-in voltages � Size
dependent � Nonlocal theory � Euler–Bernoulli beam
model � Differential quadrature method � Parameter

Expansion method

1 Introduction

Electrostatically actuated nano-beams play an important role

in micro and nano-electromechanical systems (MEMS and

NEMS) e.g. biosensors, micro-resonators, atomic force

microscopes (AFMs) and actuators [1–4]. MEMS/NEMS

may be actuated using several sources of energy such as

electrostatic [5], electromagnetic [6], piezoelectric [7] and

may bemade ofmetals or polymer, silicon-based structures or

functionally graded materials (FGM) [8–13]. Electrostatic

actuation has demonstrated good energy density and effi-

ciency. This actuation method transforms electrical energy

into motion in order to perform the measurements in the res-

onators or to act on other components in the microswitches.

Electrostatic resonators are typically as a straight can-

tilever or a bridge beam having an initial distance from a

substrate, actuated by a transverse distributed electrical

force caused by the input voltage applied between the beam

and substrate. As the applied voltage is increased beyond a

critical value, called the pull-in voltage, the instability of

beam occurs such that the deflection suddenly raises and

the beam contacts with the substrate through the location of

maximum deflection. The static and dynamic pull-in

behaviors of electrostatically actuated beams have been

investigated by several researchers so far. In this regard,

Zand and Ahmadian [14] studied the influences of inter-

molecular forces including Casimir and van der Waals

forces on the dynamic pull-in instability of electrostatically

actuated beams. Also, the effects of midplane stretching,

electrostatic actuation, and fringing fields were considered.

The end conditions of the beams were clamped–free and

clamped–clamped. Sadeghian et al [15] reported on the

pull-in behavior of non-linear microelectromechanical

coupled systems. The generalized differential quadrature

method was used as a high-order approximation to
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discretize the governing nonlinear integro-differential

equation. They studied various electrostatically actuated

microstructures such as cantilever beam-type and fixed–

fixed beam. Hsu [16] presented the nonlinear analysis of

nanoelectromechanical systems using the differential

quadrature model. The differential quadrature method was

applied to overcome the difficulty of determining the

nonlinear equation of motion. The characteristics of vari-

ous combinations of curved electrodes and cantilever

beams were considered to optimize the design. Sedighi and

Shirazi [17] developed an asymptotic procedure to predict

the nonlinear vibrational behavior of micro-beams pre-de-

formed by an electric field. The nonlinear equation of

motion included both even and odd nonlinearities. The

parameter expansion method was utilized to obtain the

approximated solution and frequency–amplitude relation-

ship. Zare [18] studied the dynamic pull-in instability of

functionally graded micro-cantilevers actuated by step DC

voltage by considering the fringing-field effect. By

employing Homotopy Perturbation Method with an auxil-

iary term, he obtained the high-order frequency-amplitude

relation and investigated the influences of material prop-

erties and actuation voltage on dynamic pull-in behavior of

microstructures. Sedighi et al [19] studied dynamic pull-in

instability of electrostatically-actuated micro-beams by

proposing the nonlinear frequency amplitude relationship

using Iteration Perturbation Method (IPM). They demon-

strated that two terms in series expansions is sufficient to

produce an acceptable solution of the micro-structure. Ale

Ali et al [20] presented the nonlinear model of a clamped–

clamped microbeam actuated by an electrostatic load with

stretching and thermoelastic effects. They calculated the

frequency of free vibration by discretization based on the

differential quadrature (DQ) method and computed the

quality factor of thermoelastic damping. In addition, they

investigated the variation of thermoelastic damping (TED)

versus geometrical parameters, such as thickness, gap

distance and the length of micro-beams. Edalatzadeh and

Alasty [21] studied the vibration suppression of micro or

nano-scale cantilever beams subjected to nonlinear dis-

tributed forces such as applied voltage, Casimir, and van

der Waals forces. They modeled the nano-beam by strain

gradient elasticity theory to account for the size effects of

small-scale flexible structures. A novel control law was

proposed to guarantee the exponential stability of the lin-

earized closed-loop system and also the local stability of

original nonlinear closed-loop system. Then they truncated

the continuous model to a set of nonlinear ordinary dif-

ferential equations by using Kantorovich method. Their

simulations showed that the proposed controller not only

suppresses the forced vibration of the beam before crossing

dynamic pull-in threshold, but also it extends the dynamic

pull-in criterion.

Some experimental observations resulted in the size-

dependent mechanical behavior in micro-scale structures

[22, 23]. Due to the weakness of the classical continuum

theory to explain the experimentally-detected small-scale

effects in the size dependent behavior of structures, various

non-classical theories such as the nonlocal [24], strain

gradient [25], and couple stress [26] were introduced to

eliminate the shortcoming in dealing with micro and nano-

structures. On the basis of the nonlocal continuum

mechanics theory [24], the stress at a point is a function of

strains at all points in the continuum. This theory includes

information about the forces between atoms, and the

internal length scale is introduced into the constitutive

equations as a material parameter. In recent years,

numerous studies including the static, dynamic, and ther-

mal analyses have been accomplished on micro and nano-

structures (for instances, see these studies based on the

nonlocal [27, 28], strain gradient [29, 30], modified couple

stress [31, 32], and non-Fourier heat conduction theories,

[33, 34]). Sedighi et al [35] investigated the size dependent

electromechanical instability of cantilever nano-actuator by

the use of the strain gradient elasticity theory. The nano-

actuator was modeled by employing the Euler–Bernoulli

beam theory and the equation of motion was derived via

Hamilton’s principle. The reduced order method (ROM)

was applied to solve the nonlinear governing equation.

Moreover, static and dynamic pull-in voltages of nano-

actuator as functions of dimensionless length scale

parameters were determined. They showed that when

thickness of the nano-actuator is comparable to the intrinsic

material length scales, size effect can substantially influ-

ence the pull-in behavior of the system. In other research,

Sedighi et al [36] examined the effect of several crucial

factors such as finite conductivity, size dependency and

surface layer on the electromechanical response and pull-in

instability of micro/nano-electromechanical systems. They

developed a modified continuum model to incorporate

these effects on the dynamic behavior and electrome-

chanical instability of double-sided FGM NEMS bridges.

Employing Gurtin–Murdoch model in conjunction with

nonlocal Eringen elasticity, the governing equations of the

nano-bridges were derived considering the surface layer

and size dependency. Also, the Coulomb and Casimir

forces were incorporated in the governing equation con-

sidering the corrections due to the finite conductivity of

FGM (relative permittivity and plasma frequency). Sedighi

et al [37] developed a size dependent model for the non-

linear dynamic pull-in instability of a double-sided nano-

bridge incorporating the effects of angular velocity and

rarefied gas damping. The non-linear governing equation of

the nanostructure was derived utilizing Euler-beam model

and Hamilton’s principle including the dispersion forces. In

addition, the strain gradient elasticity theory was applied
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for modeling the size-dependent behavior of the system.

The reduced order method was also implemented to dis-

cretize and solve the partial differential equation of motion.

Sedighi et al [38] investigated the dynamic pull-in insta-

bility of vibrating micro-beams undergoing large deflection

under electrostatically actuation. The governing nonlinear

equation of motion was obtained based on the modified

couple stress theory. Homotopy Perturbation Method was

used to present the high accuracy approximate solution as

well as the second-order frequency- amplitude relationship.

Tadi Beni [39] developed the nonlinear formulation of

functionally graded piezoelectric nanobeam by applying

the Euler–Bernoulli model and using the consistent size-

dependent theory. The power-law distribution rule was

assumed for the mechanical properties in beam thickness

and the effects of electrical force, mechanical force and

material properties of functionally graded piezoelectric

beam on the static responses, buckling, and free vibrations

were discussed. By incorporating the Timoshenko beam

theory and nonlocal Eringen-like constitutive law, a new

formulation for size-dependent Timoshenko nanobeams

described by Barretta et al [40] on the basis of two material

length-scale model. They also established new closed form

solutions of nonlocal Timoshenko nanobeams. Karimi et al

[41] studied the size-dependent free vibration characteris-

tics of rectangular nanoplates considering the surface stress

effects by employing finite difference method (FDM).

They employed the Gurtin–Murdoch continuum elasticity

approach to include the surface effects in the nonlinear

equations of motion. They also demonstrated the differ-

ence between the natural frequency obtained by consid-

ering the surface effects and that obtained without

considering surface properties and observed that the

effects of surface properties tend to diminish in thicker

nanoplates, and vice versa. The size-dependent dynamic

instability of suspended nanowires in the presence of

Casimir force and surface effects was presented by Sedighi

and Bozorgmehri [42]. The Casimir-induced instability of

nanowires with circular cross-section was modeled by

cylinder-plate geometry assumption. To express the Casi-

mir attraction of cylinder-plate geometry, they employed

the proximity force approximation (PFA) for small sepa-

rations and Dirichlet asymptotic approximation for large

separations and utilized a step-by-step numerical method

for solving a nonlinear problem. It was observed that the

phase portrait of Casimir-induced nanowires exhibit peri-

odic and homoclinic orbits. Karimpour et al [43] investi-

gated the size-dependent instability of double-sided nano-

actuators using couple stress theory (CST) in the presence

of Casimir force. To solve the governing equations, they

applied the differential transformation method (DTM) and

calculated the critical deflection and pull-in voltage of the

nanostructures.

This paper tries to fulfill the gap in the open literature by

finding the static and dynamic pull-in voltages of nano-

beam resonator utilizing the nonlocal continuum mechan-

ics theory. To this aim, the size-dependent motion equation

and boundary conditions of nano-beams resting on the

elastic foundation are derived using a variational approach.

The differential quadrature (DQM) and Parameter Expan-

sion (PEM) methods are employed to solve the governing

nonlinear differential equation and estmate the static and

dynamic pull-in behaviors. Finally, the effects of basic

parameters such as the internal characteristic length,

intermolecular forces and the stiffness of foundation on the

static and dynamic pull-in instability are investigated.

2 Basic Formulation

2.1 Preliminaries

The most of electrostatically actuated nano-resonators are

modeled as elastic beams with rectangular cross-sections,

as shown in Fig. 1. The nano-beam has length L, thickness

h, width b, density q, and a modulus of elasticity E. The

parameter d is the initial gap between the nano-beam and

substrate. Furthermore, the coordinate system is composed

of the beam axis (the x coordinate), and axes correspond to

the width and thickness (the y and z coordinates), respec-

tively. Moreover, the origin is placed at the centroid of the

cross section in the right hand side of the beam.

On the basis of Euler–Bernoulli beam model, the cross-

sections of the beam remain planar and perpendicular to the

bending axis after deformation. Hence, the components of

the displacement vector field, u = (ux, uy, uz) can be

defined as follows:

ux ¼ �z
ow x; tð Þ

ox
; u2 ¼ 0; u3 ¼ w x; tð Þ; ð1Þ

Where, the function w(x,t) indicates transverse deflection

of the beam cross-sections. In addition, parameter t denotes

the time.

According to the nonlocal theory [24], the stress field at

a point in an elastic continuum not only depends on the

Fig. 1 Electrostatically actuated nano-beam resonator configuration,

coordinate system and geometric characteristics
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strain field at the point but also on strains at all other points

of the body.

According to this theory, the nonlocal constitutive equa-

tion of a Hookean solid can be expressed as follows [24]

ð1� ðe0aÞ2r2Þrij ¼ Cijmnemn ð2Þ

Where

emn ¼
1

2

oum

oxn
þ oun

oxm

� �
; ð3Þ

and Cijmn’s are the components of the fourth-order elas-

ticity tensor, as well as parameters e0 and a denote the

material constant and the internal characteristic length,

respectively. Also, the variation of the strain energy dU for

an anisotropic linear elastic material occupying region X
can be written as [25]:

dU ¼
Z
X

rijdeij dX: ð4Þ

In which, rij and eij represent the components of the

nonlocal stress and strain tensors.

2.2 The dynamic equilibrium equation

Substituting components of displacement vector from

Eq. (1) into Eq. (3) results in the following nonzero strain

components as

exx ¼ �z
o2wðx; tÞ

ox2
: ð5Þ

By inserting Eq. (5) into Eq. (4) and taking integral by

parts on the ensuing relation, the variation of strain energy

of nano-beam can be readily obtained as [44]

dU ¼
ZL

0

� o2Mxx

ox2

� �
dwðx; tÞdxþ oMxx

ox
dðwðx; tÞÞ

� �x¼L

x¼0

� Mxxdð
owðx; tÞ

ox
Þ

� �x¼L

x¼0

: ð6Þ

In Eq. (6), we have [44]

o2Mxx

ox2
� e0að Þ2o

4Mxx

ox4
¼ �EI

o4wðx; tÞ
ox4

: ð7Þ

Where I = bh3/12 is the inertia moment of the cross-sec-

tion. On the other hand, the variation of the kinetic energy

within the Euler–Bernoulli beam model can be computed

from the following relation [45]:

dðK:EÞ ¼ q
ZL

0

I
o2 €w

ox2
� A €w

� �
dwðx; tÞ

� �

þ o

ot
I
o _w

ox
d

ow

ox

� �
þ A _w dw

� ��
dx

ð8Þ

in which A is cross-sectional area of the beam. The virtual

work done by the axial load, electrostatic voltage, elastic

foundation and the intermolecular force can be expressed

as:

W ¼ 1

2

ZL

0

Ni þ
EA

2L

ZL

0

w2
xdx

0
@

1
Aw2

xdx

þ
ZL

0

Fe þ ðFC or FV Þ � k w½ �wdx;

ð9Þ

where Ni is the axial force and

Fe ¼
1

2
b e0

V

d � w

� �2

1þ f̂
d � w

b

� �
;

FC ¼ p2�h c b

240 d � wð Þ4
; FV ¼ Kb

6p d � wð Þ3
:

ð10Þ

In Eq. (10), the term f̂ ¼ 0:65 is the fringing field effect

due to the finite width of the beam and parameter e0 ¼
8:854� 10�12ðC2N�1m�2Þ is the vacuum permittivity.

Also, �h ¼ 1:055� 10�34ðJsÞ and c ¼ 2:998� 108ðm/sÞ
indicate the Planck’s constant divided by 2p and the speed

of light, respectively. Moreover, K ¼ 0:4� 10�19 is the

Hamaker constant.

The outcomes obtained for the variation of the strain

energy from Eq. (6), the variation of the kinetic energy

from Eq. (8) and the variation of the virtual work from

Eq. (9) are substituted into the equation of the Hamilton

principle on the time interval between t1 and t2:Z t2

t1

dðK:EÞ � dU þ dWð Þdt ¼ 0: ð11Þ

Since dw is arbitrary at all points of the nano-beam, the

governing motion equation of a electrostatically actuated

nano-bridge resting on the elastic foundation and including

influences of intermolecular forces can be obtained as

follows:

o2Mxx

ox2
þ q I

o2 €wðx; tÞ
ox2

� A €wðx; tÞ
� �

þ Ni þ
Ebh

2L

ZL

0

owðx; tÞ
ox

� �2

dx

0
@

1
A o2wðx; tÞ

ox2

þ Fe þ ðFC or FV Þ � k w ¼ 0:

ð12Þ

Also, the boundary conditions at points on the end edges

at x ¼ 0 and L can be expressed as:

oMxx

ox
¼ 0; or dw ¼ 0

Mxx ¼ 0; or d
ow

ox

� �
¼ 0:

ð13Þ
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Finally, using Eqs. (7) and (12), the governing equation

of motion in terms of transverse deflection w can be written

as

EI
o4w

ox4
¼ 1� e0að Þ2 o

2

ox2

� �

� Ni þ
Ebh

2L

ZL

0

ow ðx; tÞ
ox

� �2

dx

0
@

1
A o2w ðx; tÞ

ox2

2
4

þFe þ qI
o2 €w

ox2
� qA €w� k wþ FV or FCð Þ

�
:

ð14Þ

In order to normalize the governing equation, the fol-

lowing dimensionless quantities are defined as:

~w ¼ w

d
; f ¼ x

L
; s ¼

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4

s
t: ð15Þ

By employing these dimensionless parameters, the nor-

malized form of the motion equation is:

o4 ~w

of4
¼ 1� e0að Þ�2 o

2

of2

� �

� g
o2 ~w

os2of2
� o2 ~w

os2
� k� ~w

�
þ fi þ a

Z1

0

o ~w

on

� �2

dn

0
@

1
A

� o2 ~w

on2
þ ðV�

0 Þ
2

ð1� ~wÞ2
1þ f̂ �ð1� ~wÞ
� �

þ ð K�

ð1� ~wÞ3
or

ð�hcÞ�

ð1� ~wÞ4
Þ
!
;

ð16Þ

In which

e0að Þ�¼ e0a

L
; g ¼ I

AL2
; k� ¼ kL4

EI
;

V�
0 ¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffi
be0L4

2EId3

r
; f̂ � ¼ f̂

d

b
; K� ¼ KL4

6pEId4
:

ð�hcÞ� ¼ p2�hcbL4

240EId5
; a ¼ 6

d

h

� �2

; fi ¼
NiL

2

EI

ð17Þ

3 Solution Methodology

In this section, two numerical and analytical methods are

used to solve the governing nonlinear differential equation

presented in Eq. (16). First, the differential quadrature

method as an efficient and accurate numerical method is

employed to discretize the nonlinear differential equation

and to reduce the static equation to a set of algebraic

equations. Next, to solve the dynamic equation of motion,

the parameter expansion method as a powerful analytical

method in conjunction with Bubnov-Galerkin procedure

are utilized to obtain the normalized natural frequency and

the dynamic solution.

3.1 Differential Quadrature Method (DQM)

Based on the differential quadrature method, the derivative

of a function at each point of the domain can be approxi-

mated as a weighted linear summation of the values of the

function at all of the sample points in the domain.

Employing this approximation, the differential equations

are reduced to a set of algebraic equations. The number of

equations depends on the selected number of sample

points.In this study, the differential quadrature approxi-

mation to the mth-order derivative of function ~wðfÞ at the
ith sampling point is given by [15]:

om ~wðfÞ
ofm

				
f¼f1�

�
�

om ~wðfÞ
ofm

				
f¼fN

2
66666664

3
77777775
ffi Dm

ij

h i
~wðf1Þ
�
�
�

~wðfNÞ

2
66664

3
77775 for i; j ¼ 1; 2; . . .;N

ð18Þ

where ~wðfiÞ is the value of the function at the sample point

fi and D
ðmÞ
ij are the weighting coefficients of the mth-order

differentiation that is attached to these functional values.

The function ~wðfÞ is defines as [15]:

~wðfÞ ¼
XN
i¼1

uðzÞ
ðz� ziÞu1ðziÞ

~wðfiÞ ð19Þ

where

uðzÞ ¼
YN
j¼1

z� zj
� �

; u1ðziÞ

¼
YN

j¼1; j6¼i

zi � zj
� �

for i ¼ 1; 2; . . .;N

zi ¼
L

2
1� cos

ði� 1Þp
N � 1

� �
for i ¼ 1; 2; . . .;N:

ð20Þ

Substituting Eq. (19) into Eq. (18) yields:

D
ð1Þ
ij ¼ u1ðziÞ

ðzi � zjÞu1ðzjÞ
for i; j ¼ 1; 2; . . .;N and i 6¼ j

D
ð1Þ
ii ¼ �

XN
j¼1;j 6¼i

D
ð1Þ
ij for i; j ¼ 1; 2; . . .;N:

ð21Þ
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Furthermore, higher-order derivatives of differential

quadrature weighting coefficients can be expressed by

matrix multiplication:

D
ð2Þ
ij ¼

XN
k¼1

D
ð1Þ
ik D

ð1Þ
kj for i; j ¼ 1; 2; . . .;N

D
ð3Þ
ij ¼

XN
k¼1

D
ð1Þ
ik D

ð2Þ
kj for i; j ¼ 1; 2; . . .;N

D
ð4Þ
ij ¼

XN
k¼1

D
ð1Þ
ik D

ð3Þ
kj for i; j ¼ 1; 2; . . .;N:

ð22Þ

3.2 Parameter Expansion Method

In this section, the parameter expansion method with the

aid of Bubnov–Galerkin decomposition method is

employed to solve the dynamic governing equation. To this

purpose, the dimensionless transverse deflection of beam is

defined as follows:

~wðf; sÞ ¼ /ðfÞqðsÞ; ð23Þ

where /ðfÞ is the first shape mode of the clamped–clamped

beam which can be readily obtained as:

/ðfÞ ¼ cosh kf� cos kfð Þ

� cosh k� cos k
sinh k� sin k

sinh kf� sin kfð Þ:
ð24Þ

In which, k is the first root of characteristic equation.

The normalized terms of Fe, FC, and FV in Eq. (16) can be

approximated by Taylor’s series as:

ðV�
0 Þ

2

ð1� ~wÞ2
1þ f̂ �ð1� ~wÞ
� �

ffi ðV�
0 Þ

2
1þ 2 ~wþ 3 ~w2 þ 4 ~w3 þ � � �
� �


þf̂ � 1þ ~wþ ~w2 þ ~w3 þ � � �
� ��
K�

ð1� ~wÞ3
ffi K� 1þ 3 ~wþ 6 ~w2 þ 10 ~w3 þ � � �

� �

ð�hcÞ�

ð1� ~wÞ4
ffi ð�hcÞ� 1þ 4 ~wþ 10 ~w2 þ 20 ~w3 þ � � �

� �
:

ð25Þ

Substituting the normalized terms of Fe, FC, and FV

from Eq. (25) into Eq. (16) yields:

By applying the Bubnov–Galerkin method, one can

obtain:

By inserting Eqs. (23) into (27), the non-dimensional

nonlinear equation of motion can be obtained as:

d2q

ds2
þ b1qþ b2q

2 þ b3q
3 þ b4q

4 þ b0

 �

¼ 0: ð28Þ

Here the parameters biði ¼ 0; . . .; 4Þ can be found in the

Appendix A. Consider Eq. (28) for the free vibration of a

nano-beam with the following general initial conditions:

qðs ¼ 0Þ ¼ A;
dq

ds
ðs ¼ 0Þ ¼ 0: ð29Þ

It is noticed that free vibration of the system is a periodic

motion and can be stated by the base functions

cosðmxsÞ ðfor m ¼ 1; 2; . . .Þ. Where, the dimensionless

angular frequency of oscillation is indicated by x.

o4 ~w

of4
� 1� e0að Þ�2 o

2

of2

� �
g

o2 ~w

os2of2
� o2 ~w

os2
� k� ~w

�
þ fi þ a

Z1

0

o ~w

on

� �2

dn

0
@

1
A o2 ~w

on2

þ ðV�
0 Þ

2
1þ f̂ �
� �

þ K� þ ð�hcÞ� þ ðV�
0 Þ

2ð2þ f̂ �Þ þ 3K� þ 4ð�hcÞ�
� 


~w

þ ðV�
0 Þ

2ð3þ f̂ �Þ þ 6K� þ 10ð�hcÞ�
� 


~w2 þ ðV�
0 Þ

2ð4þ f̂ �Þ þ 10K� þ 20ð�hcÞ�
� 


~w3 þ � � �
i
¼ 0:

ð26Þ

Z1

0

o4 ~w

of4
�

�
1� e0að Þ�2g2 o2

of2

� �
o2 ~w

os2of2
� ð12=g2Þ o

2 ~w

os2
� k� ~w

�
þ fi þ a

Z1

0

o ~w

on

� �2

dn

0
@

1
A o2 ~w

on2

þ ðV�
0 Þ

2
1þ f̂ �
� �

þ K� þ ð�hcÞ� þ ðV�
0 Þ

2ð2þ f̂ �Þ þ 3K� þ 4ð�hcÞ�
� 


~wþ ðV�
0 Þ

2ð3þ f̂ �Þ
�

þ 6K� þ 10ð�hcÞ�Þ ~w2þ ðV�
0 Þ

2ð4þ f̂ �Þ þ 10K� þ 20ð�hcÞ�
� 


~w3 þ � � �
io

/ðfÞdf ¼ 0:

ð27Þ
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Furthermore, one of our major goal is to determinexðAÞ as a
function of the initial amplitude A. In the parameter expan-

sion method, an artificial perturbation equation is formed by

embedding an artificial parameter pe 0; 1½ � which is

employed as an expanding parameter. Based on the PEM, the

function q is expanded into a series of p in the form

qðs; pÞ ¼
X1
i¼0

piqiðsÞ: ð30Þ

Moreover, the coefficients 1 and b1 in Eq. (28) should be
expanded in a similar way:

1 ¼ 1þ pa1 þ p2a2 þ � � � ;
b1 ¼ x2 � pb1 � p2b2 � � � � ;
1 ¼ pc1 þ p2c2 þ � � � :

ð31Þ

In Eq. (31), ai, bi and ci ði ¼ 1; 2; . . .Þ are to be deter-

mined. For p ¼ 0, Eq. (28) becomes a linear differential

equation as well as the approximate solution of nonlinear

Eq. (28) can be obtained by p ¼ 1. Substituting Eqs. (30)

and (31) into Eq. (28) results in:

1þ pa1ð Þ d2

ds2
q0 þ pq1ð Þ þ x2 � pb1

� �
q0 þ pq1ð Þ

¼ pc1 þ p2c2
� �

b2 q0 þ pq1ð Þ2þb3 q0 þ pq1ð Þ3
h

þb4 q0 þ pq1ð Þ4þb0
i

ð32Þ

Collecting the terms of the same power of p in Eq. (32),

a set of linear equations can be obtained as follow

p0 :
d2q0

ds2
þ x2q0 ¼ 0; q0ðs ¼ 0Þ ¼ A;

dq0

ds
ðs ¼ 0Þ ¼ 0:

p1 :
d2q1

ds2
þ x2q1 ¼ �a1

d2q0

ds2
þ b1q0

þ c1b2 b2q
2
0 q0ð Þ2þb3q

3
0 þ b4q

4
0 þ b0

h i

with q1ðs ¼ 0Þ ¼ 0;
dq1

ds
ðs ¼ 0Þ ¼ 0: ð33Þ

Solving the first equation in Eq. (33) yields

q0 ¼ A cosðxsÞ: ð34Þ

Inserting q0 from Eq. (34) into the right-hand side of

second term in Eq. (33) gives:

d2q1ðsÞ
ds2

þ x2q1ðsÞ ¼ b1þ a1x
2� 3

4
c1 b3A

2

� �
AcosðxsÞ

� c1

2
b4A

2þb2
� �

A2 cosð2xsÞ � 1

4
c1b3A

3 cosð3xsÞ

� 1

8
c1b4A

4 cosð4xsÞ� 1

2
c1b2A

2� 3

8
c1b4A

4� c1 b0:

ð35Þ

Table 1 Comparison between the static and dynamic pull-in voltages of nano-beams predicted by classical theory with the numerical and

experimental results given by Rezazadeh et al [46] and Osterberg [47], respectively

Static pull-in voltage Dynamic pull-in voltage

Present study (DQM) Rezazadeh et al [46]. Osterberg [47] Present study (ROM) Rezazadeh et al [46]. Osterberg [47]

4.73 4.8 4.8 4.36 4.35 4.40

Table 2 A comparison between dynamic pull-in voltages calculated by different methods

Method Present analysis (Numerical results) Reduced order model [48] Finite difference [48] Three modes assumption [50]

Vpid 41.71 41.68 41.61 41.85

Table 3 Comparison between fundamental frequencies of micro-beams calculated by different methods

Beam length (lm) D.C. voltage (V) x/2p (kHz)

Present analysis (PEM) Measured [49] Calculated [49] Calculated [51] HAM [52]

210 6.0 324.71 322.05 324.70 324.70 324.78

310 3.0 163.96 163.22 164.35 163.46 163.16

410 3.0 103.74 102.17 103.80 103.70 103.42

Table 4 A comparison between dynamic pull-in voltages of typical

microbeam

Method Present modelling

(numerical results)

Experiment

[53]

Finite

difference [54]

Vpid 98.1 100 99–100
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By eliminating the secular term (the coefficient of

cosðxsÞ) in the right-hand side of Eq. (35), one can get

b1 þ a1x
2 � 3

4
c1 b3A

2 ¼ 0: ð36Þ

For two terms approximation of series respect to p in

Eq. (31) and considering p ¼ 1, we obtain

a1 ¼ 0; b1 ¼ x2 � b1 ; c1 ¼ 1: ð37Þ

By use of Eqs. (36) and (37), the dimensionless angular

frequency of oscillation can be readily found as follows

xðAÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ

3

4
b3A2

r
: ð38Þ

By solving Eq. (35), the function q1ðsÞ can be obtained as
q1ðsÞ ¼ qh1ðsÞ þ q

p
1ðsÞ; ð39Þ

in which

qh1ðsÞ ¼ C cosðxsÞ þ D sinðxsÞ;

q
p
1ðsÞ ¼

c1 b4A
2 þ b2ð ÞA2

6x2
cosð2xsÞ

þ c1b3A
3

32x2
cosð3xsÞ þ c1b4A

4

120x2
cosð4xsÞ

� c1 3b4A
2 þ 4b2ð ÞA2 þ 8c1 b0

8x2
:

ð40Þ

In Eq. (40), C and D are the unknown coefficients which

can be computed by imposing the initial conditions in

Eq. (33) as follows:

C ¼ c1 96b4A
2 þ 160b2ð ÞA2 � 15c1b3A

3 þ 480c1 b0
480x2

;

D ¼ 0: ð41Þ

Therefore, the following second order approximation for

function qðsÞ is as
qðsÞ ¼ AcosðxsÞ

þ c1ð96b4A2þ 160b2ÞA2� 15c1b3A
3þ 480c1 b0

480x2
cosðxsÞ

þ c1 b4A
2þb2ð ÞA2

6x2
cosð2xsÞ

þ c1b3A
3

32x2
cosð3xsÞþ c1b4A

4

120x2
cosð4xsÞ

� c1 3b4A
2þ 4b2ð ÞA2þ 8c1b0

8x2
;

�with xðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1þ

3

4
b3A2

r
:

ð42Þ

Fig. 2 Maximum dimensionless deflection of the nano-beam versus

input voltage for various values of the normalized internal parameter

(e0a)
*

Fig. 3 Maximum dimensionless deflection of the nano-beam versus

input voltage for various values of aspect ratio d/b

Fig. 4 Maximum dimensionless deflection of the nano-beam versus

input voltage for various values (hc)*

Fig. 5 Maximum dimensionless deflection of the nano-beam versus

input voltage for various values K*
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4 Results and Discussion

4.1 Verification of the Present Analysis

In the considered case study, it is assumed that the nano-

beam is made of silicon with L ¼ 510lm, h ¼ 1:5lm,

b ¼ 100lm , d ¼ 1:18lm and Ni ¼ 8:7. Since there are no

results of the pull-in voltage is calculated by the nonlocal

theory in the open literature, in order to validate the results,

some obtained results in the special case of a ¼ 0, i.e., the

results of the classical continuum theory, are compared with

those presented by Rezazadeh et al [46] and Osterberg [47].

The static and dynamic pull-in voltages obtained by classical

theory are tabulated in Table 1. As can be observed there is

an excellent agreement between the results.

In order to validate the present analysis to estimate the

dynamic behavior of the nano-resonator, the values of

dynamic pull-in voltage computed by different models, are

shown in Table 2 using an example of 300 lm long, 20 lm
wide and 2 lm thick double clamped beam with the initial

gap d ¼ 2 lm. The beam is assumed to be made of silicon

with Young modulus E ¼ 169 GPa and Poisson’s ratio v ¼
0:28 [48]. Since the width of the beam is much larger than

its thickness, the Young modulus E is replaced by
~E ¼ E= 1� v2ð Þ. It is obvious that the values of computed

dynamic pull-in voltage (Vpid) agrees well with those

Fig. 6 (a) Response time history of the actuated nano-beam for

various values of voltage V (a) with ðe0aÞ� ¼ 0. (b) Response time

history of the actuated nano-beam for various values of voltage V

(b) with ðe0aÞ� ¼ 0:2. (c) Response time history of the actuated nano-

beam for various values of voltage V (c) with (e0a)
* = 0.4

Fig. 7 (a) Response time history of the actuated nano-beam for

various values of voltage V (a) with K� ¼ 5. (b) Response time

history of the actuated nano-beam for various values of voltage V

(b) with K� ¼ 10. (c) Response time history of the actuated nano-

beam for various values of voltage V (c) with K* = 20
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reported in the literature. Another comparison with

experimental and theoretical results in the literature is

performed using 100 lm wide and 1:5 lm thick micro-

beams with initial gap of 1:18 lm. The effective Young’s

modulus for the micro-beams material is ~E ¼ 166 GPa

with a residual axial load Ni ¼ 0:0009N representative of

pre-tensioned micro-beams [49]. Table 3 presents the cal-

culated and empirical fundamental frequencies for vibrat-

ing pre-tensioned micro-bridges. This table reveals that the

results of present model using PEM are in excellent

agreement with the numerical and experimental results

presented in the literature.

As another comparison, the dynamic pull-in voltage of a

double-clamped silicon beam is considered. The

geometrical properties of the beam is L = 1000 lm,

b = 30 lm, h = 2.4 lm and g0 = 10.1 lm. The material

properties of the beam is q = 2231 kg/m3, E = 97.5 GPa

and t = 0.26 GPa. The obtained results together with those

reported in literature [53, 54] are tabulated in Table 4.

Krylov et al [53] measured the pull-in voltage of the micro-

beam (experimentally) as 100 V. On the other hand, Das

and Batra [54] also determined the pull-in voltage of this

beam based on the finite element analysis. They reported

that the pull-in voltage of the microbeam is between 99 V

and 100 V. As can be observed in Table 4, good agreement

between the present method and those of literature is

achieved.

Fig. 8 (a) Response time history of the actuated nano-beam for

various values of voltage V (a) with k� ¼ 10. (b) Response time

history of the actuated nano-beam for various values of voltage V

(b) with k� ¼ 30. (c) Response time history of the actuated nano-

beam for various values of voltage V (c) with k* = 50

Fig. 9 (a) Response time history of the actuated nano-beam for

various values of voltage V (a) with ðhcÞ� ¼ 5. (b) Response time

history of the actuated nano-beam for various values of voltage V

(b) with hcð Þ�¼ 10. (c) Response time history of the actuated nano-

beam for various values of voltage V (b) with (hc)* = 20
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4.2 Numerical results

In this section, the numerical results for static and dynamic

behavior of nano-bridge actuators are presented. Fig. 2

shows the effect of normalized internal parameter ðe0aÞ� on
the curves of maximum static deflection versus the nor-

malized input voltage V�
0 for b=d ¼ 5 and k� ¼ 1. From

Fig. 2, it is noted that the case with ðe0aÞ� ¼ 0 yields the

results of the classical beam theory. Moreover, the static

pull-in voltages predicted by the nonlocal theory are

smaller than those of the classical continuum theory.

Figure 3 demonstrates the effect of aspect ratio d=b on

the variation of maximum dimensionless deflection versus

normalized input voltage V�
0 for ðe0aÞ� ¼ 0:2 and k� ¼ 1.

From Fig. 3, it can be founded that the values of static pull-

in voltage are strongly dependent to aspect ratio d=b, as

well as with increase in this aspect ratio, the values of static

pull-in voltage are reduced notably. Fig. 4 represents the

effect of Casimir parameter ðhcÞ� on the variation of

maximum dimensionless deflection versus normalized

input voltage V�
0 for ðe0aÞ� ¼ 0:2 and k� ¼ 1. As can be

seen, the values of static pull-in voltage remarkably reduce

with rise of the Casimir parameter.

Figure 5 illustrates the effect of van der Waals param-

eter K� on the variation of maximum dimensionless

deflection versus normalized input voltage V�
0 for ðe0aÞ� ¼

0:2 and k� ¼ 1. It can be concluded that when the van der

Waals parameter K� increases, the static pull-in voltage

decreases significantly. Comparing with Figs. 4 and 5, the

effect of Casimir intermolecular force on the static pull-in

behavior is the more remarkable than kind of van der

Waals.

Here, the numerical results are given the dynamic pull-in

analysis of the actuated nano-beam with with k� ¼ 1, a ¼ 6,

Ni ¼ 1. Fig. 6 displays the effect of normalized internal

parameter ðe0aÞ� on the response time history of the actuated

nano-beam for various values of applied voltage. It is noticed

from Figs. 6a, 6b and 6c that the values of dynamic pull-in

voltage decreases continuously as the value of normalized

internal parameter becomes larger.

Figure 7 exhibits the effect of van der Waals parameter

K� on the response time history for a range of voltages.

From Figs. 7a, 7b and 7c, it can be concluded that when

van der Waals parameter K� increases, the values of

dynamic pull-in voltage reduce so slightly.

Figure 8 compares the responses time history obtained

by numerical simulations for various values of the stiffness

parameter k� and voltage V . It can be observed from

Figs. 8a, 8b and 8c that the dynamic pull-in voltages get

larger with increase in values of stiffness parameter. Fig. 9

presents the dynamic behavior of nano-resonators for

different values of Casimir parameter ðhcÞ� and actuation

voltage V . From Figs. 9a, 9b and 9c, it can be found that

the dynamic pull-in voltages decrease by increasing the

Casimir parameter ðhcÞ�. By comparison between Figs. 7

with 9, it can be readily concluded that the effects of van

der Waals and Casimir intermolecular forces are to reduce

the dynamic pull-in voltage of the nano-structure.

5 Conclusion

In this study, the static and dynamic pull-in behaviors of

nano-beams resting on the elastic foundation were inves-

tigated by employing the nonlocal elasticity theory. The

governing equation of motion included the influences of

fringing field and intermolecular forces such as Casimir

and van der Waals forces. The differential quadrature

method and Parameter Expansion Method were utilized to

solve the static and dynamic governing equations. Finally,

the effects of basic parameters including the normalized

internal parameter, van der Waals parameter, the Casimir

and stiffness parameter on the static and dynamic pull-in

behavior were studied.

Appendix A

bi ¼
b0i

1� e0að Þ�2
R1
0

//00dn

� � ; i ¼ 0; 1; 2; 3; 4

For van der Waals intermolecular force:

b00¼� ðV�
0 Þ

2
1þ f̂ �
� �

þK�
� 
Z1

0

/dn

b01¼k4� ðV�
0 Þ

2
2þ f̂ �
� �

þ3K�
� 


Z1

0

/2� e0að Þ�2//00
� 


dn� fi

Z1

0

//00 � e0að Þ�2// 4ð Þ
� 


dn

b02¼� ðV�
0 Þ

2
3þ f̂ �
� �

þ6K�
� 
Z1

0

/3� e0að Þ�2/ /2
� �00� 


dn

b03¼� ðV�
0 Þ

2
4þ f̂ �
� �

þ10K�
� 
Z1

0

/4� e0að Þ�2/ /3
� �00� 


dn

�a
Z1

0

//00
Z1

0

/02dn

2
4

3
5� e0að Þ�2/ /00

Z1

0

/02dn

2
4

3
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0
@

1
A

000
B@

1
CAdn

0
B@

1
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2
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3
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b04¼� ðV�
0 Þ

2
5þ f̂ �
� �

þ15K�
� 
Z1

0

/5� e0að Þ�2/ /4
� �00� 
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ðA�1Þ
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For Casimir intermolecular force:

b00 ¼� ðV�
0 Þ

2
1þ f̂ �
� �

þð�hcÞ�
� 
Z1

0

/dn

b01 ¼ k4� ðV�
0 Þ

2
2þ f̂ �
� �

þ 4ð�hcÞ�
� 


Z1

0

/2� e0að Þ�2//00
� 


dn� fi

Z1

0
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b02 ¼� ðV�
0 Þ

2
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� �

þ 10ð�hcÞ�
� 
Z1

0
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� �00� 


dn

b03 ¼� ðV�
0 Þ

2
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� �
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