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Abstract Aiming at the problem of low machining accu-

racy and uncontrollable thermal errors of NC machine

tools, spindle thermal error measurement, modeling and

compensation of a two turntable five-axis machine tool are

researched. Measurement experiment of heat sources and

thermal errors are carried out, and GRA(grey relational

analysis) method is introduced into the selection of tem-

perature variables used for thermal error modeling. In order

to analyze the influence of different heat sources on spindle

thermal errors, an ANN (artificial neural network) model is

presented, and ABC(artificial bee colony) algorithm is

introduced to train the link weights of ANN, a new ABC-

NN(Artificial bee colony-based neural network) modeling

method is proposed and used in the prediction of spindle

thermal errors. In order to test the prediction performance

of ABC-NN model, an experiment system is developed, the

prediction results of LSR (least squares regression), ANN

and ABC-NN are compared with the measurement results

of spindle thermal errors. Experiment results show that the

prediction accuracy of ABC-NN model is higher than LSR

and ANN, and the residual error is smaller than 3 lm, the

new modeling method is feasible. The proposed research

provides instruction to compensate thermal errors and

improve machining accuracy of NC machine tools.

Keywords Five-axis machine tool � Artificial bee colony �
Thermal error modeling � Artificial neural network

1 Introduction

In recent years, influence of machine thermal errors on

machining accuracy has become a research focus in preci-

sion machining field [1–3]. Studies show that thermal errors

account for 40%–70%ofworkpiece errors duringmachining

[4, 5]. These errors can be reduced mainly by optimization

design ofmachine structure, heat sources control and thermal

error compensation. In order to compensate thermal errors in

real-time, more and more attention has been paid to thermal

error modeling recently [6–8], which is the foundation of

thermal error compensation technology, and the following

research trends have appeared:

(1) Various regression modeling methods are widely

used in thermal error modeling field, such as Lei

used multivariate autoregressive model to model and

forecast thermal error model for motorized spindle

[9], and Lin applied least squares support vector

machines method to predict thermal error of numer-

ical machine tools [10], and Zhu applied optimal

partition and stepwise regression method to model

thermal error for machine tool [11], and Zhang used

multisource information fusion to combine a

dynamic thermal error model and a finite element

model, and bulit a fusion model for lathe Z-direction

thermal error [12], and Yao constructed error-

sensitive degree matrix by grey correlation algo-

rithm, and thermal error and geometric error was

decoupled and modeled each other by multiple linear

regression and GM(1,n) algorithm [13].
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(2) Different artificial intelligent algorithms are used for

thermal error modeling of five-axis machine tools

[14–16], such as genetic algorithm(GA), ant colony

algorithm (ACA), ANN, grey system theory(GST)

and so on. However, different artificial intelligent

algorithms have to deal with a series of issues, such

as local minimum problem of ANN, precocity and

stagnation problem of GA, et al. Consequently,

prediction accuracy and computing efficiency of

these methods still need further increase. Compared

with traditional polynomial modeling method, ANN

has advantages, such as learning and self-adaption

ability, high speed of obtaining optimization solution

[17, 18]. In addition, ANN can massively parallel

process complex nonlinear models, which has been

widely used in mechanical engineering field [19, 20],

such as MA, et al used particle swarm optimiza-

tion(PSO) and genetic algorithm (GA) to optimaze

BP neural network, and established the enlongation

and thermal tilt angle models based on GA-BP and

PSO-BP neural network [21], and Abdulshahed

designed the thermal error prediction model by

employing an Adaptive Neuro-fuzzy Inference Sys-

tem with fuzzy c-means clustering(FCM-ANFIS),

and introduced a new intelligent compensation

system for reducing thermal errors of mahcine tools

using data obtained from a thermal imaging camera

[22], and XU, et al applied gray system theroy(GST)

to obtain the 13 groups critical temperature measur-

ing points, and established thermal error model of

machine tool using GM(1, N) gray structure [23].

(3) The proposed models only can be used for specific

machining conditions, robustness of thermal error

model need to be improved, a new modeling method

can be used for different cutting conditions is urgent

to be proposed.

In this study, a new modeling method was proposed

based on ABC-NN algorithm, which was used for thermal

error prediction of a five-axis machine tool, and one ther-

mal error model was presented finally, the prediction

accuracy and computing efficiency of machine thermal

error was increased. In section two, measurement experi-

ments of different heat sources and thermal errors of the

five-axis machine tool were fulfilled. In section three,

temperature variables used for thermal error modeling were

determined based on grey relational analysis(GRA)

method, and a new modeling method based on ABC-NN

algorithm was proposed, thermal error model of the five-

axis machine tool was presented based on the proposed

modeling method. In section four, an experiment system

was developed and an experiment was carried out, which

was used for performance test of presented model.

The main contribution of this study to the field was that

a new ABC-NN model was proposed, which was used for

thermal error prediction of a five-axis machine tool. And

the main innovation point in this study was the combina-

tion of ANN and ABC. ABC algorithm is introduced to

train the link weights of artificial neural networks (ANN),

local minimum problem was solved, and prediction accu-

racy of ANN was improved.

2 Measurement Experiment of Heat Sources
and Thermal Errors

In order to measure temperature variations of different heat

sources and thermal errors of a five-axis machine tool,

experiment was carried out in the study, Fig. 1 shows the

five-axis machine tool used in experiment. According to

long-time experience, the five-axis machine tool is mainly

affected by 24 heat sources during cutting. In order to mea-

sure temperature variations of these heat sources, as shown in

Figs. 2 and 3, 24 temperature sensors were installed on the

five-axis machine tools, which were listed as follows:

(1) Sensors 1, 2, 13, 15 were used for measuring

structure temperature of the machine tools;

Fig. 1 Five-axis machine tool used in experiment

Fig. 2 Sensors 4 and 11 used for measuring screw nut temperature
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(2) Sensor 3 was used for measuring ambient

temperature;

(3) Sensors 10, 17, 18, 19 were used for measuring

spindle housing temperature;

(4) Sensors 22, 23, 24 were used for measuring motor

temperature of A, C axis;

(5) Sensors 6, 7, 8, 9 were used for measuring column

temperature;

(6) Sensors 4, 11, 14 were used for measuring screw nut

temperature of X, Y, Z axis;

(7) Sensors 5, 12, 16, 20, 21 were used for measuring

slide temperature of X, Y, Z axis.

In order to measure spindle thermal deformations of the

five-axis machine tools, 5 capacitive sensors were installed

on the worktable, as shown in Fig. 4. In this paper, just

measurement results of thermal deformations in X-direc-

tion were presented, and other measurement results were

not provided.

Measurement experiment was carried out to simulate

cutting cycle of the five-axis machine tool. During mea-

suring, the cutting parameters were shown in Table 1. The

coolant kept running, and some surface parts were

machined. First, the five-axis machine tool was warmed up

gradually for 3 hours. Then, it was stopped for 1 hour.

Next, the machine tool kept cutting for 3 hours, and stop-

ped for another 1 hour. During the running cycle, tem-

perature variations of the 24 heat sources were measured,

and the measurement results were shown in Fig. 5. Ther-

mal errors (Thermal deformations in X-direction) were

shown in Fig. 6.

As shown in Fig. 5, different temperature curves coin-

cided with the cutting cycle very well. For example, at the

beginning of the cycle, screw nut temperature of Z axis

(Temperature of sensor 14) gradually increased with the

Fig. 3 Sensors 2, 13 and 15 used for measuring machine structure

temperature

Fig. 4 Capacitive sensor installed on the worktable

Table 1 Cutting parameters during experiment

Parameter Value

Speed of the spindle Ss / (r�min-1) 4000

Speed of A axis SA / (r�min-1) 50

Speed of C axis SC / (r�min-1) 50

Cutting depth in radial direction Dr / mm 0.4

Cutting depth in axial direction Da / mm 0.3

Feed-rate F / (mm�min-1) 500

Feed per tooth Ft / mm 0.1

Fig. 5 Temperature variations of 24 heat sources
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warming of five-axis machine tool. When the machine tool

was stopped, the screw nut temperature decreased too.

Thermal error curve coincided with the cutting cycle too,

as was shown in Fig. 6, at the first 3 hours, thermal errors

of the five-axis machine tools gradually increased, because

thermal deformations of the spindle increased. However,

decreasing trend of the error curves appeared after 3 hours,

because the machine tool was stopped.

3 Thermal Error Modeling

3.1 Selection of Temperature Variables

The main purpose of thermal error modeling is to establish

relationship between thermal errors and different heat

sources. Since there are too many heat sources on five-axis

machine tools, thermal error model will be certainly very

complex. In order to improve measurement efficiency of

modeling variables and simplify thermal error model,

optimization selection of temperature variables is the most

common way. Many researchers have been working on this

topic, and new research results are presented continuously

in this field [24–26]. In this paper, GRAM was used for

selecting temperature variables from 24 heat sources.

Firstly, in order to select temperature variables, a GRA

model was presented based on grey system theory, as

follows:

fiðkÞ ¼ cðx0ðkÞ; xiðkÞÞ

¼
min
i2m

min
k2n

x0ðkÞ � xiðkÞj j þ n �max
i2m

max
k2n

x0ðkÞ � xiðkÞj j

x0ðkÞ � xiðkÞj j þ n �max
i2m

max
k2n

x0ðkÞ � xiðkÞj j :

ð1Þ

where fiðkÞ represents grey relational coefficient, xiðkÞ
represents variable sequences, ci represents grey relational

degree, which can be calculated as follows:

ci ¼
1

n
�
Xn

k¼1

fiðkÞ: ð2Þ

During optimization selection of temperature variables,

thermal errors of the five-axis machine tool served as

mother sequence xm, temperature of 24 heat sources served

as son sequence xi. According to Eqs. (1) and (2), grey

relational degree between thermal errors and 24 heat

sources were calculated.

In order to eliminate dimension influence, above

calculation results were transformed using initial value

transform, average value transform and polar difference

transform in this study. Therefore, the calculation

results listed in Table 2 were comparable data. Initial

value transform means all data were divided by first

data, average value transform means all data were

divided by the average, polar difference transform

means all data were divided by the largest data.

According to above transform, comparable data of grey

relational degree were obtained successfully, as was

shown in Table 2.

According to grey relational degree shown in Table 1,

sum of different transform were presented in last column of

Table 1. Finally, data in the last column were sorted as

inequality (3). According to grey system theory, a large

sum implies more closely relationship between thermal

errors and different heat sources. Therefore, sensor 2 has

closest relationship with thermal error of the five-axis

machine tool. However, sensor 1 is most irrelevant to

thermal errors. In order to reduce sensor numbers, just

temperature of the first 8 sensors(No. 2, 18, 7, 17, 13, 23, 6

and 19) were chosen as temperature variables for thermal

error modeling in X direction. In the same way, tempera-

ture of sensors(No. 13, 18, 19, 8, 14, 21, 12 and 24) were

chosen as temperature variables for thermal error modeling

in Y direction. Although thermal error in Z direction were

measured too, which was much smaller than the other two

directions and almost has no influence on machining

accuracy, so it was ignored. Because modeling variables

were reduced from 24 to 8, measurement efficiency of the

heat sources was greatly improved, and thermal error

model of the five-axis machine tool would be simplified

obviously.

c25; 2 [ c25;18 [ c25; 7 [ c25; 17 [ c25; 13 [

c25; 23 [ c25; 6 [ c25;19 [ c25; 10 [ c25; 15 [

c25; 22 [ c25; 16 [ c25; 12 [ c25; 8 [ c25; 11 [

c25; 21 [ c25;5 [ c25; 20 [ c25; 9 [ c25;24 [

c25; 3 [ c25; 4 [ c25;14 [ c25; 1:

ð3Þ

3.1.1 New Thermal Error Model Based on ABC-NN

Algorithm

In this study, ABC algorithm was used for training the link

weights of BPN, and a new ABC-NN algorithm was

Fig. 6 Thermal error variations of the five-axis machine tool
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proposed. Because ABC algorithm has a merit of global

performance [27], the local minimum problem of BPN can

be overcome, and the convergence rate will be improved.

Based on the proposed algorithm, thermal error model of

the five-axis machine tool was presented. The modeling

process of thermal errors is as follows.

In order to approximate thermal errors of the five-axis

machine tool, one BPN structure was established. 8 tem-

perature variables (No. 2, 18, 7, 17, 13, 23, 6 and 19) were

used as input layer, and thermal errors were used as output

layer. During training, BPN parameters were listed in

Table 3. Finally, 50 samples were obtained by temperature

and capacitive sensors, ABC algorithm were used to train

the link weights of BPN, the flowchart of ABC-NN algo-

rithm was shown in Fig. 7.

As shown in Fig. 7, food sources denote optimized

weights of BPN, quality of the food sources denote training

performance of the weights. At beginning of the training

process, all bees served as foragers, finding new food

sources was the task of scouts, which generated randomly,

and food source evaluation was finished based on back

propagation method.

Assume W denotes weights of different neurons, h
denotes bias of different neurons, and O denotes output of

BPN, so output of the network can be calculated as follows:

Oðkþ1ÞðmÞ ¼
X3

n¼1

ðW ðkþ1Þðm; nÞan þ hðkþ1ÞÞ: ð4Þ

where k ¼ 1; 2; 3f g denotes the layers, an denotes the

output of the nth layer, which can be calculated as follows:

anðmÞ ¼ FnðOnðmÞÞ ð5Þ

where Fn denotes the transform function of the nth layer.

During back propagation, total squared errors of every

Table 2 Grey relational degree between thermal errors and 24 heat sources

Grey relational degree Initial transform Average transform Polar difference transform Sum of different transform

c25; 1 0.255 0.314 0.287 0.856

c25; 2 0.813 0.725 0.711 2.249

c25; 3 0.327 0.404 0.398 1.129

c25; 4 0.521 0.302 0.278 1.101

c25; 5 0.412 0.544 0.459 1.415

c25; 6 0.654 0.791 0.549 1.994

c25; 7 0.695 0.683 0.799 2.177

c25; 8 0.390 0.627 0.515 1.532

c25; 9 0.529 0.384 0.425 1.338

c25; 10 0.587 0.644 0.637 1.868

c25; 11 0.491 0.505 0.487 1.483

c25; 12 0.526 0.488 0.571 1.585

c25; 13 0.722 0.689 0.667 2.078

c25; 14 0.333 0.471 0.286 1.090

c25; 15 0.663 0.492 0.525 1.680

c25; 16 0.621 0.511 0.529 1.661

c25; 17 0.632 0.818 0.655 2.105

c25; 18 0.756 0.803 0.664 2.223

c25; 19 0.575 0.596 0.747 1.918

c25; 20 0.515 0.357 0.476 1.348

c25; 21 0.375 0.466 0.583 1.424

c25; 22 0.568 0.485 0.609 1.662

c25; 23 0.598 0.687 0.724 2.009

c25; 24 0.429 0.394 0.443 1.266

Table 3 BPN parameters

Parameter Value

BPN structure 8-17-1

Original weights Random of (0,1)

Learning rate 0.01

Momentum rate 0.3

Learning adjusting coefficients 0.5
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input data need to be calculated, which is used for evalu-

ating training performance of the weights, and the training

performance can be determined by the average of total

squared errors:

PðxÞ ¼

PN

j¼1

PFðxÞ

N
: ð6Þ

where PðxÞ is the final training performance of the weights,

N denotes bee number of the bee colony, pFðxÞ denotes the
performance index, which can be calculated as follows:

PFðxÞ ¼
X

pf ðxÞT � pf ðxÞ: ð7Þ

where pf ðxÞ denotes sum of the squared errors, which can

be calculated as follows:

pf ðxÞ ¼
Xk

i¼1

ðti � piÞT � ðti � piÞ: ð8Þ

where ti denotes ith target, pi denotes ith input. So, the first

order derivative of PFðxÞ can be calculated as follows:

rPFðxÞ ¼
pf ðx1Þ
x1

;
pf ðx2Þ
x2

; . . .;
pf ðxNÞ
xN

� �
: ð9Þ

Assume the best food sources found by scouts can be

represented as follows:

FSi ¼ min Pðx1Þ;Pðx2Þ; . . .;PðxNÞf g: ð10Þ

So, selection probability of a food source by the scouts

can be represented as follows:

Pfsi ¼
FSi � Dij

Pm

j¼1

FSiÞ
 !

� Dij

: ð11Þ

where m denotes the number of employed foragers, Dij

denotes the distance between food source FSi and FSj,

which can be calculated as follows:

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFSi � FSjÞ2

q
: ð12Þ

Finally, the weights and the bias of back propagation

can be adjusted as follows:

W
ðkþ1Þ
ðk;qÞ ¼ Wk

ðk;qÞ � L � Skðaðk�1ÞÞT;

hðkþ1Þ
ðk;qÞ ¼ hkðk;qÞ � L � Sk:

ð13Þ

where L denotes learning rate, Sk denotes sensitivity of the

kth layer, which can be calculated as follows:

Sk ¼ FkðOkÞ � ðW ðkþ1ÞÞ � Sðkþ1Þ: ð14Þ

And, sensitivity of last layer can be calculated as

follows:

Sk ¼ 2FkðOkÞ � ei; ð15Þ

where ei denotes error between ith target and ith input, high

error means low quality of the food source, which will be

abandoned, and adjusting ofW and h will continue until the
best food source was found and a group of optimized

weights were obtained.

4 Performance Test of the Proposed Model

4.1 Design of the Experiment System

In order to test the prediction performance of the proposed

model, an experiment system was developed based on DSP

chip in this study. As shown in Fig. 8, during experiment,

selected temperature variations was measured by tempera-

ture sensors, thermal errors of the five-axis machine tool

were measured by capacitive sensor. Firstly, all these mea-

surement signals were processed by DSP system, and then,

the processed signals were sent to PC through serial port.

Finally, according to measurement results of selected tem-

perature variables, using software system of the PC, pre-

diction results of thermal errors were obtained based on the

proposed model, which were compared with measurement

results of thermal errors collected from capacitive sensor.

4.1.1 Performance Test of ABC-NN Model

In order to verify predicting performance of ABC-NN

model, experiment was carried out based on the developed

experiment system, the experiment setup was the same as

listed in Table 1, but temperature sensors were reduced

from 24 to 8. The prediction results and measurement

Fig. 7 Flowchart of ABC-NN algorithm
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results of thermal errors were shown in Fig. 9. As was

shown, prediction performance of ABC-NN model was

very well, the residual errors of which were less than 3 lm.
At the same time, prediction accuracy of the new model

was higher than ANN model, the prediction performance

was improved after weight training based on ABC algo-

rithm. The prediction results and measurement results of

thermal errors in Y direction were shown in Fig. 10, as was

shown, the residual errors of ABC-NN model were less

than 3 lm too.

In order to evaluate the convergence performance and

generalization ability of ABC-NN model, train

performance of different prediction models were com-

pared, the results were listed in Table 4. As was shown, the

convergence time of ABC-NN model is less than ANN

model, and the residual error of ABC-NN model is the

smallest. At the same time, the generalization error of

ABC-NN model is smaller than ANN model, and it is the

most important parameter, which proves a better solution

of local minimum problem.

5 Conclusions

(1) According to GRAM method, selection of tempera-

ture variables is fulfilled, and the modeling variables

are reduced from 24 to 8, the computational time of

thermal error model decreased, and the measurement

efficiency of the heat sources is greatly improved.

(2) Prediction performance of ABC-NN model is very

well, the residual error of which is less than 3 lm. In

addition, ABC algorithm is introduced to training the

link weights of ANN, the local minimum problem of

ANN is overcome.

(3) Thermal errors of the five-axis machine tool is time-

dependent, which is a big challenge to thermal error

compensation, and the robustness of the proposed

model need to be verified with different machine

tools, these are ongoing work of our team.
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