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Abstract Aiming at the deficiency of the robustness of

thermal error compensation models of CNC machine tools,

the mechanism of improving the models’ robustness is

studied by regarding the Leaderway-V450 machining

center as the object. Through the analysis of actual spindle

air cutting experimental data on Leaderway-V450 machine,

it is found that the temperature-sensitive points used for

modeling is volatility, and this volatility directly leads to

large changes on the collinear degree among modeling

independent variables. Thus, the forecasting accuracy of

multivariate regression model is severely affected, and the

forecasting robustness becomes poor too. To overcome this

effect, a modeling method of establishing thermal error

models by using single temperature variable under the

jamming of temperature-sensitive points’ volatility is put

forward. According to the actual data of thermal error

measured in different seasons, it is proved that the single

temperature variable model can reduce the loss of fore-

casting accuracy resulted from the volatility of tempera-

ture-sensitive points, especially for the prediction of cross

quarter data, the improvement of forecasting accuracy is

about 5 lm or more. The purpose that improving the

robustness of the thermal error models is realized, which

can provide a reference for selecting the modeling

independent variable in the application of thermal error

compensation of CNC machine tools.
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1 Introduction

With the rapid development of science and technology,

higher requirements for machining accuracy and relia-

bility of computer numerical control(CNC) machine

tools are put forward. During the operation process of

CNC machine tools, the components are uneven heated,

which causes the thermal deformation and a change in

the relative position between the tool and the workpiece,

eventually leading to the machining error of piece parts.

According to statistics, thermally induced error can

account for about 40%–70% [1, 2]. The thermal error is

predicted through the compensation models which are

established by temperature data and thermal deforma-

tion, then the prediction values are used to compensate

thermal deformation in advance by the CNC system

software, this is called thermal error compensation

technology. And it is an effective and economical

method to reduce machining error and improve the

accuracy of machine tools [3, 4].

In thermal error compensation technology of CNC

machine tool, the key is to improve the forecasting accu-

racy and robustness of thermal error models [5]. At present,

the technologies for improving models’ forecasting

robustness usually contain two parts. The first part is the

physical selection of temperature-sensitive points. Since

the temperature field of machine tools has non-linear and
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time variability, its distribution is extremely complex. In

order to obtain the temperature distribution, a lot of tem-

perature sensors are required to lay out, so testing costs and

the workload of measurement and calculation are

increased, at the same time, the models’ accuracy is also

affected by multi-collinearity among temperature variables.

The least number of temperature sensors which have most

important influence on thermal error is selected to obtain

the best fitting and forecasting effects, and strong robust-

ness of thermal error model. In other words, by selecting

the optimal temperature-sensitive points, it can improve the

influence weight of temperature variables on thermal

deformation, reducing the collinear error among tempera-

ture variables, and finally improving the forecasting

robustness of thermal error models [6, 7]. The second part

is the application of mathematical modeling algorithms. By

establishing the thermal error models between thermal

deformation and temperature variables based on the

mathematics algorithms, the thermal error of machine can

be predicted through the real-time temperature values, then

with the communication of CNC system, the real-time

compensation of thermal error is realized [8, 9]. Nowadays,

the mathematics algorithms used in thermal error modeling

include the multiple regression analysis [10], time series

[11], support vector machines [12], neural networks [13],

etc. According to the advantages of explanatory ability of

independent variables on dependent variables using dif-

ferent mathematical modeling algorithms, it can also

improve the forecasting robustness of thermal error

models.

Furthermore, if the selection results of temperature-

sensitive points appear deviations, it will directly affect

the improving effects of models’ forecasting robustness,

and the results may even deviate from the expected

design. Therefore, the nature to improve the forecasting

robustness of thermal error models is the physical selec-

tion of temperature-sensitive points, and so far, many

researchers have studied a lot on it. In Canada, ATTIA,

et al [14], used finite element method to analyze the

overall temperature field of CNC, and divided tempera-

ture field into a plurality of regular units, the optimum

number and best position of temperature measurement

points were determined according to temperature field

simulation and correlation choosing. At University of

Michigan, LO and NI, et al [15, 16], divided temperature

sensors into groups, optimized the distribution of tem-

perature measuring points by correlation grouping, rep-

resentative searching, group searching and variable

searching, finally, 4 temperature sensors were chosen for

modeling from 46 sensors. In Korea, LEE, et al [17],

regarded the minimum residual mean square as a basis for

selecting temperature variables, proposed the method of

correlation coefficient combined with linear regression,

and the number of temperature measuring points was

reduced to 4. At Shanghai Jiao Tong University, YANG,

et al [18], put forward the grouping optimization method of

temperature variables, divided the temperature variables

into groups according to variables’ correlation, made the

permutation and combination with temperature variables

and thermal error, and selected 4 temperature-sensitive

points for modeling through comparisons eventually. At

Hefei University of Technology, MIAO, et al [19, 20],

took the advantage of fuzzy clustering and gray correlation

degree algorithms to select temperature-sensitive points,

finally, the number of temperature measuring points was

reduced to 2.

The above researches are carried out under the con-

dition that the temperature-sensitive points are stable.

However, MIAO, et al [21], explored the temperature-

sensitive points of CNC machine in different quarters,

and found that the temperature-sensitive points have

volatility, which leads to the decline of the thermal error

models’ forecasting robustness while forecasting the

cross quarter data. Obviously, the volatility of tempera-

ture-sensitive points has an important influence on the

forecasting accuracy and robustness of the models, but

there is a lack of the relevant research about its influ-

ential mechanism.

In view of this, the changing characteristics of temper-

ature-sensitive points of machine tool and its influential

mechanism on forecasting accuracy and robustness of

thermal error models are studied in this paper. After that,

the method of establishing thermal error compensation

models of machine tool based on single temperature vari-

able is put forward.

First, according to the thermal data of spindle idling of

actual CNC machine, the volatility of temperature-sensi-

tive points is verified through fuzzy clustering combined

with grey correlation degree [19, 20]. Then, based on the

linear correlation coefficient and variance inflation factor

[22] algorithms, the influence of the temperature-sensitive

points’ volatility on the collinear degree among sensitive

variables and the correlation degree between sensitive

variables and thermal deformation are analyzed. After that,

it is concluded that the collinear degree among sensitive

variables is enhanced during the multivariate modeling

while the temperature-sensitive points are changing, and it

leads to a serious impact on the forecasting accuracy and

robustness of multivariate thermal error models. Therefore,

the method of establishing thermal error models by using

single temperature variable under the jamming of temper-

ature-sensitive points’ volatility is put forward. In addition,

according to thermal error experiments of multi quarter on

Leaderway-V450 machine, the proposed univariate mod-

eling method is verified with accurate tests, and the feasi-

bility of it is also verified.
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2 Thermal Error Experiment of CNC Machine
Tool

2.1 Experimental Apparatus

The thermal error of machine was measured while taking

Leaderway-V450 machine tool as the research object.

Since X-axis and Y-axis of this machine are approximately

symmetrical structure, and compared with Z-axis, the

thermal deformation of X-axis and Y-axis are smaller.

Therefore, in order to reduce the work of experimental

and data processing, only the thermal deformation of

Z direction of machine tool spindle was measured and

analyzed.

In the experiment, the positions of temperature sensors

were to be placed in the vicinity of main heat source of

machine tool in Z direction. Among them, sensors T1–T5

were placed in front of bearing of spindle, sensors T6 and

T9 were placed on spindle sleeve, sensor T7 was placed at

the bottom of spindle cylinder, sensor T8 was placed on

spindle motor, and sensor T10 was placed on machine

casing for measuring ambient temperature. The installation

locations of temperature sensors and inductance displace-

ment sensor are shown as Fig. 1. Due to machine casing is

not shown in Fig. 1, the sensor T10 placed in machine

casing is not labeled in Fig. 1.

2.2 Experimental Design

In accordance with international standard of Test code for

machine tools—Part 3: Determination of thermal effects

[23], four batches of data of CNC machine tool were col-

lected under spindle idling in different seasons. The data of

temperature and thermal error were sampled synchronously

when measuring, among them, the temperature data was

collected through digital sensor DS18B20(measuring

accuracy is ±0.2 �C, the highest resolution can reach 0.062

5 �C), and the thermal deformation of Z direction was

measured by using inductance displacement sensor(mea-

suring accuracy is ±0.5 lm). During the experiment under

spindle idling, the spindle was rotated at a constant

speed(1000 r/min, 2000 r/min) and the experimental data

were collected every three minutes, the duration of every

experiment was over four hours. The experiment parame-

ters of batches of K1–K4 are shown as Table 1. Among

them, the batches of K1 and K2 were measured in spring,

and the batches of K3 and K4 were measured in summer.

The thermal deformations of four batches are shown in

Fig. 2. Besides, because of the limited space, only the

temperature data of K1 are shown as Fig. 3.

Fig. 1 Installation locations of temperature sensors and displacement

sensor

Table 1 Experiment parameters of batches of K1–K4

Experiment

time

Batches Spindle speed

S/(r � min-1)

Ambient

temperature T/�C

Spring K1 2000 10.63–12.00

K2 2000 10.38–12.38

Summer K3 1000 28.68–33.75

K4 2000 31.37–35.06

Fig. 2 Thermal deformations of K1–K4
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3 Volatility of Temperature-Sensitive Points
and Its Influential Mechanism on Models

3.1 Volatility of Temperature-Sensitive Points

According to the method of fuzzy clustering combined

with gray correlation degree [19, 20], the temperature-

sensitive points of K1-K4 are calculated. The principle of

this method is: classify all the temperature variables

according to their correlation to make the variables from

the same category have strong correlation, and the vari-

ables from the different categories have weak correlations;

then, select one temperature variable which has the maxi-

mum correlation with thermal deformation in each cate-

gory as one of the temperature-sensitive points. The

calculated results of temperature-sensitive points of K1–K4

are shown as Table 2.

From Table 2, the selection results of temperature-

sensitive points of K1-K4 are not exactly the same,

namely, it has a volatility. In addition, the ambient tem-

perature T10 is not included in temperature-sensitive points

but instead of T7 which is placed on bottom of spindle

cylinder, the reason is that T7 and T10 are in the same

category after clustering, there is a high correlation

between them, but T7 has a greater influential weight on

thermal deformation than T10, hence, T7 is more suit-

able for modeling.

According to Table 2, it is easy to know, the positions

of temperature-sensitive points of K1 and K2 are in front

of bearing of spindle and at the bottom of spindle

cylinder, but the positions of temperature-sensitive

points of K3and K4 are on spindle motor and at the

bottom of spindle cylinder. The reason for above results

is, when the machine stays at a low temperature envi-

ronment(such as K1 and K2), the correlation between the

temperature sensor T8(placed on spindle motor) and

thermal deformation is smaller than the correlation

degree between the temperature sensor T1(placed in

front of bearing of spindle) and thermal deformation.

However, when the machine stays at a high temperature

environment(such as K3 and K4), the correlation degree

of the above two is exchanged, which makes the tem-

perature measuring point T8 become one of the tem-

perature-sensitive points of K3 and K4. The specific

correlation degree are shown in Table 3.

3.2 Influential Mechanism of Temperature-

Sensitive Points’ Volatility on Models’ Accuracy

In this section, based on the variance inflation factor and

linear correlation coefficient algorithms, the influence of

the temperature-sensitive points’ volatility on the collinear

degree among sensitive variables and the correlation

degree between sensitive variables and thermal deforma-

tion are analyzed respectively.

3.2.1 Influence of Temperature-Sensitive Points’ Volatility

on Collinear Degree Among Sensitive Variables

In this paper, the method of variance inflation factor(VIF)

[22] is used to calculate the collinear degree among sen-

sitive variables.

Fig. 3 Temperature data of K1

Table 2 Results of temperature-sensitive points of K1-K4

Batches Clustering results Temperature-sensitive points

Category I Category II

K1 T7,T10 others T1,T7

K2 T7,T10 others T1,T7

K3 T7,T10 others T7,T8

K4 T7,T10 others T7,T8

Note: Based on Refs. [19–21] and engineering experiences, it can

meet theaccuracy of thermal compensation models of CNC machine

when thetemperature data is classified into two categories. Besides, in

this table,‘‘others’’ refers to all the other sensors except for those

sensors in Category I.

Table 3 Correlation degree between temperature variables and

thermal deformation

Batches Correlation degree between

T1 and thermal deformation

Cd1

Correlation degree between

T8 and thermal deformation

Cd8

K1 0.428 3 0.415 3

K2 0.434 8 0.420 6

K3 0.403 7 0.421 6

K4 0.410 5 0.427 8
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For multiple linear regression model, the variance of b̂j
can be expressed as

VAR b̂j
� �

¼ r2P
Xij � �X
� �2

1

1� R2
j

¼ r2P
Xij � �X
� �2 VIFj;

ð1Þ

VIFj ¼
1

1� R2
j

; ð2Þ

where VIFj is variance inflation factor, R2
j is coefficient of

determination about Xj and other independent variables

while taking Xj as the dependent variable.

With the increase of collinear degree, the VIFj values

and estimated error are increasing. Thus, VIFj can be used

as an index to judge the collinear degree. Normally, when

VIFj is greater than 10, it can be considered there is a

serious collinear degree of variables.

According to Eq. (2), the VIF values of different sen-

sitive variables are calculated and shown in Table 4. From

Table 3, the sensitive variables of all batches are (T1,T7)

and (T1,T8).

After analyzing the data in Table 4, two conclusions are

obtained and shown as follows:

(1) For batches of K1 and K2, the VIF values of (T1,T7)

are smaller than 10, it doesn’t have a serious

collinear degree. But for batches of K3 and K4, the

VIF values of (T1,T7) are greater than 10, there is a

serious collinear degree. That is to say, for the same

location of temperature variables in different

batches, the collinear degree of them can change

significantly.

(2) (T1,T7) are the temperature-sensitive points of

batches of K1 and K2, and they don’t have a serious

collinearity. However, (T7,T8) are the temperature-

sensitive points of K3 and K4, both of the VIF values

are greater than 10, so,it is considered that there is a

serious collinearity. This can be explained that, when

CNC machine stays at a low ambient temperature(-

such as K1 and K2), its temperature-sensitive points

have a lower collinear degree. But when machine

stays at a high ambient temperature(such as K3 and

K4), the correlation of temperature measurement

points is enhanced, which leads to a serious collinear

problem among its temperature- sensitive points.

3.2.2 Influence of Temperature-Sensitive Points’ Volatility

on Correlation Degree Between Sensitive Variables

and Thermal Deformation

Linear correlation coefficient(LCC) is one statistical indi-

cator used for reflecting the correlation between variables

[22], the calculation formula of LCC is shown as

r ¼

Pn
i¼1

ðxi � �xÞðyi � �yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðxi � �xÞ2
Pn
i¼1

ðyi � �yÞ2
s : ð3Þ

According to LCC method, the correlation degrees

between sensitive variables and thermal deformation in all

batches are calculated and shown in Table 5. From

Table 3, the sensitive variables of all batches include T1,

T7 and T8.

From Table 5, for the same sensitive variable, the LCC

values change in a small range, the range of LCC in all

batches are 0.089 2, 0.025 0 and 0.089 2. So, the volatility

of temperature-sensitive points has little impact on corre-

lation degree between sensitive variables and thermal

deformation.

From sections 3.2.1 and 3.2.2, when the temperature-

sensitive points changes, the correlation degree between

sensitive variables and thermal deformation only changes

in a small range, which ensures that the modeling tem-

perature variables have a great influence on thermal

deformation. However, the collinear degree among sensi-

tive variables can change significantly, and it seriously

affects the forecasting accuracy and robustness of the

model, it is also an objective problem of multivariate

models. Therefore, in actual thermal error modeling and

forecasting of CNC machine, whether the forecasting

effects of models is affected by the above problem will be

verified in the following sections.

Table 4 VIF values of different sensitive variables

Batches VIF value of (T1,T7) Vif VIF value of (T7,T8) Vif

K1 7.20 62.00

K2 8.57 54.16

K3 41.31 34.89

K4 13.48 19.91

Note: While modeling with the temperature variables of (Ti ,Tj ), the

VIF of variable Ti is equal to theVIF ofTj , that is to say,VIFi=VIFj , so

only one VIF value of each combination is listed in this table.

Table 5 LCC values between sensitive variables and thermal

deformation

Batches LCC between T1

and thermal

deformation Lcc1

LCC between T7

and thermal

deformation Lcc7

LCC between T8

and thermal

deformation Lcc8

K1 0.952 5 0.761 9 0.920 7

K2 0.956 6 0.786 9 0.918 3

K3 0.867 4 0.780 7 0.889 3

K4 0.879 8 0.780 3 0.931 3
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4 Modeling and Accuracy Analysis of Multivariate
Thermal Error Models

Taking the temperature-sensitive points of each batch as

the modeling variables, and the mathematical models of

K1–K4 are established by multiple linear regres-

sion(MLR) algorithm which is based on the least square

[22]. The results of four models are shown as Eqs. (4)–

(7). In addition, the data of temperature-sensitive points

and thermal deformation of batches of K1–K4 are shown

in Fig. 4.

y1 ¼ �3:256 0þ 7:445 5DT1 � 6:084 1DT7; ð4Þ
y2 ¼ �5:245 2þ 7:416 4DT1 � 5:482 9DT7; ð5Þ
y3 ¼ 10:153 7� 3:419 7DT7 þ 4:803 8DT8; ð6Þ
y4 ¼ 13:264 0� 4:535 9DT7 þ 5:264 5DT8; ð7Þ

where DTi is incremental temperature value of sensor Ti, yi
is the predictive value of thermal error model.

Use the above MLR models established by the batches

of K1–K4 to predict the batches of K1–K4 respectively.

Here, the residual standard deviations about predictive

value and measured value are used to evaluate the fore-

casting accuracy of thermal error models, and the smaller

the values, the higher the models’ accuracy. The calculated

results of forecasting accuracy of MLR models are shown

in Table 6. Then, according to Table 6, the forecasting

accuracy of multivariate models for forecasting different

seasonal data are obtained, and the results are shown in

Table 7. In Tables 6 and 7, Mim i ¼ 1; 2; 3; 4ð Þ is multi-

variate MLR models established by batch of Ki. Besides,

due to the limited space, the forecasting residual value of

model M1m is shown as Fig. 5. In Fig. 5, ‘‘Mim–

Ki(i = 1,2,3,4) means the residual of thermal error after

forecasting Ki by model Mim.

From Table 7, two conclusions are obtained and shown

as follows:

(1) The forecasting standard deviation of K1 and K2

predicted by M1m and M2m, the forecasting standard

deviation of K3 and K4 predicted by M3m and M4m,

are within 4 lm. However, the forecasting standard

deviation of K3 and K4 predicted by M1m and M2m,

the forecasting standard deviation of K1 and K2

predicted by M3m and M4m, are greater than 10 lm.

It can be known that, due to the large variation of

collinear degree among modeling variables caused

Fig. 4 Data of temperature-sensitive points and thermal deformation of batches of K1–K4

Table 6 Forecasting accuracy of multivariate models lm

Forecasting data Models

M1m M2m M3m M4m

K1 1.40 1.78 12.87 15.32

K2 1.79 1.48 11.32 14.47

K3 16.26 17.42 2.17 3.57

K4 13.64 14.49 3.06 2.01

Table 7 Forecasting accuracy of multivariate models for forecasting

different seasonal data

Models Forecasting data Forecasting accuracy s/lm

M1m, M2m K1, K2 1–2

K3, K4 13–17

M3m, M4m K1, K2 11–15

K3, K4 2–4
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by the temperature-sensitive points’ volatility, the

forecasting accuracy of multivariate regression mod-

els is reduced, so the robustness of models can’t be

ensured.

(2) The forecasting standard deviation of K1 and K2

predicted by M1m and M2m, is slighter lower than that

of K3 and K4 predicted by M3m and M4m, and this

difference is only about 1–2 lm. The reason is the

temperature-sensitive points of K3 and K4 also have a

serious collinear problem, namely, when models M3m

and M4m are predicting K3 and K4, there are serious

collinear problem in both modeling data and forecast-

ing data. Therefore, when these models are built, the

ability of temperature variables for describing the law

of thermal deformation is reduced, which leads to a

slight decrease of models’ forecasting accuracy.

The above analysis shows that, due to the complexity of

the structure of CNC machine tool and the time variability

and non-linearity of temperature field, the positions of

temperature-sensitive points are not identical in different

batches, which have a great influence on the collinear

degree among temperature-sensitive points, and it is the

essential reason that affects the accuracy and robustness of

multivariate thermal error compensation models of CNC

machine.

Considering there are some LCC values between sen-

sitive variables and thermal deformation which are shown

in Table 4 are greater than 0.9, such as the temperature

variable T1 in batch of K1, its LCC value reaches to 0.952

5, if the thermal error model is established by T1, it can

well describe the trend of thermal error, so the feasibility of

the model is worth being discussed. In addition, there is no

collinear error when modeling with one independent vari-

able, which avoids the defects of the multivariate models.

5 Modeling and Accuracy Analysis of Univariate
Models

5.1 Feasibility Study of Univariate Modeling

In this section, based on the analysis of K1, the feasibility

of univariate models is discussed. The key of it is that the

correlation among temperature variables and the correla-

tion between temperature variables and thermal deforma-

tion can satisfy the accuracy and robustness of thermal

error compensation models.

5.1.1 Analysis of Correlation Degree Between

Temperature Independent Variables

According to the Eq. (3) of LCC, the correlation matrix of

the temperature variables T1–T10 of K1 is calculated. If

the correlation among temperature variables are very

strong, one temperature variable can be used to collect

most of the temperature information of the machine tool.

The results of correlation matrix R of T1–T10 are

From the results of correlation matrix R, the correlation

between T1 and T5 is the highest, and the LCC value

reaches to 0.999 3. The correlation between T1 and T8 is

the lowest, but the LCC value even reaches to 0.913 7. All

Fig. 5 Forecasting residual value of model M1m

R =

1:000 0 0:997 8 0:992 3 0:995 0 0:999 3 0:970 0 0:989 6 0:913 7 0:968 3 0:962 3
0:997 8 1:000 0 0:998 0 0:999 0 0:998 4 0:982 9 0:996 5 0:933 9 0:981 4 0:976 1
0:992 3 0:998 0 1:000 0 0:999 4 0:993 9 0:991 7 0:999 4 0:950 0 0:990 4 0:985 8
0:995 0 0:999 0 0:999 4 1:000 0 0:996 4 0:988 4 0:998 5 0:944 3 0:987 2 0:982 4
0:999 3 0:998 4 0:993 9 0:996 4 1:000 0 0:973 3 0:991 5 0:919 5 0:971 8 0:966 3
0:970 0 0:982 9 0:991 7 0:988 4 0:973 3 1:000 0 0:993 9 0:978 2 0:999 5 0:997 5
0:989 6 0:996 5 0:999 4 0:998 5 0:991 5 0:993 9 1:000 0 0:953 1 0:992 5 0:988 3
0:913 7 0:933 9 0:950 0 0:944 3 0:919 5 0:978 2 0:953 1 1:000 0 0:981 7 0:983 6
0:968 3 0:981 4 0:990 4 0:987 2 0:971 8 0:999 5 0:992 5 0:981 7 1:000 0 0:997 9
0:962 3 0:976 1 0:985 8 0:982 1 0:966 3 0:997 5 0:988 3 0:983 6 0:997 9 1:000 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
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the correlation degrees are large from the subjective

judgment. Thus, it is very necessary to consider estab-

lishing thermal error models with one temperature variable,

and as for the effectiveness and reliability of the compen-

sation model, it is also necessary to be verified according to

the accuracy of univariate models.

5.1.2 Analysis of Correlation Degree Between

Temperature Independent Variables and Thermal

Deformation

According to the Eq. (3) of LCC, the correlation between

temperature variables T1–T10 of K1 and thermal defor-

mation are calculated. If there is a temperature variable

which has a strong correlation with thermal deformation,

the law of thermal deformation can be well described by

this variable.

The calculated results of LCC between temperature

variables and thermal deformation are shown in Table 8.

From Table 8, the correlation degree between T1 and

thermal deformation is the highest, and the LCC value

reaches to 0.952 5. There is a strong correlation between

them, so, the temperature variable T1 can reflect the trend

of thermal deformation well. From this perspective, we can

also consider establishing thermal error compensation

models with one temperature variable.

Based on above analysis, a modeling method of estab-

lishing thermal error models by using single temperature

variable under the jamming of temperature-sensitive

points’ volatility is put forward.

5.2 Modeling and Accuracy Analysis of Univariate

Models

While establishing thermal error modes by one temperature

variable, the temperature variable which has the maximum

LCC value with thermal deformation should be chosen as

modeling independent variable. According to Eq. (3), the

modeling independent variables of each batch are calcu-

lated and shown in Table 9.

From Table 9, the modeling independent variables of all

batches still change, but, according to section 3.2.2, it has

been verified that the change of modeling independent

variables has little influence on the correlation degree

between the modeling variables and thermal deformation.

Therefore, all these independent variables listed in Table 9

have strong correlation with thermal deformation, which

meets the requirements of the proposed robust modeling

method.

According to the results of Table 9, the univariate MLR

models of K1–K4 are established and shown as Eqs. (8) –

(11):

y1 ¼ 7:038 4þ 3:392 3DT1; ð8Þ
y2 ¼ 7:238 0þ 3:028 2DT1; ð9Þ
y3 ¼ 9:205 8þ 2:638 7DT8; ð10Þ
y4 ¼ 9:871 3þ 2:915 9DT8; ð11Þ

where, DTi is incremental temperature value of sensor Ti; yi
is the predictive value of thermal error model.

Use the above MLR models established by the batches

of K1–K4 to predict the batches of K1–K4 respectively. In

Tables 10, Mis i ¼ 1; 2; � � � ; 4ð Þ is univariate MLR models

established by Ki. Besides, due to the limited space, the

forecasting residual value of model M1s is shown as Fig. 6.

From Table 10, the range of forecasting standard devi-

ation of univariate models is from 2.22 lm to 8.30 lm.

5.3 Accuracy Comparison Between Univariate

Models and Multivariate Models

From the forecasting accuracy of univariate models and

multivariate models which are shown in Tables 6 and 10,

the accuracies of two models are compared, and the results

are shown in Table 11. In Table 11, Mi i ¼ 1; 2; 3; 4ð Þ.are
the univariate models or multivariate models established by

Ki.

Table 8 LCC between temperature variables T1–T10 and thermal

deformation

Temperature

variables

LCC values

LCC

Temperature

variables

LCC values

LCC

T1 0.952 5 T6 0.920 7

T2 0.939 8 T7 0.874 8

T3 0.924 3 T8 0.761 9

T4 0.949 4 T9 0.867 7

T5 0.874 8 T10 0.856 9

Table 9 Modeling independent variables of each batch

Batches K1 K2 K3 K4

Modeling variables T1 T1 T8 T8

Table 10 Forecasting accuracy of univariate models lm

Forecasting data Models

M1s M2s M3s M4s

K1 2.74 3.35 5.00 4.25

K2 3.81 3.13 4.17 3.81

K3 5.93 6.43 2.22 2.33

K4 7.27 8.30 2.58 2.26
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The data in Table 11 are presented by the form of two

dimensional histogram, and the accuracy comparison of

univariate models and multivariate models established by

the batches of K1–K4 are shown as Figs. 7, 8, 9 and 10

respectively.

According to Table 11 and Figs. 7, 8, 9 and 10, the

forecasting accuracy comparison between univariate mod-

els and multivariate models for forecasting different sea-

sonal data are obtained and shown in Table 12. In

Table 12, ‘Single-Multi’ refers to the difference of fore-

casting accuracy between univariate models and multi-

variate models. If its value is greater than 0, it means the

forecasting accuracy of univariate model is higher than that

of multivariate model.

From Tables 11 and 12, some conclusions can be

obtained and shown as follows:

Fig. 6 Forecasting residual value of model M1s

Table 11 Accuracy comparison of univariate models and multi-

variate models lm

Forecasting data M1 M2

M1 s M1 m M2 s M2 m

K1 2.74 1.40 3.35 1.78

K2 3.81 1.79 3.13 1.48

K3 5.93 16.26 6.43 17.42

K4 7.27 13.64 8.30 14.49

Forecasting data M3 M4

M3 s M3 m M4 s M4 m

K1 5.00 12.87 4.25 15.32

K2 4.17 11.32 3.81 14.47

K3 2.22 2.17 2.33 3.57

K4 2.58 3.06 2.26 2.01

Fig. 7 Accuracy comparison of univariate models and multivariate

models established by K1

Fig. 8 Accuracy comparison of univariate models and multivariate

models established by K2

Fig. 9 Accuracy comparison of univariate models and multivariate

models established by K3
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(1) The forecasting accuracy of univariate models is less

affected by external environment, and the forecast-

ing robustness of univariate models is higher than

that of multivariate models. Take the data in

Table 11 for example, the range of forecasting

accuracy of univariate models established by K1(that

is M1s) is from 2.74 lm to 7.27 lm, but the range of

forecasting accuracy of multivariate models estab-

lished by K1(that is M1m) is from 1.40 lm to

16.26 lm, its robustness is significantly lower than

that of univariate models. The other models’ prop-

erties are similar.

(2) From Table 12, while the ambient temperature of

modeling data is low, the accuracies of established

thermal error models(such as M1 and M2) are

expressed as the following: when the ambient

temperature of forecasting data is also low(such as

K1 and K2), the forecasting accuracy of univariate

models is slightly lower than that of multivariate

models, but its difference is only about from 1 lm to

2 lm. However, when the ambient temperature of

forecasting data is high(such as K3 and K4), due to

the great changes of collinear degree among inde-

pendent variables, the forecasting accuracy of uni-

variate models is much better than that of

multivariate models, and the difference of forecast-

ing accuracy between them reaches to 10 lm or

more.

(3) From Table 12, while the ambient temperature of

modeling data is high, the established thermal error

models(such as M3 and M4) are expressed as the

following: when the ambient temperature of fore-

casting data is also high(such as K3 and K4), the

accuracy of univariate models is close to that of

multivariate models, and the difference is within

the range of –0.5–0.5 lm. This is because the

correlation of temperature measurement points is

enhanced while staying at high temperature, which

leads to a serious collinear problem among mod-

eling variables, so the accuracy of multivariate

models is suppressed, but since the forecasting data

also has a serious collinearity, the accuracy is only

slightly decreased. However, when the ambient

temperature of forecasting data is low(such as K1

and K2), due to the great changes of collinear

degree among variables, the forecasting accuracy of

univariate models is much better than that of

multivariate models, and the difference is 7 lm or

more.

6 Experimental Verification

To verify the superiority of univariate modeling models in

actual thermal error of machine tool, six batches of data

were measured under spindle idling on different seasons.

Among them, the parameters of batches of L1-L6 are

shown in Table 13.

According to above experimental data, the multivariate

models and univariate models are established according

MLR algorithm, and the batches of L1–L6 are predicted by

these models as well. After that, the mean of forecasting

Fig. 10 Accuracy comparison of univariate models and multivariate

models established by K4

Table 12 Forecasting accuracy comparison between univariate

models and multivariate models for forecasting different seasonal

data

Models Ambient

temperature T/�C
Forecasting

data

Single-Multi

s/lm

M1, M2 10*13�C K1, K2 –1*–2

K3, K4 [10

M3, M4 25*36�C K1, K2 [7

K3, K4 –0.5*0.5

Table 13 Parameters of experimental data

Batches Spindle speed

S/(r � min-1)

Ambient

temperature T/�C
Thermal

deformation d/lm

L1 2000 13.0*16.0 24.5

L2 4000 14.6*19.7 39.5

L3 6000 14.4*19.5 47.8

L4 2000 25.5*27.3 22.5

L5 4000 25.0*29.2 36.5

L6 6000 25.6*29.0 47.3
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accuracy(Mn) and the standard deviation of forecasting

accuracy(Sd) of each kind of model are obtained and

shown in Table 14. In Table 14, Mn is the parameter of the

average level of forecasting accuracy, and the smaller of

Mn, the higher of the average models’ forecasting accu-

racy. Sd is the parameter of discrete degree of forecasting

accuracy, and the small of Sd, the stronger of models’

robustness.

From Table 14, compared with multivariate models,

univariate models improve the models’ forecasting accu-

racy and robustness obviously, the average improvement is

more than 5 lm.

7 Conclusions

(1) Due to the complexity of the structure of CNC

machine tool and the time variability and non-lin-

earity of temperature field, the positions of temper-

ature-sensitive points are not identical, which have a

great influence on the collinear degree among sen-

sitive variables, and it also leads to a greatly reduced

in the forecasting accuracy and robustness of mul-

tivariate regression model.

(2) A modeling method of establishing thermal error

models by using single temperature variable under

the jamming of temperature-sensitive points’ volatil-

ity is put forward. According to the actual data of

thermal error measured in different seasons, it is

proved that the single temperature variable model

can reduce the loss of forecasting accuracy caused

by the volatility of temperature-sensitive points,

especially for the prediction of cross quarter data, the

improvement of forecasting accuracy is about 5 lm
or more.

(3) By the use of univariate modeling method, the

purpose that improving the forecasting robustness of

the thermal error models is realized. It provides a

reference for selecting the independent variable in

the application of thermal error compensation of

CNC machine tools.

(4) The essential reason that affects multivariate models’

accuracy and robustness is the great change of

collinear degree among modeling independent vari-

ables, however, the influencing degree of collinear

degree on the accuracy and robustness of multivariate

models, still needs to be further studied. In addition,

the proposedmodelingmethod ismore suitable for the

thermal deformation of spindle elongation, but there is

a lack of research about the thermal formation of

spindle swing and spindle pitch.
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