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Abstract Most of the current evolutionary algorithms for

constrained optimization algorithm are low computational

efficiency. In order to improve efficiency, an improved

differential evolution with shrinking space technique and

adaptive trade-off model, named ATMDE, is proposed to

solve constrained optimization problems. The proposed

ATMDE algorithm employs an improved differential

evolution as the search optimizer to generate new offspring

individuals into evolutionary population. For the con-

straints, the adaptive trade-off model as one of the most

important constraint-handling techniques is employed to

select better individuals to retain into the next population,

which could effectively handle multiple constraints. Then

the shrinking space technique is designed to shrink the

search region according to feedback information in order to

improve computational efficiency without losing accuracy.

The improved DE algorithm introduces three different

mutant strategies to generate different offspring into evo-

lutionary population. Moreover, a new mutant strategy

called ‘‘DE/rand/best/1’’ is constructed to generate new

individuals according to the feasibility proportion of

current population. Finally, the effectiveness of the pro-

posed method is verified by a suite of benchmark functions

and practical engineering problems. This research presents

a constrained evolutionary algorithm with high efficiency

and accuracy for constrained optimization problems.

Keywords Constrained optimization � Differential
evolution � Adaptive trade-off model � Shrinking space

technique

1 Introduction

Constrained optimization problems (COPs) widely exist in

various scientific and engineering fields [1–3], such as

mechanical design, path planning, etc. Perhaps it is not

easy or difficult to obtain global optimal solutions by the

traditional optimization techniques for some COPs

involving nonlinear inequality or equality constraints,

multi-modal and non-differential objective functions.

Evolutionary algorithms (EAs) cooperated with constraint-

handling techniques which have obtained more and more

attention because of their flexibility, effectiveness and

adaptability provide an effective and powerful avenue to

cope with these COPs [4–6]. A large number of effective

constrained optimization evolutionary algorithms (COEAs)

have been proposed [7–9]. Recently, some representative

constraint-handling techniques with EAs to solve COEAs

have been summarized by COELLO [10]. The most gen-

eral existing constraint-handling techniques are mainly

categorized into three groups. Firstly, the method based on

the penalty function aimed to transform a COP into an

unconstrained one by adding a penalty term to the original

objective function [11, 12]. Secondly, the approach based

on the feasibility-based criterion preferred to select the
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feasible solutions rather than the infeasible solutions into

the next evolutionary process [13, 14]. Thirdly, the method

based on the multi-objective optimization technique aimed

to transform the COPs into the unconstrained multi-ob-

jective optimization problems and utilized multi-objective

optimization technique to deal with the converted problems

[15, 16].

The performance of COEAs mainly depends on the

constraint-handling techniques and EAs as the search

optimizer. Differential evolution (DE) originally proposed

by STORN and PRICE [17] was one of the most simple

and powerful population-based evolutionary algorithms for

global optimization. During the past two decades, different

DE optimizers with constraint-handling techniques have

been successfully developed to deal with different kinds of

COPs. The first attempt was the constraint adaption with

DE (CADE) algorithm which introduced multi-member

individuals to generate more than one offspring by DE

operators [18]. A cultural DE-based algorithm with the

feasibility rule was proposed by LANDA and COELLO

[19], which utilized different knowledge sources to influ-

ence the mutant operator in order to accelerate conver-

gence. A multi-member diversity-based DE (MDDE)

algorithm where each parent generated more than one

offspring to enhance the diversity of population was pre-

sented by MEZURA-MONTES, et al [20] to solve COPs.

The dynamic stochastic selection technique was put for-

ward by ZHANG, et al [21] under the framework of multi-

member DE. TESSEMA and YEN [11] designed an

adaptive penalty formulation where the feasible proportion

of the current population was utilized to tune the penalty

factor. In order to combine the advantages of different

constraint-handling techniques, MALLIPEDDI, et al [22]

proposed an ensemble of constraint-handling techniques

(ECHT) with DE and evolutionary programming optimiz-

ers for coping with COPs. ELSAYED, et al [23] introduced

an algorithm framework to use multiple search operators in

each generation with the feasibility rule for COPs. Each

combination of search operators had its own sub-popula-

tion, and the size of each sub-population varied adaptively

during the progress of evolution depending on the repro-

ductive success of the search operators. Subsequently,

GONG, et al [24] developed a ranking-based mutation

operator with an improved dynamic diversity mechanism

for COPs. A modified differential evolution algorithm [25]

was proposed to deal with the dimensional synthesis of the

redundant parallel robot problem.

Recently, the adaptive trade-off model (ATM) [26] has

been proposed to maintain a reasonable tradeoff to select

better individuals to reserve into next generation between

the feasible and infeasible individuals. The principal merit

of ATM was that the promising infeasible individuals

could be inherited into the next evolutionary process. The

ATM with evolutionary strategy (ATMES) as the search

optimizer has been utilized to solve COPs. In order to

reduce the computational effort, the shrinking space tech-

nique introduced by AGUIRRE, et al [27] shrank the

search region according to some feedback information and

directed the search effort to the promising feasible region.

Subsequently, WANG, et al [28] proposed a new method

named AATM with high efficiency which benefited from

the virtues of shrinking space technique and ATM. The

performance of AATM algorithm could promptly converge

to optimal results without loss of quality and precision.

Although AATM enhances the performance of ATMES

by taking advantage of the shrinking space technique to

address complicated COPs with multiple constraints, it still

leaves a plenty of room to develop new approaches to solve

COPs for improvement of accelerating the convergence

rate and enhancing the quality of solutions within the

limited time, especially for complicated engineering opti-

mization problems. When using EAs to solve COPs, the

search algorithm plays a crucial role on the performance of

hybrid approaches as well as the constraint-handling

techniques. Hence, this study employs an advanced search

algorithm (i.e. an improved DE) to further improve the

performance of AATM. The improved DE employs three

different characteristic mutant strategies to generate dif-

ferent offspring into evolutionary population. Hence,

combining the advantages of an improved differential

evolution with adaptive trade-off model and shrinking

space technique, called ATMDE, is proposed to deal with

COPs. The remainders of this paper are organized as fol-

lows. In Section 2, the definitions of COP and some rele-

vant concepts of multi-objective optimization are given,

respectively. In Section 3, the basics of DE are briefly

introduced. In Section 4, the proposed ATMDE algorithm

is presented in detail. In Section 5, the performances of

ATMDE are tested by 18 well-known benchmark test

functions from the 2006 IEEE Congress on Evolutionary

Computation (IEEE CEC2006) and several engineering

optimization problems. Section 6 concludes this paper.

2 Statement of the Problem

A general constrained optimization problem is formulated

as

min f ðxÞ;

s:t:
gkðxÞ� 0; k ¼ 1; 2; � � � ; q;
hkðxÞ ¼ 0; k ¼ qþ 1; qþ 2; � � � ;m;

� ð1Þ

where f(x) is the objective function; g(x) and h(x) are the

inequality and equality constraints, respectively;

x = [x1, x2,���, xn] is an n-dimensional vector of design
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variables and their allowable lower and upper boundaries

are xmin,j and xmax,j (j = 1, 2,���, n); m is the total number of

constraints; q and m - q are the numbers of inequality and

equality constraints, respectively. In evolutionary opti-

mization, equality constraints are transformed to inequality

constraints as follows:

hkðxÞj j � d� 0; ð2Þ

where d is a positive tolerance parameter and is recom-

mended to be as 0.0001 [20, 21].

In addition, the degree of violation value of solution x

from k-th constraint Gk(x) is defined as

GkðxÞ ¼
maxf0; gkðxÞg; k ¼ 1; 2; � � � ; q;
maxf0; hkðxÞj j � dg; k ¼ qþ 1; qþ 2; � � � ;m:

�

ð3Þ

Then, the degree of all the constraint violations of

solution x can be represented as

GðxÞ ¼
Xm
k¼1

GkðxÞ: ð4Þ

Since the following method utilizes the concepts of the

multi-objective optimization techniques to address con-

straints of COPs, some related multi-objective optimization

concepts are introduced in advance.

Definition 1 Pareto dominance: A vector u = (u1, u2,���,
uk) is said to Pareto dominate another vector v = (v1, v2,���,
vk), denoted as u � v, only if it is satisfied:

8i 2 f1; 2; � � � ; kg; ui � vi and

9j 2 f1; 2; � � � ; kg; uj\vj:
ð5Þ

Definition 2 Pareto optimality: u is said to be Pareto

optimal only if vector v in the feasible region S doesn’t

exist and v � u, where v = f(v) = (f(v), G(v)) = (v1, v2),

u = f(u) = (f(u), G(u)) = (u1, u2).

Definition 3 Pareto optimal set: The Pareto optimal set

denoted as P* is defined as

P� ¼ fu 2 Sj:9v 2 S; v � ug: ð6Þ

It should be noted that individuals in the Pareto optimal

set are called non-dominated individuals.

Definition 4 Pareto front: The Pareto front PF* is defined

as

PF� ¼ ff ðuÞju 2 P�g: ð7Þ

3 Basics of Differential Evolution

DE has been extensively applied to solve optimization

problems because of its simplicity and effectiveness [17]. It

does not require the binary encoding to represent solution

like genetic algorithm and not employ a probability density

function to self-adapt its individuals like evolution strategy.

It generates new candidate solutions by combining the

parent individual and several other individuals of the cur-

rent population. Then a candidate individual will replace

the parent only if it has better fitness value. In the following

text, the specific operations including initialization, muta-

tion, crossover and selection are introduced. Firstly, it

generates NP initial population xi (i = 1, 2,���, NP) sam-

pled from the search domain by

xi;j ¼ xmin;j þ randð0; 1Þ � ðxmax;j � xmin;jÞ; ð8Þ

where rand(0,1) means to generate a randomly real number

between 0 and 1.

After initialization, a mutant strategy is adopted to

generate a mutant vector vi = (vi,1, vi,2,���, vi,n) by its cor-

responding target vector xi = (xi,1, xi,2,���, xi,n). There is a

general nomenclature ‘‘DE/x/y’’ developed to denote the

different DE mutant variants, where ‘‘DE’’ means differ-

ential evolution, ‘‘x’’ indicates which individual as the base

vector is selected to be mutated, and ‘‘y’’ is the number of

difference vectors chosen for perturbation of x. The fol-

lowing mutation strategies are most frequently used.

DE/rand/1:

vi ¼ xr1 þ F � ðxr2 � xr3Þ: ð9Þ

DE/best/1:

vi ¼ xbest þ F � ðxr1 � xr2Þ: ð10Þ

DE/rand/2:

vi ¼ xr1 þ F � ðxr2 � xr3Þ þ F � ðxr4 � xr5Þ: ð11Þ

DE/current-to-rand/1:

vi ¼ xi þ F � ðxr1 � xiÞ þ F � ðxr2 � xr3Þ: ð12Þ

DE/current-to-best/1:

vi ¼ xi þ F � ðxbest � xiÞ þ F � ðxr1 � xr2Þ: ð13Þ

where indices r1, r2, r3, r4 and r5 are mutually exclusive

integers randomly selected from interval [1, NP] and are

also different from individual i; F is the scale factor chosen

between 0 and 1; and xbest denotes the best individual in the

current population.

Subsequently, a trial vector ui = (ui,1, ui,2,���, ui,n) gen-
erates by the binomial crossover or exponential crossover.

The binomial crossover is utilized in this paper as follows:

ui;j ¼
vi;j; if ðrandjð0; 1Þ�CRÞ or j ¼ jrand;
xi;j; otherwise:

�
ð14Þ

where CR is the probability rate of crossover operator and

jrand is a randomly integer chosen from the range [1, n]. The

binomial crossover operator inherits the j-th variable of

mutant vector vi to its corresponding element in the trial

vector ui if it meets the condition. Taking ‘‘DE/rand/1/bin’’
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strategy as an example, the schematic diagram of mutation

and crossover operation is illustrated as shown Fig. 1. The

black square represents the mutant vector, which is the

mutant vector ui generated by mutant strategy. The two

triangles u1i and u2i represent the two possible locations for

the trial vector after performing binomial crossover

operation.

Then, the target vector xi,g compares with its trial vector

ui,g by their fitness values, and the better one xi,g?1 will

survive into the next generation population. The selection

operation expresses as

xi;gþ1 ¼
ui;g; if f ðui;gÞ� f ðxi;gÞ;
xi;g; otherwise:

�
ð15Þ

The above steps repeat generation by generation until

the termination criterion is met.

4 Proposed Algorithm: ATMDE

The performance of COEAs mainly depends on the search

ability of evolutionary algorithm and the effectiveness of

constraint-handling technique. Hence, the proposed algo-

rithm ATMDE utilizes an improved DE as search opti-

mizer to reproduce offspring and introduces the adaptive

trade-off model as the constraint-handling technique to

select better individuals to retain into the next population.

Furthermore, in order to reduce the redundant search

region, the shrinking space technique is employed to

enhance the convergence performance. This section will

introduce the three core parts of ATMDE algorithm in

detail, respectively.

4.1 Improved DE

To balance the convergence rate and accuracy of solution,

an improved DE is used as the search engine for the pro-

posed ATMDE algorithm. The set of offspring individuals

Qg is generated by the following three different mutant

strategies (i.e. DE/rand/best/1, DE/current-to-rand/1, and

DE/rand/2) which combine the advantages of different

mutant strategies to generate individuals in order to

increase the maximum probability of generating better

offspring into evolutionary population. The strategies DE/

current-to-rand/1 and DE/rand/2 have the strong explo-

rative ability to generate new promising individuals to add

into the evolutionary population, and the strategy DE/rand/

best/1 has good exploitative ability to reproduce better

individuals around the best individual. A good tradeoff

between the global and local search performance can be

achieved by combing the three different mutant strategies.

The framework of generating offspring is shown in Fig. 2.

Each individual in the parent population is employed to

generate three different offspring with three different

mutant strategies and binomial crossover, and then the

better individuals retaining into the next generation are

chosen from the new offspring and parent population by

ATM strategy.

The implementation of constructing ‘‘DE/rand/best/1’’

strategy is explained as follows. At the beginning, the ‘‘DE/

rand/1’’ strategy is introduced to maintain the diversity of

population in order to prevent the population from being

stuck in a local optimum. This strategy has the ability to

enhance the global search ability because the new indi-

viduals could learn the information from other individuals

randomly chosen from the whole population. Then it is

necessary to accelerate the convergence of the evolutionary

population, so the ‘‘DE/best/1’’ strategy is employed to

speed up convergence as the feasibility proportion of cur-

rent population increases. The ‘‘DE/best/1’’ strategy uti-

lizes the information of the best individual in the current

population to generate new individual which can enhance

the convergence speed. Hence, the proposed strategy ‘‘DE/

rand/best/1’’ as shown in Algorithm 1 is constructed to

balance diversity and convergence speed, which combines

the ‘‘DE/rand/1’’ strategy and ‘‘DE/best/1’’ strategy

through the feasibility proportion of current population.

Specially, if a value randomly generated from [0, 1] is

greater than the feasibility proportion of current population

u, the ‘‘DE/rand/1’’ strategy is adopted. Otherwise, the

‘‘DE/best/1’’ strategy is employed.

Algorithm 1 The ‘‘DE/rand/best/1’’ strategy if

rand(0, 1)[u, where u denotes the feasibility proportion

of current population

vi ¼ xr1 þ F � ðxr2 � xr3Þ #DE/rand/1#

else

vi ¼ xbest þ F � ðxr1 � xr2Þ #DE/best/1#

end

1x

2x
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2r
x

2 3
( )r rF × −x x
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1
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Fig. 1 Schematic diagram of ‘‘DE/rand/1/bin’’ strategy (2-D space)
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4.2 Adaptive Trade-Off Model

Generally, a constraint-handling technique to address con-

straints experiences three different situations in the whole

evolutionary process: (1) the infeasible situation only

includes the infeasible solutions; (2) the semi-feasible situ-

ation includes the feasible and infeasible individuals simul-

taneously; and (3) the infeasible situation only includes the

infeasible individuals. The ATM strategy aims to construct

an effective tradeoff scheme to address constraints for each

situation according to their corresponding characteristics.

4.2.1 Infeasible Situation

In the infeasible situation, a hierarchical non-dominated

selection strategy is introduced to choose individuals from

Pareto front into the next population along with evolu-

tionary process and is executed as follows: only the first

half of non-dominated individuals with smaller constraint

violations are selected to offspring population and are

immediately eliminated from the parent population. This

process repeats until the number of individuals reaches the

size of the offspring population.

4.2.2 Semi-feasible Situation

In this situation, in order to balance the influence of

objective value and constraint violation, the adaptive

fitness transformation method is employed to calculate

the fitness function ffit(xi) of individual xi. Firstly, the

population is divided into the feasible individual group

(Z1) and infeasible individuals group (Z2). The objective

function value f(xi) of solution xi is converted into

f
0 ðxiÞ¼

f ðxiÞ; i2 Z1;

maxfuf ðxbestÞþð1�uÞf ðxworstÞ; f ðxiÞg; i2 Z2;

�
ð16Þ

where f
0 ðxiÞ is the converted objective function’s value of

solution xi, and xbest and xworst are the best and worst solution

in the group Z1, respectively. In order to assign equal impor-

tance to different objective functions, it is normalized as

fnorðxiÞ ¼
f
0 ðxiÞ � min

j2Z1[Z2
f
0 ðxjÞ

max
j2Z1[Z2

f
0 ðxjÞ � min

j2Z1[Z2
f
0 ðxjÞ

: ð17Þ

The constraint violation value calculated by Eq. (4) is

also normalized as

GnorðxiÞ ¼
0; i 2 Z1;
GðxiÞ � min

j2Z2
GðxjÞ

max
j2Z2

GðxjÞ � min
j2Z2

GðxjÞ
; i 2 Z2:

8>><
>>:

ð18Þ

Eventually, the final fitness function of solution xi is

calculated by

ffitðxiÞ ¼ fnorðxiÞ þ GnorðxiÞ; i 2 Z1 [ Z2: ð19Þ

The individuals are ranked based on the values of ffit(�)
in ascending order, and the individuals with smaller values

are chosen to add into the offspring population until

reaching its allowable size.

4.2.3 Feasible Situation

In this feasible situation, the constraint violations of COPs

with zero are equivalent to be one of the unconstrained

optimization problems because constraint violations of

every individual are zero. Hence, only objective function is

required to be considered, and Eq. (19) can be also used as a

criterion to select better individuals because Gnor(�) is zero.

4.3 Shrinking Space Technique

The shrinking space technique is one of the most pivotal

ingredients of IS-PAES [27] and AATM [28]. This

Each individual in parent population       
and set    gP

DE/rand/best/1 strategy
to generate offspring  1y

DE/current-to-rand/1 strategy
to generate offspring  2y

DE/rand/2 strategy
to generate offspring  3y

Perform binomial 
crossover

Combined population

gQ = ∅

Perform binomial 
crossover

Perform binomial 
crossover

1 2 3 ggQ P= y y yU U U

Fig. 2 Flowchart of generating offspring
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technique aims to reduce the search region to focus the

computational effort on the specific promising feasible.

The main procedure of the shrinking space technique is

carried out as Algorithm 2, where T denotes that the

technique is performed at every T generations, ai is a

threshold number, b is a reduced factor, and �xpob;i and xpob;i
denote the upper and lower bounds of the i-th variable in

the selected offspring population, respectively. Afterward,

the following specific operations are performed to shrink

the search space around the promising individuals to

determine the new boundaries for design variables.

4.4 Framework of ATMDE

ATMDE algorithm including an improved differential

evolution and adaptive trade-off model and shrinking

space technique is constructed to deal with COPs, and

the main procedure of ATMDE is shown in Fig. 3.

Firstly, it randomly generates NP individuals from the

search domain [xmin, xmax] and then calculates the

constraint value G(x), the function value f(x) and the

feasibility proportion of current population u. Secondly,
it generates 3NP offspring individuals from the parent

population Pg by the improved DE operator. Thirdly,

the better NP individuals are selected from the com-

bined population Qg into the next generation by ATM

strategy, and then the shrinking space technique is

employed to reduce the search region to focus the

search effort on the promising feasible region when it is

satisfied the given condition. Finally, the procedures

repeat until meeting the stopping criterion (the maxi-

mum generation or the maximum function fitness

evaluations, max_FFEs).

5 Benchmark Test Functions

In this part, the performance of the proposed algorithm is

verified by 18 benchmark functions from the IEEE

CEC2006 [29]. The details of these test functions are listed

in Table 1. In this table, q = F/S is the estimated ratio

between the feasible region and whole search space, where

F is the number of feasible ones in S = 1,000,000 ran-

domly generated from search domain [xmin, xmax]. N de-

notes the number constraints.

5.1 Parameter Settings

For the numerical simulations, the following parameter

settings are utilized unless some changes are mentioned:

population size NP = 50, tolerance of equality

d = 1 9 10-4, crossover rate CR = 0.9, scaling factor

F = 0.8, maximum generation g = 600. Meanwhile, the

parameters of the shrinking space technique are set as:

T ¼ 20;

b ¼
ffiffiffiffiffiffiffiffiffi
0:02

n
p

;

ai ¼ x0max;i � xmin;i
0

� �
= 20� 3lg

xmax;i
0�xmin;i

0ð Þ� �
:

ð20Þ

To compare the robustness of different algorithms, bench-

mark functions areoptimizedat 30 independent runs.Then their

statistical performances of the optimal solutions such as mean,

standard deviation criteria are utilized to compare.

Perform the improved DE to 
generate 3NP individuals

Select the best NP individuals from 
combined population by ATM

Compute
( ) ( ), ,f G ϕx x

Reduce the region by shrinking 
space technique

Output  optimal solution

mod(g, T)=0

FFEs>max_FFEs

Initialization
0 1{ , , , , }i NPP = x x xL L

N

Y

Y

N

Fig. 3 Framework of ATMDE

558 Chunming FU et al.

123



5.2 General Performance of ATMDE

The numerical results of the eighteen-benchmark func-

tions obtained by the ATMDE algorithm are summarized

in Table 2. This table includes the known ‘‘optimal’’

solution for each benchmark function and the ‘‘best’’,

‘‘median’’, ‘‘mean’’, ‘‘worst’’, and ‘‘standard deviation’’

of each test function solved by the ATMDE algorithm.

From Table 2, it shows that ATMDE has the strong

ability to converge to the global optima for all test

functions expect for functions g02 and g19. However,

the benchmark functions g02 and g19 solved by ATMDE

are extremely close to the known ‘‘optimal’’ values with

small standard deviations. The rest sixteen test functions

(g01, g03, g04, g05, g06, g07, g08, g09, g10, g11, g12,

g14, g15, g16, g18, g24) can be found consistently to

achieve ‘‘optimal’’ values in terms of the ‘‘best’’, ‘‘me-

dian’’, ‘‘mean’’, ‘‘worst’’, and ‘‘standard deviation’’ cri-

teria. Especially, the functions g01 and g12 can both

converge to ‘‘optimal’’ values and their standard devia-

tions are zero, which means that 30 independent runs can

obtain their corresponding optimal values.

5.3 ATMDE Compared with AATM

The principal aim of this part verifies that the improved

DE as the search optimizer is very effective and can be

utilized to further enhance the performance of AATM.

To make a fair comparison, the results of benchmark

functions by AATM are obtained from the original lit-

erature [28]. The comparison results between AATM and

ATMDE are listed in Table 3. w/t/l denotes that the

proposed ATMDE wins in w functions, equals to

t functions, and loses in l functions, compared with

AATM algorithm. The results by ATMDE is signifi-

cantly better than those solved by AATM in 8, 11, 11,

and 15 functions in terms of the ‘‘best’’, ‘‘mean’’,

‘‘worst’’, and ‘‘standard deviation’’ criteria, respectively.

It equals to its corresponding results in 10, 7, 7, and 1

functions from the above criteria. For the standard

deviations, the results only lose in functions g08 and

g24, but their differences are extremely close and they

both can achieve the ‘‘optimal’’ results with exceedingly

small standard deviation. Based on the above compar-

ison, it is clear that ATMDE achieves the competitive

better performance than AATM in terms of the quality

of the results by these benchmark functions.

Furthermore, the computational cost of ATMDE and

AATM both are relatively low compared with the IS-PAES

algorithm [27], but the performance of ATMDE is better

than those solved by AATM in terms of quality of results.

It should be noted that comparison results between AATM

and IS-PAES are shown in the reference [28] in which

AATM with smaller fitness function evaluations (FFEs)

has better performance than IS-PAES. Hence, ATMDE is

an effective and efficient algorithm with limited FFEs for

solving COPs.

5.4 Effectiveness of the ‘‘DE/rand/best/1’’ Strategy

In order to verify the effectiveness of the proposed ‘‘DE/

rand/best/1’’ strategy, 18 test functions are also employed

to perform another numerical simulation (i.e. ATMDE1)

which only ‘‘DE/rand/1’’ without ‘‘DE/best/1’’ strategy is

used to generate the first offspring y1 in the whole search

process. For each function, 30 independent runs are also

conducted without changing any parameter settings. The

comparing results of ATMDE and ATMDE1 summarizes

in Table 4. Eleven functions (i.e. g04, g05, g06, g08, g09,

g11, g12, g14, g15, g18, g24) can consistently converge to

the global optima solved by both ATMDE and ATMDE1.

However, the results of the seven functions (i.e. g01, g02,

g03, g07, g10, g16, g19) solved by ATMDE can achieve

the global optima but the ATMDE1 cannot consistently

obtain ones especially for the functions g02, g03 and g10.

More specifically, the results achieved by ATMDE are

better than those solved by ATMDE1 in 6, 6, 7, 7 and 14

functions in terms of the ‘‘best’’, ‘‘median’’, ‘‘mean’’,

‘‘worst’’, and ‘‘standard deviation’’ criteria, respectively. It

ties its corresponding results in 12, 12, 11, 11 and 3

functions from the above criteria. For the standard

Table 1 Details about 18 benchmark functions

Function No. of

variables

n

Type of

function

Ration

q/ %
No. of

constraints

N

g01 13 Quadratic 0.01 9

g02 20 Nonlinear 99.9 2

g03 10 Polynomial 0.00 1

g04 5 Quadratic 52.1 6

g05 4 Cubic 0.00 5

g06 2 Cubic 0.01 2

g07 10 Quadratic 0.00 8

g08 2 Nonlinear 0.86 2

g09 7 Polynomial 0.51 4

g10 8 Linear 0.00 6

g11 2 Quadratic 0.00 1

g12 3 Quadratic 4.48 1

g14 10 Nonlinear 0.00 3

g15 3 Quadratic 0.00 2

g16 5 Nonlinear 0.02 38

g18 9 Quadratic 0.00 13

g19 15 Nonlinear 33.4 5

g24 2 Linear 79.6 2
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deviation criterion, the function g11 solved by ATMDE1 is

smaller than one by ATMDE, but they both can obtain the

optimal result with an exceedingly small difference. Based

on the above analysis, the proposed ‘‘DE/rand/best/1’’

strategy is a very important part of the proposed ATMDE

algorithm.

Table 2 Results obtained by ATMDE for 18 benchmark test function over 30 independent runs

Function Optimal solution

f*
Best solution

fbest

Median solution

fmedian

Mean solution

lf
Worst solution

fworst

Standard deviation

rf

g01 -15.000 -15.000 -15.000 -15.000 -15.000 0

g02 -0.803 619 -0.803 617 -0.803 617 -0.803 617 -0.803 610 1.238 9 9 10-6

g03 -1.000 50 -1.005 00 -1.005 00 -1.005 00 -1.005 00 2.081 6 9 10-9

g04 -30 665.538 6 -30 665.538 6 -30 665.538 6 -30 665.538 6 -30 665.538 6 1.110 9 10-11

g05 5126.496 71 5126.496 71 5126.496 71 5126.496 71 5126.496 71 1.013 3 9 10-12

g06 -6961.813 87 -6961.813 87 -6961.813 87 -6961.813 87 -6961.813 87 1.850 9 10-12

g07 24.306 209 24.306 209 24.306 209 24.306 209 24.306 209 2.211 4 9 10-8

g08 -0.095 825 -0.095 825 -0.095 825 -0.095 825 -0.095 825 2.564 1 9 10-17

g09 680.630 05 680.630 05 680.630 05 680.630 05 680.630 05 4.634 8 9 10-13

g10 7049.248 02 7049.248 02 7049.248 02 7049.248 02 7049.24802 8.700 9 10-7

g11 0.749 90 0.749 90 0.749 90 0.749 90 0.749 90 1.011 2 9 10-7

g12 -1.000 00 -1.000 00 -1.000 00 -1.000 00 -1.000 00 0

g14 -47.764 888 -47.764 888 -47.764 888 -47.764 888 -47.764 888 1.953 9 9 10-10

g15 961.715 022 961.715 022 961.715 022 961.715 022 961.715 022 6.937 8 9 10-13

g16 -1.905 155 -1.905 155 -1.905 155 -1.905 155 -1.905 155 6.775 2 9 10-16

g18 -0.866 025 -0.866 025 -0.866 025 -0.866 025 -0.866 025 7.454 9 9 10-10

g19 32.655 59 32.655 63 32.655 86 32.656 00 32.657 25 3.753 8 9 10-4

g24 -5.508 013 -5.508 013 -5.508 013 -5.508 013 -5.508 013 3.735 5 9 10-15

Table 3 Comparison results of ATMDE and AATM on 18 benchmark test functions

Function Best solution fbest Mean solution lf Worst solution fworst Standard deviation rf

ATMDE AATM ATMDE AATM ATMDE AATM ATMDE AATM

g01 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 0 3.1 9 10-7

g02 -0.803 617 -0.803 38 -0.803 617 -0.791 21 -0.803 61 -0.767 1.2 9 10-6 8.6 9 10-3

g03 -1.005 00 -1.00 -1.005 00 -1.00 -1.005 00 -1.00 2.1 9 10-9 3.5 9 10-4

g04 -30 665.539 -30 665.5 -30 665.539 -30 665.5 -30 665.5 -30 665.5 1.1 9 10-11 1.0 9 10-4

g05 5 126.496 7 5 126.498 5 126.496 71 5 126.714 5 126.496 7 5 128.824 1.0 9 10-12 4.3 9 10-1

g06 -6 961.814 -6 961.81 -6 961.814 -6 961.81 -6 961.81 -6 961.81 1.6 9 10-12 7.1 9 10-12

g07 24.306 209 24.307 24.306 209 24.317 24.306 209 24.356 2.2 9 10-8 1.3 9 10-2

g08 -0.095 825 -0.095 82 -0.095 825 -0.095 82 -0.095 82 -0.095 82 2.6 9 10-17 5.8 9 10-18

g09 680.630 680.630 680.630 05 680.639 4 680.630 05 680.646 4.6 9 10-13 4.5 9 10-3

g10 7 049.248 7 049.603 7 049.2480 2 7 077.477 7 049.248 7 183.295 8.7 9 10-7 3.1 9 101

g11 0.74990 0.75 0.7499 0.75 0.7499 0.75 1.0 9 10-7 3.8 9 10-6

g12 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 0 0

g14 -47.764 888 -47.762 -47.764 888 -47.750 -47.764 8 -47.712 1.9 9 10-10 1.0 9 10-2

g15 961.715 961.715 961.715 961.715 961.715 02 961.716 6.9 9 10-13 3.0 9 10-4

g16 -1.905 155 -1.905 15 -1.905 155 -1.905 15 -1.905 15 -1.905 15 6.8 9 10-16 2.4 9 10-14

g18 -0.866 025 -0.866 02 -0.866 025 -0.865 95 -0.866 02 -0.864 84 7.5 9 10-10 2.1 9 10-4

g19 32.655 63 32.725 32.655 86 32.952 32.657 25 33.243 3.8 9 10-4 1.4 9 10-1

g24 -5.508 01 -5.508 01 -5.508 01 -5.508 01 -5.508 01 -5.508 01 3.7 9 10-15 1.8 9 10-15

w/t/l 8/10/0 11/7/0 11/7/0 15/1/2
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5.5 Four Mechanical Benchmark Engineering

Designs

The four mechanical benchmark engineering problems are

used by many researchers to demonstrate the performance

of different algorithms. Different characteristics of objec-

tive functions and constraints are illustrated as shown in

Table 5. The four mechanical engineering designs [28] are

the minimum cost of a weld-beam design, the minimum

weight of a spring design, the minimum weight of a speed

reducer design and the minimum volume of a three-bar

truss design, respectively. Table 6 summarizes the com-

parative results of these problems solved by ATMDE and

AATM in terms of the ‘‘best’’, ‘‘mean’’, ‘‘worst’’, and

‘‘standard deviation’’ metrics. It shows that the ATMDE

has the better statistically quality and robustness than

AATM under the same number of function fitness evalu-

ations in terms of the selected performance criteria.

Table 4 Results obtained by ATMDE and ATMDE1 on 18 benchmark test functions

Function Method Best solution

fbest

Median solution

fmedian

Mean solution

lf
Worst solution

fworst

Standard deviation

rf

g01 ATMDE -15.000 -15.000 -15.000 -15.0000 0

ATMDE1 -14.999 9 -14.999 9 -14.999 9 -14.999 9 8.98 9 10-7

g02 ATMDE -0.803 617 -0.803 617 -0.803 617 -0.803 610 1.24 9 10-6

ATMDE1 -0.802 125 -0.802 125 -0.802 124 -0.802 092 6.14 9 10-6

g03 ATMDE -1.005 00 -1.005 00 -1.005 00 -1.005 00 2.08 9 10-9

ATMDE1 -1.005 00 -1.005 00 -0.985 8 -0.798 4 4.93 9 10-2

g04 ATMDE -30 665.53 -30 665.53 -30 665.53 -30 665.5 1.11 9 10-11

ATMDE1 -30 665.53 -30 665.53 -30 665.53 -30 665.53 1.85 9 10-11

g05 ATMDE 5126.496 71 5 126.496 71 5126.496 71 5 126.496 71 1.01 9 10-12

ATMDE1 5126.496 71 5 126.496 71 5126.496 71 5 126.496 71 2.95 9 10-9

g06 ATMDE -6961.813 -6961.813 -6961.813 -6961.81 1.85 9 10-12

ATMDE1 -6961.813 -6961.813 -6961.813 -6961.81 2.78 9 10-12

g07 ATMDE 24.306 209 24.306 209 24.306 209 24.306 209 2.21 9 10-8

ATMDE1 24.3062 497 24.306 2497 24.306 253 24.306 364 2.09 9 10-5

g08 ATMDE -0.095 825 -0.095 825 -0.095 825 -0.095 825 2.56 9 10-17

ATMDE1 -0.095 825 -0.095 825 -0.095 825 -0.095 825 2.82 9 10-17

g09 ATMDE 680.630 05 680.630 05 680.630 05 680.630 05 4.63 9 10-13

ATMDE1 680.630 05 680.630 05 680.630 05 680.630 05 4.85 9 10-13

g10 ATMDE 7 049.248 02 7 049.248 02 7 049.248 02 7 049.248 02 8.70 9 10-7

ATMDE1 7 049.339 29 7 049.699 7 7 049.800 6 7 051.246 3 4.59 9 10-1

g11 ATMDE 0.749 90 0.749 90 0.749 90 0.749 90 1.01 9 10-7

ATMDE1 0.749 90 0.749 90 0.749 90 0.749 90 1.12 9 10-16

g12 ATMDE -1.000 00 -1.000 00 -1.000 00 -1.000 00 0

ATMDE1 -1.000 00 -1.000 00 -1.000 00 -1.000 00 0

g14 ATMDE -47.764 888 -47.764 888 -47.764 888 -47.764 88 1.95 9 10-10

ATMDE1 -47.764 888 -47.764 888 -47.764 888 -47.764 88 1.67 9 10-8

g15 ATMDE 961.715 022 961.715 022 961.715 022 961.715 022 6.94 9 10-13

ATMDE1 961.715 022 961.715 022 961.715 022 961.715 022 6.94E 9 10-13

g16 ATMDE -1.905 155 -1.905 155 -1.905 155 -1.905 155 6.78 9 10-16

ATMDE1 -1.905 102 -1.905 102 -1.905 102 -1.905 102 6.78 9 10-16

g18 ATMDE -0.866 025 -0.866 025 -0.866 025 -0.866 025 7.45 9 10-10

ATMDE1 -0.866 025 -0.866 025 -0.866 025 -0.866 025 4.49 9 10-6

g19 ATMDE 32.655 63 32.655 86 32.656 00 32.657 25 3.75 9 10-4

ATMDE1 32.676 38 32.702 88 32.704 75 32.774 96 2.16 9 10-2

g24 ATMDE -5.508 013 -5.508 013 -5.508 013 -5.508 013 3.74 9 10-15

ATMDE1 -5.508 013 -5.508 013 -5.508 013 -5.508 013 4.52 9 10-15

w/t/l 6/12/0 6/12/0 7/11/0 7/11/0 14/3/1
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Moreover, the four standard deviations obtained by

ATMDE are relatively small, which is a crucial feature for

application of the approach for solving the practical world

problems. Table 7 lists the best design variables obtained

by ATMDE and AATM for four engineering design

problems associated with their corresponding optimal

results, which show the ATMDE algorithm can obtain

better solution than the AATM.

6 Engineering Applications

6.1 Vehicle Crashworthiness Problem

In the automotive industry, structural optimization design

for vehicle crashworthiness has become a paramount

research field. In this paper, different characteristics of

low- and high-speed crashworthiness are considered

simultaneously [30]. For the frontal impact, the most cru-

cial energy absorbing components including rail, collision

beam and stiffener can directly affect the performance of

vehicle crashworthiness and safety. Therefore, the total

mass M(x) of selected parts including collision beam,

stiffener, front rail and front rail cover as shown in Fig. 4 is

considered as our optimization objective and it is also

subjected to acceleration, energy-absorbing and maximum

intrusion constraints. Then, the crashworthiness problem

could be formulated as

minf ðxÞ ¼ MðxÞ;

s:t:

g1ðxÞ ¼ �aðxÞ � 35� 0;
g2ðxÞ ¼ EðxÞ � 300� 0;
g3ðxÞ ¼ IupðxÞ � 350� 0;
g4ðxÞ ¼ IdownðxÞ � 200� 0;

8>><
>>:

ð21Þ

where x = [x1,x2,x3,x4,x5], 2 mm B x1 B 3 mm,

1 mm B x2, x3 B 2.5 mm, 1.5 mm B x4,x5 B 3 mm, �aðxÞ
is the mean value of integral acceleration, E(x) is the

energy-absorbing of inner and outer front rail, Iup(x) and

Idown(x) are the intrusion of the two points at the engine as

shown in Fig. 5, respectively.

The finite element model (FEM) of the vehicle including

755 parts and 977 742 elements is established for the above

objective and constraints. To improve efficiency, the

response surfaces are established based on the samples by

Latin hypercube sampling method. Then, the minimum

massM(x) solved by ATMDE algorithm is 10.53 kg and its

corresponding five design variables are 2.00 mm,

2.50 mm, 2.50 mm, 2.76 mm and 1.68 mm, respectively.

Under this circumstance, values of constraints are 0 g,

-4208.33 J, - 60.74 mm, -0.0002 mm, respectively.

Specifically, the mean value of integral acceleration �aðxÞ is
35 g, which can effectively protect passengers in the

automobile when the collision inevitably occurs. Mean-

while, the inner and outer front rail can absorb 3908.33 J.

In addition, the intrusions of upper and lower point at the

engine are 289.26 mm and 200 mm, which can effectively

reduce the occupants’ injuries to protect the passengers’

safety.

6.2 Structural Optimization Design of Tablet

Computer

Currently, Tablet computer is one of typical popular con-

sumer electronic devices, which have high-integrated

density and large power dissipation. It is inevitably for its

structural design to consider various aspects of design

requirements, such as appearance, portability, operating

Table 5 Main features for each engineering design problem

Engineering benchmark No. of

variables

n

Ration

q/ %
No. of

constrains

N

Weld-beam design 4 37.625 5

Spring design 3 0.732 3 4

Speed reducer design 7 23.015 2 11

Three-bar truss design 2 21.870 6 3

Table 6 Results about four benchmark engineering design problems

Engineering problems Method Best solution

fbest

Mean solution

lf
Worst solution

fworst

Standard deviation

rf

Weld-beam design ATMDE 2.380 956 2.380 956 2.380 956 5.88 9 10-11

AATM 2.382 326 2.386 976 2.391 592 2.20 9 10-3

Spring design ATMDE 0.012 665 0.012 665 0.012 665 1.05 9 10-15

AATM 0.012 668 0.012 708 0.012 861 37 4.50 9 10-5

Speed reducer ATMDE 2994.473 6 2994.474 4 2994.474 45 1.18 9 10-5

AATM 2994.516 7 2994.585 4 2994.659 79 3.30 9 10-2

Three-bar truss design ATMDE 263.895 84 263.895 84 263.895 843 2.87 9 10-13

AATM 263.895 84 263.896 6 263.900 41 1.10 9 10-3
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safety, etc. Hence, structural optimization design of tablet

computer should be guaranteed to work well under dif-

ferent conditions. This subsection considers the structural

optimization design of a 7-inches tablet computer, as

illustrated in Fig. 6 which mainly includes the touch

screen, the display, the battery, the mainboard, the inner

bracket, the front shell and the back shell [31]. Our opti-

mization objective mainly considers the minimization of

tablet’s thickness D(x). The design problem should be

satisfied four practical work conditions including high-

temperature constraint g1(x), room-temperature constraint

g2(x), and alternating temperature constraint g3(x) and free

fall constraint g4(x). Hence, this optimization problem

could be formulated as

minf ðxÞ ¼ DðxÞ;

s:t:

g1ðxÞ ¼ TCH xð Þ � 65� 0;
g2ðxÞ ¼ TSH xð Þ � 40� 0;
g3ðxÞ ¼ CBA xð Þ � 24� 0;
g4ðxÞ ¼ CTS xð Þ � 100� 0;

8>><
>>:

ð22Þ

where TCH(x) denotes the temperature of the chip on the

main board under the high-temperature (45 �C); TSH(x) is
the shell surface temperature with a full load under the

room temperature (25 �C) for an hour continuously work;

CBA(x) is the thermal stress of the battery and CTS(x) is the

maximal stress of the touch screen under the collision of

the 0.5 m-height free fall. The design variables are the

thickness of the front shell x1, the thickness of the display

x2, the thickness of the inner bracket x3, the thickness of the

back shell x4, respectively. And their design values should

be restricted to the domains 4 mm B x1 B 6 mm,

0.5 mm B x2,x3,x4 B 2 mm.

Four finite element models (FEM) are constructed for

the above four performance constraints. To improve

efficiency, the four corresponding response surfaces are

established based on the given samples. Furthermore, the

accuracy of the response surfaces is verified. Then the

ATMDE algorithm is utilized to solve the tablet com-

puter optimization problem. The structural thickness of

optimized tablet computer is 6.42 mm which is a 31.7%

reduction in compared with that of the original design

(6.00 mm, 1.20 mm, 1.20 mm, 1.00 mm), and its design

variables are 4.00 mm, 0.51 mm, 1.41 mm and 0.50 mm,

respectively. Under this circumstance, the temperature of

the chip is 62.05 �C and the temperature of shell surface

is 37.66 �C which can ensure consumer daily-using

comfortably. The thermal stress of battery is about

Table 7 Best design variables for four benchmark engineering design problems

Engineering

problems

Method Best design variable

xbest

Best function

values

fbest

Weld-beam

design

ATMDE 0.244 368 975, 6.217 519 715, 8.291 471 390, 0.244 368 975 2.380 956 580

AATM 0.244 106 586, 6.220 903 633, 8.298 161 229,0.244 382 231 2.382 326

Spring design ATMDE 0.356 717 739, 0.051 689 061, 11.288 965 783 04 0.012 665 232

AATM 0.359 690 411, 0.051 813 095, 11.119 252 680 0.012 668 261

Speed reducer

design

ATMDE 3.50, 0.7, 17, 7.309 819 903, 7.715 173 384 44, 3.350 233 018 67, 5.286 521 228 48 2 994.473 624

AATM 3.500 016 221, 0.700 001 177, 17.000 029 883, 7.300 297 290, 7.716 049 465, 3.350 239 798,

5.286 660 476 6

2 994.516 778

Three-bar truss

design

ATMDE 0.788 675 135, 0.408 248 289 263.895 843

AATM 0.788 681 755, 0.408 229 565 263.895 843

Fig. 4 Selected design variables

Fig. 5 Intrusion measured by the selected points of engine
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24 MPa, which can make sure the operating safety in

daily. The maximal stress of touch screen is about

100 MPa, which can avoid the device broken during the

collision of 0.5 m free fall. This optimized structural

design is meaningful because the consumers are satisfied

with the final design with better the appearance and

portability for the tablet.

7 Conclusions

(1) An improved differential evolution with shrinking

space technique and adaptive trade-off model, named

ATMDE, is proposed to solve constrained optimiza-

tion problems with high accuracy and robustness.

(2) The new ‘‘DE/rand/best/1’’ mutant strategy is con-

structed to generate offspring by the feasibility

proportion of the current population, which could

enhance performance of the ATMDE illustrated by

results of test functions.

(3) In comparison with AATM algorithm, ATMDE

achieves better performance verified by the simula-

tion results of eighteen benchmark test functions

from the IEEE CEC2006.

(4) The ATMDE is employed to optimize the structural

optimization design of tablet computer, and the

optimized thickness is a 31.7% reduction in com-

pared with that of the original design.
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