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Abstract The construction of traditional finite element

geometry (i.e., the meshing procedure) is time consuming

and creates geometric errors. The drawbacks can be over-

came by the Isogeometric Analysis (IGA), which integrates

the computer aided design and structural analysis in a

unified way. A new IGA beam element is developed by

integrating the displacement field of the element, which is

approximated by the NURBS basis, with the internal work

formula of Euler-Bernoulli beam theory with the small

deformation and elastic assumptions. Two cases of the

strong coupling of IGA elements, ‘‘beam to beam’’ and

‘‘beam to shell’’, are also discussed. The maximum relative

errors of the deformation in the three directions of can-

tilever beam benchmark problem between analytical solu-

tions and IGA solutions are less than 0.1%, which illustrate

the good performance of the developed IGA beam element.

In addition, the application of the developed IGA beam

element in the Root Mean Square (RMS) error analysis of

reflector antenna surface, which is a kind of typical func-

tional surface whose precision is closely related to the

product’s performance, indicates that no matter how coarse

the discretization is, the IGA method is able to achieve the

accurate solution with less degrees of freedom than stan-

dard Finite Element Analysis (FEA). The proposed

research provides an effective alternative to standard FEA

for shape error analysis of functional surface.

Keywords RMS error � Isogeometric analysis � Euler-
Bernoulli beam

1 Introduction

Functional surface is a type of complex surface, which is

ubiquity in mechanical and electrical equipment, realizes

specific physical performances, such as electric, magnetic,

optic and thermodynamic performance. The accuracy of

functional surface, which is the critical function structure

of a product, has a significant impact on the product’s

performance. Antenna surface is a kind of typical func-

tional surface, which realizes transmitting and receiving of

electromagnetic signal. As in the case of reflector antenna

where the reflector surface is such a functional surface, the

influences on reflector surface precision from external

loads, manufacturing and assembling errors [1–5] are

considerable in changing the amplitude and phase dis-

tribute of antenna aperture to affect the far electric field of

antenna. And the surface root mean square (RMS) of half-

path-length error is always adopted to estimate the gain

degradation according to the Ruze equation [6]. In recent

years, more and more large reflector antennas are equipped

with shape control systems to estimate the surface errors.

TANAKA [7] added intentional deformations on an

antenna surface using the surface adjustment mechanisms

to estimate the surface errors. And a dynamic shape control

strategy of deployable mesh reflectors via feedback

approaches was proposed by XIE, et al [8]. Other adjust-

ment strategies have been investigated by several

researchers [9–11]. In order to get the control inputs to

actively adjust the surface shape, measurement methods

and numerical simulations are adopted to estimate the

surface error. The phase-retrieval holographic analysis
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[12, 13], photogrammetry measurements [14], etc. are

widely used to measure shapes of reflector antennas.

Although measurement methods could easily acquire the

surface displacement distribution, the measure accuracies

rely on the special equipment and the antenna’s wave-

length. The numerical simulations, Finite Element Analy-

sis(FEA), are good alternates in shape error analysis due to

the advantage in optimization of the initial prototype

designs. YOON [15] formulated a shape error minimiza-

tion problem for a mechanically deformable reflector

antenna structure in the frame work of the FEA. YOU, et al

[16], used a 3-nodes laminated shell element based on

Lagrange’s equations to study the characteristics of the

reflector. DU, et al [17], employed the FEA to calculate the

sensitivity matrix of the nodal displacement to deal with

the worst-case optimization problem of cable mesh

reflector antenna. However, only the displacements of the

elements nodes can be applied to calculate the RMS error

since the points in the element have inherent discretization

errors which are especially bad for surfaces with a rela-

tively coarse mesh. Refined mesh is required to improve

the simulation accuracy, which would in turn makes the

calculation more time consuming.

Isogeometric analysis (IGA) [18] is a method aimed at

avoiding the discretization errors by using the same basis

for analysis as is used to describe the geometry, thus

enabling IGA to discretize the analysis models exactly. The

necessary continuities between elements, C1 continuity for

Kirchhoff-Love element as an example, can be easily

achieved by the high-order geometric basis functions. The

method is now further developed in many areas including

structural analysis [19–21], fluid-structure interaction [22],

shape optimization [23, 24], topology optimization

[25, 26], electromagnetic analysis [27], etc.. New IGA

elements [28, 29] are developed by researches. However,

the non-interpolatory nature of the geometric basis func-

tions makes the imposition of even the simple boundary

conditions more difficult. Weak and strong methods are

studied to the coupling [30–32] and boundary condition

imposition issues [33, 34] to perfect the novel method. The

method is now capable to deal with the majority of engi-

neering issues. The exact geometric discretization of IGA

enables us to achieve more accurate solutions by much less

degrees of freedom than that of traditional FEA.

The paper is organized as follows. In section 2, a brief

introduction of the surface error estimation is presented,

include the relationship between the RMS half-path-length

error and antenna gains, the normal deviation, etc. In sec-

tion 3, a rotation-free three-dimensional IGA beam ele-

ment combined with Bézier extraction is developed, and a

Kirchhoff-Love shell element is also introduced in brief.

Then the coupling of the two elements is presented.

Moreover, at the end of the section, the RMS error is

written in the form of IGA. In section 4, several examples

are presented to verify the effectiveness of the developed

beam element and its application in the RMS error analysis

of antenna reflector. Finally, concluding remarks are given

in section 5.

2 Surface Error Estimation

The impact of antenna surface errors on antenna gains can

be derived from the Ruze equation [35], the reflector

aperture efficiency is multiplied by an exponential factor

gs ¼
G

G0

¼ exp � 4perms

k

� �2
" #

; ð1Þ

where gs is an efficiency factor known as surface tolerance

efficiency, G0 is the gain of the antenna in the absence of

surface errors, G is that of the deformed surface, erms is the

surface error, or RMS half-path-length error, k is the

wavelength.

As shown in Fig. 1, the efficiency factor decreases

rapidly with the increase of the surface error, and the

aperture efficiency gs=54.1% when erms=k/16.
As a result, severe surface accuracy is demanded by the

microwave antennas which work on the wavelength

between 3 to 150 mm. The half-path-length errors are

obtained from the geometrical deviations between the

actual and ideal surfaces

ei ¼
Diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ri
2f

� �2r ; ð2Þ

where subscript i denotes the arbitrary point i on the sur-

face, ri denotes the radius of ith point on the reflector, f the

focus length, and Di is the normal deviation:

Fig. 1 Plot of efficiency factor versus to the ratio of surface error to

wavelength
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Di ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f f þ zið Þ

p xi ui � uAð Þ þ yi vi � vAð Þþ½ zi wi � wAð Þ

� 2hzi � yiux zi þ 2fð Þ þ xiuy zi þ 2fð Þ
�
¼ Y ui; vi;wið Þ;

ð3Þ

where the unkowns uA, vA, wA, h, ux, uy are the parameters

of the best-fit surface, ui, vi, wi denote the distortion of ith

point (xi, yi, zi) on the reflector. The RMS error can be

written as

erms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
eið Þ2dA
A

s
; ð4Þ

where A is the area of the aperture. For a FEA model, the

equation can be rewritten as

eFrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 eið Þ2

n

s
; ð5Þ

subscript i here denotes the ith finite element node, and n is

the total number of the element nodes.

3 Isogeometric Analysis for Surface Error
Analysis

The geometric approximation inherent in the mesh of the

traditional FEA can lead to accuracy problems [18],

especially for surfaces. As a result, the value of eFrms is

notoriously sensitive to geometric discretization. Contrar-

ily, the IGA is geometrically exact no matter how coarse

the discretization is by using the functions from the

geometry description as basis functions for the analysis.

The displacement field of the IGA element e can be

described as

~ue nð Þ ¼
Xn
a¼1

Ra
e nð Þuae ¼ ueð ÞTRe; ð6Þ

where Ra
e nð Þ denotes the basis function of the ath control

point of element e, and uae denotes the displacement of the

control point. Fig. 2. shows the IGA element as knot spans,

where the red lines denote the knot spans and the black dots

the control points of element e.

Unlike the Lagrange elements, the IGA elements are

taken to be knot spans, namely, [ni-1, ni] 9 [gi-1, gi], and
the control points are not always located in the element.

3.1 Element formulation for NURBS-based IGA

Shell and beam elements are required for the surface error

analysis of the antenna reflector. A brief introduction of the

rotation-free Kirchhoff-Love shell element based on

NURBS is presented in this section. In addition, a Euler-

Bernoulli beam element of three degrees of freedom based

on Bézier extraction, which maps the Bernstein polynomial

basis on Bézier elements to the NURBS basis, is developed.

3.1.1 Kirchhoff-Love Shell element

Kirchhoff-Love shell based on NURBS has been presented

by KIENDL, et al [28]. The variation of the internal work

formula of Kirchhoff-Love theory

dWint ¼
Z
X

tecdC
abcddeab þ

t3

12
jcdC

abcddjab

� �
dX;

eab ¼ 1

2
�aa � u;b þ �ab � u;a þ u;a � u;b
� 	

;

jab ¼ �aa;b � �a3 � aa;b � a3 ¼ �aa;b � �a3 � �aa;b � a3 � u;ab � a3;
ð7Þ

where Cabcd denotes the elasticity tensor, eab denotes the

membrane strain, jab denotes the bending strain, �aa
denotes the basis vector of middle surface in the reference

configuration, u is the displacement of middle surface, and

the subscript ‘,a’ denotes the derivative with respect to na,
a=1, 2.

The stiffness matrix of the thin-shell element can be

written as

K ¼
X
e

Ke ¼
X
e

Z
A

Et

1� v2
Dm

e

� 	T
FDm

e

�


þ Et3

12 1� v2ð Þ Db
e

� 	T
FDb

e

�
dA

�
;

ð8Þ

whereF is the transformationmatrixwhich links the reference

configuration to the deformed configuration, Dm
e and Db

e

denote the matrix for membrane and bending strains respec-

tively, for details we refer the reader to BEER, et al [36].

3.1.2 Euler-Bernoulli Beam element

For a 3D beam suffered several different loads, there is

additionally the assumption that the beam behaves elasti-

cally for the combined loads, as well as for the individual

loads, and the deflection is small. In this case, theFig. 2 IGA element as knot spans
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deflection at any point on the beam is simply the sum of the

deflections caused by each of the individual loads. We

developed an IGA beam loaded in such a manner that the

resultant force passes through the longitudinal shear center

axis, i.e. no torsion will occur.

As shown in Fig. 3, each node has five parameters {u, v,

w, hy, hz}, where the slope h can be eliminated by

adopting standard structural-mechanics notations

hy ¼ � dw

dx
¼ �w0;

hz ¼ � dv

dx
¼ �v0;

8><
>: ð9Þ

where the prime symbol (•)0 indicates a derivativewith respect
to x. The geometric equations of strains can be written as

e1 xð Þ ¼ u xð Þ0;
e2 xð Þ ¼ �ŷv xð Þ00;
e3 xð Þ ¼ �ẑw xð Þ00;

8><
>: ð10Þ

where e1 is the tensile strain and the others bending strains.

The variation of the internal work formula of the beam can

be obtained by using the superposition method

dWint ¼
X3
a¼1

Z
Edea xð Þea xð Þ

¼ E A

Z l

0

du xð Þ0u xð Þ0dxþ
�

Iz

Z l

0

dv xð Þ00v xð Þ00dx

þ Iy

Z l

0

dw xð Þ00w xð Þ00dx
�
;

ð11Þ

where E denotes the Young’s modulus, A the cross-sec-

tional area, Iy and Iz the second moment of inertia. Sub-

stituting Eq. 6 into the internal work formula, we can

obtain the stiffness matrix K in the local coordinates

K ¼
X
e

Ke

¼ E
X
e

A
R l
0
R0
e

� 	T
R

0

edx

Iz
R l
0
R00
e

� 	T
R00
edx

Iy
R l
0
R00
e

� 	T
R00
edx

0
BB@

1
CCA:

ð12Þ

The NURBS domain can be rewritten in terms of the

Bernstein basis by extracting the linear operator which

maps the Bernstein polynomial basis on Bézier elements to

the NURBS basis

Re nð Þ ¼ weCeB nð Þ

Ceð ÞT �w
h iT

B nð Þ
; ð13Þ

where Ce denotes the Bézier extraction operator of element

e [37], n = (n, g) the parametric coordinates defined over

the interval [-1, 1], B(n) the Bernstein polynomial basis, �w
and we are two expressions for the weights of control points

�w ¼

w1

w2

..

.

wn

0
BBB@

1
CCCA; we ¼

w1 0 0 0

0 w2 0 0

0 0 . .
.

0

0 0 0 wn

0
BBB@

1
CCCA: ð14Þ

Additionally, transformation of coordinates to a com-

mon global system, which will be denoted by �x�y�z with the

local system xyz, will be necessary to assemble the ele-

ments. For an element contains n control points, a trans-

formation matrix Te is given to transform the forces and

displacements from the global to the local system

Te

3n�3nð Þ
¼

k 0

k

. .
.

0 k

0
BB@

1
CCA; ð15Þ

with k being a 393 matrix of direction cosines between the

two sets of axes

k ¼
cos x; �xð Þ cos x; �yð Þ cos x; �zð Þ
cos y; �xð Þ cos y; �yð Þ cos y; �zð Þ
cos z; �xð Þ cos z; �yð Þ cos z; �zð Þ

0
@

1
A: ð16Þ

Apparently, Te is an orthogonal matrix which permits

the stiffness matrix of an element in the global coordinates

to be computed as

�Ke ¼ TeTKeT
e: ð17Þ

3.2 Strong Coupling of the Elements

Two cases of coupling, ‘‘beam to beam’’ and ‘‘beam to

shell’’, are discussed in this section. Due to the endpoint

interpolation, i.e. C(-1) = P1, C(1) = Pn, of the beam
Fig. 3 3D beam in the local coordinates
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curves based on NURBS and the coincide exactly with

curvature between the beam curve and the connected

reflector surface shell, the strong coupling method is suit-

able for the IGA-based surface error analysis.

3.2.1 Beam to beam coupling

Beams join to each other with a C0-continuous connection,

the angle a between the beams is assumed unchangeable in

the deformed configuration.

As shown in Fig. 4, P
c
i denotes the ith control point of

cth beam. The angle can be described by using the scalar

product formula

a ¼ arccos
P1
n � P1

n�1

� 	
P2
2 � P1

n

� 	
P1
n � P1

n�1

�� �� P2
2 � P1

n

�� ��
 !

: ð18Þ

KIENDL, et al [38], proposed a bending strip method in

which strips of fictitious material with unidirectional

bending stiffness and zero membrane stiffness are added at

patch interfaces to maintain the angle constraint. The

method is efficient, simple to implement, and is applied to

the coupling of ‘‘beam to beam’’ in this paper.

3.2.2 Beam to shell coupling

There are mainly two types of the ‘‘beam to shell’’ con-

nection in geometrically, intersection and tangency, as

shown in Fig. 5. The latter one is the only type used in the

surface error analysis.

As shown in Fig. 6, the beam curve is equivalent to a

curve on the surface shell, it’s convenient to make the

control points of the beam curve coincident with that of the

shell by modifying the surface. The constraint function can

be described as

uCa ¼ uSa; ð19Þ

where the superscript C and S denote the displacement of

the ath point of beam curve and surface respectively.

3.3 RMS error analysis based on IGA shells

The IGA shell element is geometrically exact while the

Langrage element is an approximation of the geometry

as shown in Fig. 7, the red dots denote the nodes of the

Langrage element. As a result, only the nodes are available

to calculate the RMS error as described in Eq. 5 since the

point GL in the element have inherent discretization errors.

The point GI in the IGA shell element, however, is con-

sidered the exact point on the surface. Thus, the arbitrary

point in the IGA element is available for the calculation of

the RMS error following the Eq. 4.

The four vertices of the IGA shell element, i.e. n = (-1,

1), (-1, 1), (1, -1), (1, 1), are adopted to determine the

unknowns of the best-fit surface by the least square

method. The normal deviation of the arbitrary point on the

surface can be written as

Di nð Þ ¼ Y ui nð Þ; vi nð Þ;wi nð Þð Þ: ð20Þ

The RMS error can then be described as

Fig. 4 ‘‘Beam to beam’’ coupling

Fig. 5 Two types of ‘‘beam to shell’’ coupling, intersection (left) and

tangency (right)

Fig. 6 Red dots denote the control points of beam and shell

Fig. 7 Comparison between Langrage element and IGA shell

element
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erms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

e

R
e

Y ue
i
nð Þ;ve

i
nð Þ;we

i
nð Þð Þ½ �2

1þ
re
i
nð Þ

2f

� 	2 dA

" #

A

vuuuut
:

ð21Þ

The Gauss quadrature is adopted to solve the equation

erms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
e

Pgp
j¼1 Q

e nj
� 	

jj
A

s
; ð22Þ

where

Qe nj
� 	

¼
Y uei nj

� 	
; vei nj
� 	

;we
i nj
� 	� 	
 �2

1þ re
i
njð Þ
2f

� �2
;

jj is the weight of the gauss point. The equation is similar

with Eq. 5, but however they are different in essence.

4 Numerical Examples

In the following, two numerical examples are presented to

reveal the overall performance of the three dimensional

Euler-Bernoulli Beam IGA element and the application of

IGA in RMS error analysis. First, a Cantilever beam sub-

jected to a point force is introduced to verify the accuracy

of the beam element with the analytical solution. And then

a parabolic antenna modeled by the Kirchhoff-Love shell

and Euler-Bernoulli Beam IGA element is prepared for the

RMS error analysis.

4.1 Cantilever beam

TheCantilever beam is subjected to a point force ofF = (1, 1,

1)T on the right end point, and is fixed on the left end point, as

shown in Fig. 8. The problem is often used as a benchmark to

verify the accuracy of the developed beam element.

Fig. 8 Cantilever beam problem description

Fig. 9 Discretization of the cantilever beam and its control points

(blue dots)

Fig. 10 Results comparisons between analytical solutions and IGA

solutions
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In our calculations, the geometric and material param-

eters are assumed as follows: the length L=10; the thick-

ness t=1; the width b=2; the Young’s modulus E=100. The

analytical solution can be obtained from

u xð Þ ¼ Fx

EA
x;

v xð Þ ¼ Fy

6EIz
3Lx2 � x3
� 	

;

w xð Þ ¼ Fz

6EIy
3Lx2 � x3
� 	

;

8>>>>>><
>>>>>>:

ð23Þ

where A = bt, Iy = t3b/12, Iz = b3t/12. The cantilever

beam is then discretized by 16 IGA Euler-Bernoulli beam

elements as shown in Fig. 9, the blue dots denote the

control points. For a cubic basis function, each element

contains 4 control points (The red diamonds denote the

control points of element 1 and the red squares the control

points of element 9).

The results comparisons between analytical solutions

and IGA solutions are shown in Fig. 10. The maximum

relative errors d of the deformation in the three directions

are less than 0.1%, which means the IGA beam element

exhibits a high accuracy.

4.2 Surface error analysis of a reflector antenna

The IGA shell and beam elements are now applied to the

RMS error analysis of the reflector. In this analysis the
antenna is subjected to a gravity load and a wind load

corresponding to c = 20 m/s wind at a working angle of 45

degrees, as shown in Fig. 11.

The assembly is composed of a main reflector and a

bracket, and is discretized by the IGA shell and beam

elements respectively. The ‘‘beam to shell’’ method is

applied to couple the reflector surface and the bracket while

the ‘‘beam to beam’’ method is applied to couple the beams

of the bracket. Three types of beam are adopted to con-

struct the bracket as shown in Fig. 12.

The IGA model and traditional finite element model are

shown in Fig. 13.

As listed in Table 1, NURBS-based IGA and traditional

FEA are employed in convergence analysis by calculating

the max displacement and the RMS error of the model with

a different number of control points or nodes under the

gravity and wind load. Here, N denotes the number of

control points in IGA and nodes in ANSYS. It is clear that

the IGA approach rapidly converges at about N=4124

while the traditional FEA simulation reaches the same

convergence value until the nodes increase to 23767 both

for the value of the maximum displacement and RMS

error. The deformation result of IGA is presented in

Fig. 14. The surface distortion along the radius of the

reflector at the angle of 0� and 90� are presented in Fig. 15.

Fig. 11 Main reflector (yellow) and bracket (blue) of a reflector

antenna. Problem description

Fig. 12 Three types of beam

Fig. 13 IGA model with 4124 control points (left) and FEA model

with 23767 nodes (right)

Table 1 Convergence analysis of max displacement and RMS error

Numerical

method

Number of control

points N

Max

displacement D/

mm

RMS error

erms/mm

NURBS-

based IGA

4124 0.22 0.16

Traditional

FEA

5348 0.35 0.28

16230 0.27 0.21

23767 0.23 0.18
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5 Conclusions

(1) A new IGA beam element is developed by inte-

grating the displacement field of the element, which

is approximated by the NURBS basis, with the

internal work formula of Euler-Bernoulli beam the-

ory with the small deformation and elastic

assumptions.

(2) Two cases of coupling, ‘‘beam to beam’’ and ‘‘beam

to shell’’, are discussed. Due to the endpoint

interpolation of the beam curves based on NURBS

and the coincide exactly with curvature between the

beam curve and the connected reflector surface shell,

the strong coupling method is suitable for the IGA-

based surface error analysis.

(3) Due to the geometrically exact no matter how coarse

the discretization is and the higher-order basis func-

tions, the IGA method is able to achieve the accurate

solution with less degrees of freedom than traditional

FEA and the arbitrary point in the IGA element is

available for the calculation of the RMS error.

(4) The cantilever beam benchmark problem was chosen

to demonstrate the good performance of the devel-

oped IGA beam element. The maximum relative

errors of the deformation in the three directions

between analytical solutions and IGA solutions are

less than 0.1%.

(5) An antenna model, which is composed of a main

reflector and a bracket, is discretized by the IGA

shell and beam elements respectively. By coupling

the elements strongly, the IGA method is applied in

the functional surface error analysis of the antenna

reflector successfully. It is clear that the IGA

approach reaches the convergence precision with

much less control points than traditional FEA.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. UKITA N, EZAWA H, IKENOUE B, et al. Thermal and wind

effects on the azimuth axis tilt of the ASTE 10-m antenna[J].

Publ. Natl. Astron. Obs. Japan, 2007, 10: 25–33.

2. XIA Xintao, WANG Zhongyu. Grey relation between nonlinear

characteristic and dynamic uncertainty of rolling bearing friction

torque[J]. Chinese Journal of Mechanical Engineering, 2009,

22(2): 244–249.

3. LIU Zhenyu, TAN Jianrong, DUAN Guifang, et al. Force feed-

back coupling with dynamics for physical simulation of product

assembly and operation performance[J]. Chinese Journal of

Mechanical Engineering, 2015, 28(1): 161–172.

4. YI Wei, JIANG Zhaoliang, SHAO Weixian, et al. Error com-

pensation of thin plate-shape part with prebending method in face

milling[J]. Chinese Journal of Mechanical Engineering, 2015,

28(1): 88–95.

5. WANG M, WANG W, WANG C S, et al. A practical approach to

evaluate the effects of machining errors on the electrical perfor-

mance of reflector antennas based on paneled forms[J]. IEEE

Antennas & Wireless Propagation Letters, 2014, 13(13):

1341–1344.

6. ROY L. Structural engineering of microwave antennas: for

electrical, mechanical and civil engineers[M]. 1th edition. New

York: I.E.E.E. Press, 1996.

7. TANAKA H. Surface error estimation and correction of a space

antenna based on antenna gain analyses[J]. Acta Astronautica,

2011, 68(7): 1062–1069.

8. XIE Y M, SHI H, ALLEYNE A, et al. Feedback shape control for

deployable mesh reflectors using gain scheduling method[J]. Acta

Astronautica, 2016, 121: 241–255.

9. SMITH I A. JCMT active surface control system: implementa-

tion[J]. Proceeding of SPIE-The International Society for Optical

Engineering, 1998, 3351: 190–196.

10. TANAKA H, NATORI M C. Shape control of space antennas

consisting of cable networks[J]. Acta Astronaut, 2004, 55(3):

519–527.

Fig. 14 Deformation result under the gravity and wind load calcu-

lated by IGA

Fig. 15 Surface distortion along the radius of the reflector at the

angle of 0o and 90o

Shape Error Analysis of Functional Surface Based on Isogeometrical Approach 551

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


11. WANG W, DUAN B Y, LI P, et al. Optimal surface adjustment

by the error-transformation matrix for a segmented-reflector

antenna[J]. IEEE Antennas and Propagation Magazine, 2010,

52(3): 80–87.

12. LIU K K, YE Q, MENG G X. Surface error diagnosis of large

reflector antenna with microwave holography based on active

deformation[J]. Electronics Letters, 2016, 52(1): 12–13.

13. ELDAR Y C, MENDELSON S. Phase retrieval: stability and

recovery guarantees[J]. Appl. Comput. Harmon. Anal., 2014,

36(3): 473–494.

14. JENNINGS A, MAGREE D, BRIGGS G, et al. Texture-based

photogrammetry accuracy on curved surfaces[C]// Structural

Dynamics and Materials Conference, Orlando, USA, APRIL

12–15, 2010: 1060–1071.

15. YOON H-S. An optimal method of shape control for deformable

structures with an application to a mechanically reconfigurable

reflector antenna[J]. Smart Materials & Structures, 2010, 19(10):

533–536.

16. YOU B D, WEN J M, ZHAO Y. Nonlinear analysis and vibration

suppression control for a rigid–flexible coupling satellite antenna

system composed of laminated shell reflector [J]. Acta Astro-

nautica, 2014, 96(1): 269–279.

17. DU J L, BAO H, CUI C Z. Shape adjustment of cable mesh

reflector antennas considering modeling uncertainties[J]. Acta

Astronautica, 2014, 97(2): 164–171.

18. HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric

analysis: CAD, finite elements, NURBS, exact geometry and

mesh refinement[J]. Comput. Methods Appl. Mech. Eng., 2005,

194: 4135–4195.

19. COTTRELL J A, REALI A, BAZILEVS Y, et al. Isogeometric

analysis of structural vibrations[J]. Comput. Methods Appl. Mech.

Engrg., 2006, 195(41): 5257–5296.
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