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Abstract Analytical compliance model is vital to the

flexure- based compliant mechanism in its mechanical

design and motion control. The matrix is a common and

effective approach in the compliance modeling while it is

not well developed for the closed-loop serial and parallel

compliant mechanisms and is not applicable to the situation

when the external loads are applied on the flexure mem-

bers. Concise and explicit analytical compliance models of

the serial flexure-based compliant mechanisms under

arbitrary loads are derived by using the matrix method. An

equivalent method is proposed to deal with the situation

when the external loads are applied on the flexure mem-

bers. The external loads are transformed to concentrated

forces applied on the rigid links, which satisfy the equa-

tions of static equilibrium and also guarantee that the

deformations at the displacement output point remain

unchanged. Then the matrix method can be still adopted for

the compliance analysis of the compliant mechanism.

Finally, several specific examples and an experimental test

are given to verify the effectiveness of the compliance

models and the force equivalent method. The research

enriches the matrix method and provides concise analytical

compliance models for the serial compliant mechanism.

Keywords Compliant mechanism � Compliance

modeling � Matrix method

1 Introduction

Compared with conventional mechanisms, flexure-based

compliant mechanisms can provide motions without fric-

tion, backlash, and wear [1]. Therefore, they are widely

used in the applications where high positioning accuracy is

required, such as the scanning tunneling microscope, pre-

cision positioning stage, X-ray lithography, and wafer

alignment in microlithography [2–4].

Flexure-based compliant mechanisms transmit the

motions entirely through the deformations of the flexure

hinges. Therefore, a concise and accurate compliance

model, which establishes the relationship between the

deformations and the applied loads, is important and nec-

essary for the optimal design, performance analysis, and

accurate motion control of the compliant mechanisms [5].

Many works related to the compliance modeling of the

compliant mechanism have been done and the main

methods include the pseudo-rigid-body (PRB) model, the

Castigliano’s theorem, the matrix method, and the finite

element model(FEM). The PRB model, initially presented

by L L Howell [6], treats the flexure hinge as a revolute

joint with an attached torsional spring and provides a

simple and intuitive way to estimate the mechanism’s

compliance. However, this method shows some inaccura-

cies because the axial and transverse deformations of the
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flexure hinges are not taken into consideration. H H Pham,

et al. [7], used an extended PRB model, named the PRB-D

model, to derived the kinematic model of a flexure-based

parallel mechanism. The experimental tests showed that

the calculation error of the PRB-D model was only 1/3

compared with the PRB model. P Xu, et al. [8], used the

PRB model to establish the compliance model for a variety

of beam-based compliant mechanisms with large defor-

mations. S Z Liu, et al. [9], studied the frequency charac-

teristics and sensitivity of the large-deformation compliant

mechanism based on a modified PRB model. The Cas-

tigliano’s theorem derives the compliance model of the

compliant mechanism based on the strain energy.

N Lobontiu, et al. [10], formulated an analytical compli-

ance model for the planar compliant mechanisms with

single-axis flexure hinges based on the Castigliano’s dis-

placement theorem. In this research, closed-form equations

were produced and a parametric study of the mechanism

performance was also carried out. X Jia, et al. [11],

obtained the input stiffness model of the active arm of a

3-DOF compliant parallel positioning stage on the basis of

the Castigliano’s first theorem. The matrix method trans-

forms the local compliance of the flexure members to a

global frame for easily obtaining the compliance model of

the entire mechanism. Y KOSEKI, et al. [12], applied the

matrix method to the kinematic analysis of a translational

3-DOF micro parallel compliant mechanism. H H Pham,

et al. [13], used the matrix method to present an analytical

stiffness model of a flexure parallel mechanism. S L Xiao,

et al. [14], conducted the compliance modeling of a novel

compliant micro-parallel positioning stage by means of the

matrix method. N Lobontiu [15] proposed a basic three-

point compliance matrix method to model the direct and

inverse quasi-static response of constrained and over-con-

strained planar serial compliant mechanisms. The FEM

[16–19] has been widely used in the structural mechanics

field and is by far the most accurate computational method

in calculating the compliance of the compliant mechanism.

Since the FEM is a numerical method, the intrinsic char-

acteristic of the compliance of the compliant mechanism

cannot be explicitly identified.

From the introductions above, the calculation accuracy of

the PRBmodel is relative low, but it is simple and useful in the

early stage of the prototype design and performance analysis

of the compliant mechanisms. The FEM, by contrast, is

accurate but only appropriate to verify the calculation accu-

racy of the analytical model or analyze the performance of the

compliant mechanism before fabrication. Additionally,

compared with the Castigliano’s theorem, the matrix method

is more simple and effective for the analytical compliance

modeling of the compliant mechanism. Therefore, the matrix

method is adopted in this article. Though it has been widely

used, the matrix method is not well developed in the

compliance modeling for the closed-loop serial or parallel

compliant mechanism. For example, the matrix method is not

well adopted for analyzing the performance of a bridge-type

amplifier, including the input stiffness and displacement

amplification ratio. Instead, the elastic beam theory together

with the kinematic analysis are used to solve this problem

[10, 20, 21]. However, the analysis procedure is complex and

there are no simple calculation expressions provided for this

case. Additionally, the matrixmethod is not applicable for the

compliance analysis when the loads are applied on the flexure

members. For instance, when the compliant mechanism is

inserted into the dual-stage for accuracy compensation within

a long stroke [22], the deformations of the flexure members

under inertial forces and gravity cannot be calculated by using

thematrixmethod.Though theCastigliano’s theoremcandeal

with this issue, it involves the partial differential calculation.

Therefore, it is meaningful to develop a more effectiveness

method for the real-time accuracy compensation control.

This paper focuses on the analytical compliance mod-

eling of the serial flexure-based compliant mechanisms

under arbitrary external loads. According to the relative

positional relationship between the applied loads and the

displacement output point, concise and explicit compli-

ance models of the open- and closed-loops serial com-

pliant mechanisms are derived based on the matrix

method. Then an equivalent method is proposed to

transform the external loads applied on the flexure

members to the concentrated forces applied on the rigid

links. The transformation process satisfies the static

equilibrium condition and also guarantees that the defor-

mations at the displacement output point remain

unchanged. Thus, the matrix method can be still used to

analyze the compliance of the compliant mechanisms.

Finally, several specific examples are given to illustrate

the effectiveness of the proposed method.

2 External Load Applied on Rigid Links

In this section, the compliance modeling of the open- and

closed-loops serial compliant mechanisms when the

external loads are applied on the rigid links is discussed.

2.1 Compliance Modeling of the Open-Loop Serial

Compliant Mechanism

An open-loop serial compliant mechanism, as depicted in

Fig. 1, comprises several flexure hinges interconnected

with rigid links. One of its ends is fixed and the other end is

free. The compliance modeling of the open-loop serial

compliant mechanism based on the matrix method has

already been investigated [13, 15]. In this section,

according to the relative positional relationship between
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the loading point and the displacement output point, the

compliance modeling process is discussed again.

Considering the deformations of the flexure hinges are

linear and small, the deformation at a given point of the

compliant mechanism can be calculated through the super-

position principle. According to the relative position of the

applied loads, the compliance modeling of the open-loop

serial compliant mechanism is discussed in two difference

conditions. Fig. 1(a) shows the loading point is closer to the

fixed end than the displacement output point, and

Fig. 1(b) shows the displacement output point is closer to the

fixed end.

According to Fig. 1(a), only the flexure members

between the fixed end and the loading point suffer defor-

mations, and the total deformation at the displacement

output point can be obtained as

do ¼
Xm

i¼1

di ¼
Xm

i¼1

Tid d
l
i; ð1Þ

where di
l is the deformation of flexure hinge i represented in

its local frame, and Tid is the matrix transforming the local

deformation di
l of the flexure hinge to the deformation di at

the displacement output point.

The applied load and deformation of flexure hinge i in

its local frame can be expressed as, respectively,

Fi ¼ Tif F; ð2Þ

dli ¼ CiFi; ð3Þ

where Tif is the matrix transforming the external load F to

the applied load Fi at flexure hinge i, and Ci is the local

compliance matrix of flexure hinge i.

From Eqs. (1)–(3), the deformation at the displacement

output point can be written as

do ¼
Xm

i¼1

TidCiFi ¼
Xm

i¼1

TidCiTif

 !
F; ð4Þ

Therefore, the compliance model matrix of the open-

loop serial compliant mechanism shown in Fig. 1(a) can be

obtained as

C ¼ od0

oF
¼
Xm

i¼1

TidCiTif : ð5Þ

Similarly, the compliance matrix of the open-loop serial

compliant mechanism shown in Fig. 1(b) can be obtained as

C ¼
Xn

i¼1

TidCiTif : ð6Þ

According to Eqs. (5) and (6), the general compliance

model of the open-loop serial compliant mechanism can be

expressed as

C ¼
Xmin m; nð Þ

i¼1

TidCiTif ¼ TdC
�Tf ; ð7Þ

where

Td ¼ T1d T2d � � � Tmin m;nð Þd
� �T

;

C� ¼ diag C1 C2 � � � Cmin m;nð Þ
� �

;

Tf ¼ T1f T2f � � � Tmin m;nð Þf
� �T

:

When multiple loads are applied on the mechanism, the

deformation at the given displacement output point is

calculated as

do ¼
Xk

j¼1

Xmin mj; nð Þ

i¼1

TidCiTif

0

@

1

AFj

0

@

1

A: ð8Þ

2.2 Compliance Modeling of the Closed-Loop Serial

Compliant Mechanism

Compared with the open-loop serial compliant mechanism,

both ends of the closed-loop serial compliant mechanism

are fixed, as depicted in Fig. 2.

The closed-loop serial compliant mechanism is over-

constrained because its two fixed ends produce more than

three unknown reaction forces, which brings difficulty in

obtaining its compliance model. Generally, the geometric

relationship of the deformations and equations of static

equilibrium are provided to deal with this issue. However,

this method is relative complex and there are no concise

and explicit expressions for the compliance calculation.
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Fig. 1 Open-loop serial flexure-based compliant mechanism
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Due to the over-constrained characteristic of the closed-

loop serial compliant mechanism, it is cut out at the dis-

placement output point and the inner forces are applied at

the sections, as shown in Fig. 2.

The deformation at the section of the left subsystem can

be expressed as

dl ¼ CglFgl þ
X

CielFiel; ð9Þ

where Cgl is the compliance matrix related to inner force

Fgl and the displacement output point, and Ciel is compli-

ance matrix related to external load Fiel and the displace-

ment output point.

The deformation at the section of the right subsystem

can be expressed as

dr ¼ CgrFgr þ
X

CjerFjer; ð10Þ

where Cgr is the compliance matrix related to inner force

Fgr and the displacement output point, and Cjer is com-

pliance matrix related to external load Fjer and the dis-

placement output point.

The deformations and inner forces at the sections satisfy

the conditions as

dl ¼ dr; ð11Þ
Fgl ¼ �Fgr ¼ Fs: ð12Þ

Combing Eqs. (9) and (10), the inner force Fs at the

section can be obtained as

Fs ¼ Cgl þ Cgr

� ��1
X

CierFier �
X

CjelFjel

� �
ð13Þ

Defining B=Cgl ? Cgr, and substituting Eq. (13) in

Eqs. (8) and (9) leads to, respectively,

dl ¼
X

CglB
�1Cier

� �
Fjer �

X
CglB

�1Ciel � Ciel

� �
Fiel;

ð14Þ

dr ¼
X

CgrB
�1Ciel

� �
Fiel �

X
CglB

�1Cjer � Cjer

� �
Fjer

ð15Þ

According to the relative positional relationship between

the loading point and the displacement output point, the

compliance model of the closed-loop serial compliant

mechanism is discussed as follows.

(1) When the loading point and the displacement output

point are coincident, the external load satisfies

Fe=Fiel and Fjer=0, or Fe=Fjer and Fiel=0. The

deformation at the displacement output point can be

expressed as

d ¼ CglB
�1Cgr

� �
Fe ¼ CgrB

�1Cgl

� �
Fe: ð16Þ

Therefore, the compliance matrix of the mechanism

can be written as

C ¼ od

oFe

¼ CglB
�1Cgr ¼ CgrB

�1Cgl: ð17Þ

The stiffness matrix of the mechanism can be

obtained as

K ¼ CglB
�1Cgr

� ��1¼ C�1
gl þ C�1

gr ¼ Kgl þ Kgr:

ð18Þ

Eq. (18) indicates that when the loading point and

the displacement output point are coincident, the

stiffness of the closed-loop serial compliant mecha-

nism can be obtained by adding the stiffness of its

subsystems together.

(2) When the external load is applied on the left

subsystem, it satisfies Fe=Fiel and Fjer=0. The

deformation at the displacement output point can

be obtained from Eq. (15) as

d ¼ dr ¼ CgrB
�1Cel

� �
Fe: ð19Þ

Therefore, the compliance matrix of the mechanism

can be written as

C ¼ od

oFe

¼ CgrB
�1Cel: ð20Þ

(3) When the external load is applied on the right

subsystem, it satisfies Fe=Fjer and Fiel=0. The

deformation at the displacement output point can

be obtained from Eq. (14) as

d ¼ dl ¼ CglB
�1Cer

� �
Fe: ð21Þ

Therefore, the compliance matrix of the mechanism

can be given as

C ¼ od

oFe

¼ CglB
�1Cer: ð22Þ

According to the discussions, concise and explicit

compliance models of the closed-loop serial compli-

ant mechanism can be obtained, which will be helpful

in its performance analysis and optimal design.
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ilM jrM

[ ]T
iel il ilM=F F

T

jer jr jrM⎡ ⎤= ⎣ ⎦F FglnF

glsF grsF

grnF
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( )T
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Loading 
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end
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end

Right
subsystem

Loading 
point

Fig. 2 Closed-loop serial flexure-based compliant mechanism
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When multiple loads are applied on the mechanisms,

the deformation at the displacement output point is

calculated as

do ¼
X

CgrB
�1
i Ciel

� �
Fiel þ

X
CglB

�1
j Cjer

� �
Fjer:

ð23Þ

3 External Loads Applied on the Flexure
Members

The relationship between the deformations of the flexure

members and the external loads is nonlinear when the

loads are applied on the flexure members. The matrix

method is only appropriate to the linear problem, and

therefore cannot be used to derive the compliance model

of the compliant mechanisms in this case. Though the

Castigliano’s theorem can deal with this issue, it

involves the partial differential which leads to a complex

calculation process. In this section, an effective equiva-

lent method is proposed to handle with the external loads

applied on the flexure members. This method aims at

transforming the external loads from the flexure members

to the rigid links. The transformation process should

satisfy the equations of static equilibrium and guarantee

that the deformations at the displacement output point

remain unchanged.

Owing to the nonlinear relationship between the defor-

mations and loads applied on the flexure members, it is

impossible to transform the external loads to just one

concentrated force on the rigid link to satisfy the both two

conditions stated above. Therefore, the loads applied on the

flexure members are transformed to two concentrated for-

ces applied on the rigid links, as shown in Fig. 3.

The equivalent concentrated forces should satisfy the

following conditions as

diq ¼ dif ¼ di ; djq ¼ djf ¼ dj; ð24Þ

Fi þ Fj ¼ q xð Þ ; Mi þMj ¼ Mq xð Þ; ð25Þ

where diq and dif are the deformations at point i caused by

original force q and equivalent force Fi respectively, and

djq and djf are the deformations at point j caused by original

force q and equivalent force Fj respectively.

It is complicated to solve Eqs. (24) and (25) directly.

Assuming that forces Fi and Fj satisfy Eq. (24), and we

apply forces -Fi and -Fj on the original flexure member at

points i and j, respectively. The deformations at the two

points caused by the two forces are -di and -dj, respectively.

They are superposed on the original deformations caused

by force q results in a fixed-fixed flexure member.

Therefore, forces Fi and Fj are of course satisfying the

equations of static equilibrium represented in Eq. (25).

According to the analysis above, the equivalent forces

can be solved only through Eq. (24) and they will satisfy

Eq. (25) simultaneously. The deformation at points i or

j caused by the original force q can be calculated through

the superposition method, as shown in Fig. 4.

According to Fig. 4(a), the deformation at point i caused

by the original force q can be obtained as

diq ¼
X1

k¼1

dik ¼
X1

k¼1

Ti
kdC

i
kT

i
kf

� �
qk

¼
Z L

0

Ti
dxC

i
xT

i
fx

� �
q xð Þdx: ð26Þ

Similarly, the deformation at point j caused by the

original force q can be obtained as

djq ¼
Z L

0

T j
dxC

j
xT

j
fx

� �
q L� xð Þdx: ð27Þ

Substituting Eqs. (26) and (27) in Eq. (24) leads to
Z L

0

Ti
dxC

i
xT

i
fx

� �
q xð Þdx ¼ dif ¼ CigFi; ð28Þ

Z L

0

T j
dxC

j
xT

j
fx

� �
q L� xð Þdx ¼ djf ¼ CjgFj; ð29Þ

where Cig is the compliance matrix related to equivalent

force Fi and point i, and Cjg is the compliance matrix

related to equivalent force Fj and point j.

The external loads applied on the flexure member can be

express as

i j

( )xq

xiF xjF

yiF yjFiM jM

( )xq

i j

Fig. 3 Equivalent transformation of external loads
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Fig. 4 Calculation of the deformaitons at two points
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q xð Þ ¼ g qð Þf xð Þ; ð30Þ

where g(q) is a coefficient matrix.

Then the equivalent forces Fi and Fj can be obtained as

Fi ¼ C�1
ig

Z L

0

Ti
dxC

i
xT

i
fx

� �
f xð Þ dx

� �
gi qð Þ ¼

C�1
ig Ciqx

� �
gi qð Þ;

ð31Þ

Fj ¼ C�1
jg

Z L

0

T j
dxC

j
xT

j
fx

� �
f L� xð Þ dx

� �
gj qð Þ ¼

C�1
jg Cjqx

� �
gj qð Þ:

ð32Þ

It can be verified that the equivalent forces satisfy

Eqs. (24) and (25). Once the external loads are transformed

to the concentrated forces applied on the rigid links, the

matrix method can be still adopted to analyze the com-

pliance of the compliant mechanisms by using the models

derived in section 2.

4 Applications in the Analysis of Serial Flexure-
Based Compliant Mechanism

Several specific examples are given in this part to illustrate

the effectiveness and validity of the compliance modeling

of serial flexure-based compliant mechanisms and the force

equivalent method.

4.1 Compliance Analysis of an Open-Loop Serial

Compliant Mechanism

A complex open-loop serial compliant mechanism was

designed, as shown in Fig. 5. Circular flexure hinge was

selected as the flexure member. The derived models based

on the matrix method were used to analyze its compliance

related to the given loads and displacement output points,

as shown in Fig. 6. The finite element analysis (FEA) result

was used as a benchmark to verify the accuracy of the

analytical model.

The dimensions of the open-loop compliant mechanism

were shown in Fig. 5. The geometric parameters of the

circular flexure hinge were shown in Fig. 7, and their

dimensions were given as r = 5 mm, W = 5 mm, t = 1 mm,

3 mm, and 5 mm, respectively.

The motion of this compliant mechanism is mainly

provided by the deformations of all the circular flexure

hinges. Therefore, an accurate compliance equation of the

flexure hinge is important for obtaining a precise compli-

ance model of the entire mechanism. An empirical com-

pliance equation[23] for the circular flexure hinge was

adopted in this paper.

Firstly, point 1 was selected as both the loading point

and the displacement output point. Utilizing the FEA

result as the benchmark, the calculating errors of each

compliance components of the mechanism were given in

Table 1.

The results show that the analytical model has relative

high calculation accuracy. One may see that the calculation

errors increase as the minimum thickness t of the flexure

hinge grows. The possible reason is that the rigid links are

not absolute rigid and also undergoes elastic deformations.

When the circular flexure hinges grow thicker, the relative

proportion of the deformations of the rigid links increases.

Considering the compliance of the rigid links, the calcu-

lation errors of each compliance components of the

mechanism were given in Table 2. It shows that the cal-

culation accuracies are obviously improved, especially

when t = 3 mm and 5 mm.Fig. 5 Open-loop serial compliant mechanism

Fixed 
end

Point 3

Free 
end

1xF

1yF

2F

Point 2

Point 1

Fig. 6 External loads and displacement output points

t

D
r H

W

Fig. 7 Circular flexure hinge

and its dimensions

Table 1 Calculation errors of each compliance component %

Compliance component Thickness t / mm

1 mm 3 mm 5 mm

C1x-F1x –3.83 0.04 2.96

C1y-F1x –1.64 2.16 5.10

C1x-F1y –1.64 2.16 5.10

C1y-F1y 1.74 5.53 9.15
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Secondly, the external load was applied at point 2 and

vertical to the surface, and point 3 was selected as the

displacement output point. The compliance of the mecha-

nism calculated through the FEA and the analytical model

were given in Tables 3 and 4, respectively.

The simulation analyses show that the matrix method is

applicable to the compliance modeling of the open-loop

serial compliant mechanism related to any given output

points and external loads applied on the rigid links.

Additionally, the compliance of the rigid links cannot be

neglected when the flexure hinges are relative thick and the

length of the open-loop serial chain is long.

4.2 Transformation of the External Loads Applied

on Flexure Members

Fig. 8 shows a serial compliant chain composed of rect-

angular flexure members and rigid links. The external loads

q1(x) and q2(x) were applied on the flexure members. The

force equivalent method was used to transform the external

loads from the flexure members to the rigid links.

The equivalent transformation of external load q1(x) was

first discussed. It was transformed to two concentrated

forces applied at points 1 and 2. The local coordinate

frames at points 1 and 2 were established, as shown in

Fig. 9.

According to Eqs. (31) and (32), equivalent forces F1

and F2 were obtained in each local coordinate frame as,

respectively,

F0
1 ¼ C�1

1g

Z L2

0

T1
dxC

1
x T

1
fx

� �
f 1 xð Þ dx

� �
g q1ð Þ; ð33Þ

F0
2 ¼ C�1

2g

Z L2

0

T2
dxC

2
x T

2
fx

� �
f 1 L2 � xð Þ dx

� �
g q1ð Þ: ð34Þ

where

q1 xð Þ ¼ f 1 1 xð Þg1 1 q1ð Þ þ f 1 2 xð Þg1 2 q1ð Þ ¼
0 0 0

0 x 0

0 0 0

0

B@

1

CA
0

10W

0

0

B@

1

CAþ
0 0 0

0 1 0

0 0 0

0

B@

1

CA
0

0:2W

0

0

B@

1

CA;

C1g ¼ C2g ¼

L2

EDt
0 0

0
4L32
EDt3

þ a
E

G
� L2

EDt
� 6L22
EDt3

0 � 6L22
EDt3

12L2

EDt3

0
BBBBB@

1
CCCCCA
;

C1
x ¼ C2

x ¼

L2 � x

EDt
0 0

0
4 L2 � xð Þ3

EDt3
þ a

E

G
� L2 � x

EDt
� 6 L2 � xð Þ2

EDt3

0 � 6 L2 � xð Þ2

EDt3
12 L2 � xð Þ

EDt3

0

BBBBB@

1

CCCCCA
;

Table 2 Calculation errors of each compliance Component %

Compliance

component

Thickness t / mm

1 mm 3 mm 5 mm

C1x-F1x –4.14 –2.51 –2.37

C1y-F1x –1.96 –0.35 –0.08

C1x-F1y –1.96 –0.35 –0.08

C1y-F1y 1.36 2.62 3.18

Table 3 Compliance of the mechanism calculated through the FEA

lm / N

Compliance

component

Thickness t / mm

1 mm 3 mm 5 mm

C3x-F2 –117.07 –8.779 –2.753

C3y-F2 526.60 38.692 11.905

Table 4 Compliance of the mechanism calculated through the ana-

lytical model lm / N

Compliance

component

Thickness t / mm

1 mm 3 mm 5 mm

C3x-F2 –113.45 –8.391 –2.627

C3y-F2 518.65 37.526 11.519

( )2
4

sin 2 MPaxq x
L

π
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠( ) ( )1 10 0.2 MPaq x x= +

x x

1 20 mmL = 2 20 mmL = 3 20 mmL = 4 20 mmL = 5 20 mmL =

2 mmt = 20
m

m
W

=

10 mmD =

Fixed 
End

Output 
Point

1 2 3 4

Fixed 
End

x

y

z O

Fig. 8 External loads applied on the flexure membmers
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2z

1z
1 2

Fig. 9 Local coordiante frames at points 1 and 2
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T1
dx ¼ T2

dx ¼
1 0 0

0 1 �x

0 0 1

0

@

1

A ; T1
fx ¼ T1

fx

¼
1 0 0

0 1 0

0 0 1

0

@

1

A:

The equivalent forces F1 and F2 were calculated in the

global coordinate frame as F1 = (0–52.05 N

–0.187 Nm)T and F2 = (0–67.95 N –0.213 Nm)T.

Similarly, external load q2(x) was transformed to two

equivalent forces applied at points 3 and 4 respectively asF3 =

(0–82.34 N –0.187 Nm)T and F2 = (0 82.34 N –0.187 Nm)T.

The FEA software was used to calculate the deformation

at the output point caused by all the external loads and the

equivalent loads, as shown in Fig. 10. The results were d =

(0 0.541 0)T mm and de = (0 0.551 0)T mm, respectively.

The results show that the deformations at the given

displacement output point caused by the original external

loads and the equivalent forces are almost the same.

Additionally, it can be verified that the equivalent forces

satisfy the equations of static equilibrium. The analysis

proves the effectiveness and validity of the proposed

equivalent transformation method for handling the external

loads applied on the flexure members.

Macro-micro system is desirable in the applications

where the merits of long stroke motion and high accuracy

are required. Figure 11 shows a macro-micro manipulator,

which is composed of a 2-DOF linear feed system actuated

by servo motors and a 2-DOF compliant mechanism

actuated by piezoelectric actuators. The linear feed system

provides a large stroke motion with a coarse accuracy due

to the inevitable clearance, friction, and wear. To achieve

high motion accuracy, a compliant mechanism is mounted

on the moving platform of the linear feed system to com-

pensate its motion error. However, the flexure members of

the compliant mechanism will suffer inertial forces during

the acceleration and deceleration stages of the moving

platform of the linear feed system. The effect of the inertial

forces on the motion accuracy of the compliant mechanism

should be considered. The proposed equivalent transfor-

mation method can be used to deal with this problem. Then

a real-time accuracy compensation control strategy can be

carried out with the help of the high precision length

gauges. This will be discussed in detail in our future work.

4.3 Amplification Ratio Analysis of a Displacement

Amplifier

To illustrate the effectiveness of the derived compliance

model of the closed-loop serial compliant mechanism, a

bridge-type compliant displacement amplifier was adop-

ted as the object of study. This amplifier has a compact

structure and is mainly used for amplifying the dis-

placement of the piezoelectric actuator. Its structure and

geometric parameters were given in Fig. 12. Circular

flexure hinges[24, 25] were adopted due to their high

precision in motion. The initial dimensions of the

amplifier were given as C = 30 mm, L = 35 mm, P = 25

mm, E = 12.5 mm, D = 10 mm, and h= 5 �. The

dimensions of the circular flexure hinges were given as

r = 5 mm, t = 1 mm, and W = 5 mm.

The boundary condition, applied loads, and displace-

ment output point of this amplifier were shown in Fig. 13.

0.777
0.555
0.333
0.111
0.111
0.333
0.555
0.777

1 Max

1 Min

(a) External loads applied on the flexure members 

Force 1Y: -52.05N
Force 2Y: -67.95N
Force 3Y: -82.34N
Force 4Y:  82.34N
Moment 1Z: -187 Nmm
Moment 2Z: -213 Nmm
Moment 3Z: -187 Nmm
Moment 4Z: -187 Nmm

(b) Equivalent concentrated forces applied on the rigid links 

0.553Max
0.492
0.430
0.369
0.307
0.246
0.185
0.123
0.061
0 Min

(c) Deformation analysis 

Fig. 10 Equivalent transformation method verified by the FEA

software

Fig. 11 Macor-micro manipulator
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The displacement amplification ratio is the most

important performance index for this amplifier, and it is

defined as

Ramp ¼
doy
2dix

����

����; ð35Þ

where doy is the deformation at the displacement output

point, and dix is the deformation at any loading point.

To obtain the deformation at the displacement output

point, the mechanism was cut out at this point, as shown in

Fig. 14. According to Eq. (23), the output displacement

was calculated as

do ¼ Cgr oB
�1
1 oCel o

� �
Fl þ Cgl oB

�1
2 oCer o

� �
Fr ¼

Cgr oB
�1
o Cel o

� �
� Cgl oB

�1
o Cer o

� �� �
F;

ð36Þ

where Cgl o ¼
P4

j¼1

T o
jdCT o

jf ; Cgr o ¼
P8

j¼5

T o
jdCT o

jf ; Cel 0 ¼
P2

j¼1

T o
jdCT i

jf ; Cer o ¼
P8

j¼7

T o
jdCT i

jf ; Bo ¼ Cgl o þ Cgr o

� �
.

To obtain the deformation at the loading point, the

mechanism was cut out at the loading point, as shown in

Fig. 15. The input displacement was calculated as

di ¼ Cgr iB
�1
1 iCel i

� �
Fl þ Cgl iB

�1
2 iCer i

� �
Fr ¼

Cgr iB
�1
i Cel i

� �
� Cgl iB

�1
i Cer i

� �� �
F;

ð37Þ

where Cgl i ¼
X2

j¼1

T o
jdCT o

jf , Cgr i ¼
P8

j¼3

T o
jdCT o

jf ,

Cel i ¼
P2

j¼1

T o
jdCT i

jf , Cer i ¼
P8

j¼7

T o
jdCT i

jf ,

Bi ¼ Cgl i þ Cgr i

� �
.

Then the displacement amplification ratio of this

amplifier was obtained as

Ramp ¼
Cgr oB

�1
o Cel o

� �
� Cgl oB

�1
o Cer o

� �	 

ey

2 � Cgr iB
�1
i Cel i

� �
� Cgl iB

�1
i Cer i

� �	 

ex

�����

�����:

ð38Þ

From Eq. (38), one may see that the displacement

amplification ratio is determined by the geometric param-

eters of the amplifier and the flexure hinges. The influences

of the main geometric parameters on the amplification ratio

were investigated and shown in Fig. 16. Analytical model I

did not consider the compliance of the rigid links, and

analytical model II considered the influence of the com-

pliance of the rigid links.

From Fig. 16, the following conclusions can be drawn:

(1) The displacement amplification ratio decreases as

geometric parameters P, C, and t increase, and increases as

geometric parameter L increases.

(2) The displacement amplification ratio at first increa-

ses shapely when anglehincreases, whereas decreases when
anglehincreases continuously.

(3) The displacement amplification ratio calculated by

the analytical model without considering the compliance of

the rigid links is always larger.

(4) The comparisons of the analytical and FEA results

demonstrate the accuracy and effectiveness of the derived

Fig. 12 Schematic diagram of a bridge-type compliant displacement

amplifer
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Fig. 13 Boundary conditions, applied loads, and displacement output
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compliance model of the closed-loop compliant mecha-

nism. Additionally, the concise expression form will be

helpful to the further performance analysis and optimal

design.

The results show that anglehand thickness t have great

influences on the displacement amplification ratio, and

their influences were given in Fig. 17. One may see that

there exists a max amplification ratio curve, and it can be

used to guide the geometric parametric optimization to

obtain a large amplification ratio.

Therefore, small geometric parameters P, C, and t, large

geometric parameter L, and optimized anglehcan be chosen

to improve the displacement amplification ratio of the

amplifier. The optimization of the amplification ratio can

be realized based on Eq. (38) with the consideration of

other factors, such as the size dimension, input/output

compliance, and frequency.

To further verify the accuracy of the analytical model,

an experimental table was constructed to test the dis-

placement amplification ratio of the amplifier, as depicted

in Fig. 18. The material was steel with a Young’s modulus

of 210 GPa, and a Poisson’s ratio of 0.3. The amplifier was

fabricated through the milling process with an accuracy of

±5 lm. A pre-tight piezoelectric actuator (P-843.40 from

PI) was adopted to drive the mechanism, and its motion

stroke was 60 lm. The input displacement was measured

by the integrated feedback sensor of the actuator, and the

output displacement was measured by the laser displace-

ment sensor (LK-H025 from Keyence) with a linearity of

±0.02% over a measuring range of 6 mm.

Fig. 16 Influences of the geometric parameters on the displacement

ampification ratio of the amplifier
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Fig. 17 Influence of angle h and thickness t on the displacement

amplification ratio

Fig. 18 Experiment table used for testing the displacement amplifi-

cation ratio of the amplifier
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Two amplifiers were used for the experimental tests and

their geometric parameters were given in Table 5. The

input and output displacements of the two amplifiers were

recorded simultaneously when the displacement of the

actuator was increased from 0 lm to 30 lm, and the

measuring results were shown in Fig. 19. The tested dis-

placement amplification ratios were calculated by using the

least square method and the results were shown in Table 5.

It shows that the analytical model has relative high cal-

culation accuracy.

5 Conclusions

(1) According to the relative positional relationship

between the applied loads and the given displacement

output point, the concise and explicit compliance

models of the open- and closed-loop serial compliant

mechanisms are derived based on the matrix method.

(2) An equivalent method is proposed to transform the

external loads applied on the flexure members to the

concentrated forces applied on the rigid links.

Therefore, the matrix method can be still used to

analyze the deformations and compliance of the

compliant mechanism.

(3) Several specific simulation analyses and an experi-

mental test are carried out. The results verify the

effectiveness and accuracy of the derived compli-

ance models and the force equivalent transformation

method.
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