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Abstract Numerous vibration-based techniques are rarely

used in diesel engines fault diagnosis in a direct way, due

to the surface vibration signals of diesel engines with the

complex non-stationary and nonlinear time-varying fea-

tures. To investigate the fault diagnosis of diesel engines,

fractal correlation dimension, wavelet energy and entropy

as features reflecting the diesel engine fault fractal and

energy characteristics are extracted from the decomposed

signals through analyzing vibration acceleration signals

derived from the cylinder head in seven different states of

valve train. An intelligent fault detector FastICA-SVM is

applied for diesel engine fault diagnosis and classification.

The results demonstrate that FastICA-SVM achieves

higher classification accuracy and makes better general-

ization performance in small samples recognition. Besides,

the fractal correlation dimension and wavelet energy and

entropy as the special features of diesel engine vibration

signal are considered as input vectors of classifier FastICA-

SVM and could produce the excellent classification results.

The proposed methodology improves the accuracy of fea-

ture extraction and the fault diagnosis of diesel engines.

Keywords Feature extraction � Diesel engine valve train �
FastICA � PCA � Support vector machine

1 Introduction

To diagnose faults of machinery under rotating, researchers

around the world have attempted to make good use of

vibration-based techniques and their efforts make resear-

ches. There appear many methods which have been proved

to be potential in recognizing the faults of machines such as

statistical analysis and time domain analysis. However,

when it comes to diesel engines, it will be another case-

there is very few situation using vibration-based technique

to diagnose faults of diesel engines. On one hand, the

vibration signals from diesel engines are momentary and

unsteady. And if it is not performing, there will be no

useful features extraction to diagnose. On the other, under

most circumstances, diesel engines consist of reaction of

several exciting forces. And the movement of diesel engine

mechanism is related to the movement of many connection

units such as piston ring set and valve train system. Valves,

as the foremost moving unit in diesel engine mechanism,

has imposed direct influence on the main noise source of

diesel engine. Due to their complicated composition

structure and time-to-time effects on valve seats, the fault

ratio of this part occupies 15% among the faults of whole

diesel engine [1].

Besides, the operation of a diesel engine will generate

multiple pulse forces between valve and its sets. The

vibration of cylinder head will be affected to a large

degree. In case of faults on valve train, the vibration signals

coming from cylinder head should consist of the fault

information of it.
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Over the past several years, numerous researchers have

recognized the above-mentioned features and they have

also conducted in-depth study on how to use vibration

signals obtained from cylinder head to diagnose the fault of

valve train [2–5]. Several unsteady signal analysis methods

such as wavelet analysis were resorted to analyzing the

unsteady vibration signals from cylinder head. Also, the

fault of valve train was confirmed after analyzing more

extracted features from analysis report. Such kind of

diagnosis process has been widely accepted and applied in

the industry in recent decades. However, it is still necessary

to explore further method to extract features in a more

precise and effective way. There is another difficulty that

should not be ignored, that is, how to make it easier to

determine how many and which features should be

extracted considering the unsteady and non-linear property

of vibration signals from diesel engine. Nonetheless, the

problem now facing the industry is that during the deeper

feature extraction process, some essential time–frequency

factors possibly get lost. As a result, the diagnose result for

most cases is not effective and it will be great useful to find

a more impressive way.

In order to process the special vibration signal produced

by diesel engine, a series of leading techniques concerning

feature extraction have been proposed by researchers

across the world. Time–frequency analysis, proposed by

Geng, et al. [4, 5], was among many other techniques

applied in extracting features. In addition, there is also

another technique depending on recognizing source signals

among other vibration signals gathered. Mean field inde-

pendent component analysis (ICA), another application to

diesel engine status monitoring, also appeared in the report

of Li, et al. [6], extracted fault feature of rolling bearing

based on an improved cyclical spectrum density method.

Zhang, et al. [7], demonstrated the potential for applying

the method to machinery fault diagnosis and the method

was implemented to rolling bearing experimental data. The

results obtained by using the method were consistent with

the theoretical interpretation, which proved that this algo-

rithm had imposed significant engineering significance in

revealing the correlation between the faults and relevant

frequency features. Chen, et al. [8], proposed an improved

CICA algorithm named constrained independent compo-

nent analysis based on the energy method (E-CICA) in

order to realize single channel compound fault diagnosis of

bearings and improve the diagnosis accuracy. Gao, et al.

[9], combined the concepts of time–frequency distribution

(TFD) with non-negative matrix factorization (NMF), and

proposed a novel TFD matrix factorization method to

enhance representation and identification of bearing fault.

However, this approach requires reference data which

cannot be obtained due to the complicated external dis-

turbance and the internal exciting forces. In 2010, two

researchers Klinchaeam and Nivesrangsan [10] analyzed

one small size petrol engine with 4 stoke and 1 cylinder

using vibration signal on the basis of time domain, crank

angle domain, and signal energy. Yet, it is also demanded

to use more powerful techniques to improve the accuracy

of an engine state monitoring system as well as the accu-

racy of the results.

If the faults occur to the engine, the vibration signals of

engine normally take on the modulation symptom under

the influence of regular impulse. Adequate fault informa-

tion will be included in the amplitude envelope, phase and

instantaneous frequency(IF) of modulated signals. There-

fore, it can be concluded that for fault extraction, fault

diagnosis and fault position recognition, demodulation will

serve as the precondition [11, 12]. At present, the mainly

applied demodulation theory contains Hilbert transform

demodulation, energy operator demodulation and so on

[13–15].

However the unsteady negative IF appeared here and

there, which proved that when carrying out Hilbert trans-

form process, EMD cubic splines will lead to the loss of

amplitude and frequency information. That is why local

mean decomposition was presented and applied in the

current days [16]. Smoothed local means are adopted by

LMD to find out a more dependable IF from the vibration

signals, with no factor of Hilbert transform. Wang, et al.

[17, 18], had demonstrated that how LMD facilitated

enhanced analysis in contrast to EMD in rub-impact fault

diagnosis. In 2005, Smith [16] introduced a new suit-

able time-frequency analysis method named local mean

decomposition(LMD). In this method, LMD, this compli-

cated multiple component modulation signal would be

disassembled into a limited set of mono-components.

These components would be in linear combination and

were titled as product function(PF). One envelope signal

and one a frequency demodulation signal with the same

amplitude would lead to the formation of one PF. The

former was the momentary amplitude of PF, including

amplitude modulation information. The open stage of the

later with same frequency was called IF or PF, which

included frequency modulation information. The LMD

method was not subject to the constraint of Bedrosian

theorem and Nuttall theorem due to it did not use HT at all

[19].

Therefore it avoids negative frequency. However, the

LMD is affected by the signal noise and many attempts

have been made to extract information from noisy vibration

signal. However, it was found that the current methods in

the research area have limitations on the existence of noise.

For example, wavelet de-nosing method is completely

dependent on the selection of wavelet functions. Although

this method can improve a single type of noise and strong

energy data when noise energy is weak and the number is
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large, the capacity of noise identification and de-noising is

often very poor [20]. As an effective method, Mathematical

morphology is adopted to analyze geometrical structure in

a quantitative way.

In this paper, the main applications of mathematical

morphology in diesel engine system signal processing are

concentrating on signal de-noising [21–23]. For the mea-

surement and extraction of specific signal features, these

methods make use of certain types of structure factors, with

no influence from time-frequency domain; and thus have

very powerful inspection and recognition capability. The

mathematical morphology filter, replacing the traditional

low-pass filter and mean filter, is adopted and more precise

magnitude and faster response speed are obtained without

nonlinear character changed.

In addition, fractal correlation dimension has become

one of the most influential perspectives to recognize and

predict complicated non-linear vibration behaviors. It is

also widely used in engineering industry as an effective

instrument to analyze signals. The diagnosis of rolling

element-bearing defects has some interrelation, explained

by Logan and Mathew [24], who proved that three main

rolling factor bearing faults could be classified by corre-

lation dimension, namely, outer race fault, inner race fault

and roller fault. Besides the application of correlation

dimension to gearbox status monitoring is also reported by

Jiang, et al. [25], who illustrated that the operation status of

a gearbox with wearing slit or broken teeth in contrast to

normal status could be classified clearly by correlation

dimension. Correlation dimension as reported by Wang,

et al. [26], could not only present some inner date of a basic

dynamic system, but also recognize different fault types.

The wavelet transform is considered as a popular tech-

nique to extract signal features. Wavelet functions consist

of a series of basic functions describing one signal in both

frequency and time perspective [27]. To make wavelet

transform perform better, one new concept, wavelet energy

and wavelet entropy has been brought into feature extrac-

tion. The method is widely used in many fields, and has

also achieved considerable success [28–32]. On the basis of

wavelet entropy, one famous method of fault diagnosis was

presented by Yu, et al. [33], in which, the definition of

instantaneous wavelet energy entropy (IWEE) and instan-

taneous wavelet singular entropy (IWSE) were derived

from the wavelet entropy theory before. Later the test of

this method via a real micro gas turbine engine proved the

efficiency of this presented method in analyzing sensor

faults.

From above, fractal correlation dimension, wavelet

energy and wavelet entropy can be used to classify dif-

ferent faults as vibration signals features respectively, but

the accuracy and efficiency maybe different. In this paper,

the author attempts to apply a better combined method to

reflect the complex non-stationary and nonlinear time-

varying features of the diesel engines surface vibration

signals.

Independent component analysis, which is originally

aimed at signal processing application has been generalized

for features extraction. Principal component analysis

(PCA) turns linearly the original inputs into new features

with no correlation between each other while ICA turns

linearly original inputs into features with mutually statis-

tically independence with each other.

In addition, there appear several intelligent classification

algorithmic rules (i.e. artificial neural network (ANNs) and

support vector machines (SVMs)). These rules have been

applied to the intelligent fault diagnosis of machinery and

also achieved great success [34–36].

The neural network classification model has poor gen-

eralization ability due to it only conducts the experience

risk minimization principle. Support vector machine

(SVM) is considered as an effective machine learning

method which has been used to sort out problems could

lead to better generalization performance, exceeding other

traditional methods. In this work, FastICA-SVM [37] is

used for diesel engine valve clearance faults diagnosis. The

basic concept of the methodology proposed is to apply

FastICA for reduction of dimensionality and then the main

influence components are input into the classifier SVM as

the features to complete the diesel engine valve train faults

classification.

In this paper, the author attempts to analyze the classi-

fication performance of a wide range of features. It is also

discussed the combination of features on different fault

data sets. To pursue the improvement of SVM classifica-

tion performance, this paper brings in 5 statistical features

(including mean, standard deviation, kurtosis, skewness,

RMS) and 21 special features (including 5 fractal correla-

tion dimension, 16 wavelet energy and entropy) for SVM

training and explores classification performance of fractal

dimensions cooperated with time-domain statistical

features.

In addition, the performances of PCA-SVM and Fas-

tICA-SVM for distinguishing between different features

are compared, and the effectiveness of proposed method-

ology is also investigated by comparison results.

In this paper, several advanced or improved methods are

applied to extract features of diesel engine vibrate signal.

Then identify different signal and fault types are used to

obtain more accurate fault diagnosis results. As a result, the

main purpose of this paper is to improve the accuracy of

feature extraction as well as the fault diagnosis.

This paper is presented as below. In Sect. 2, it briefly

introduces the methods principles for extracting features

and classification tools. Section 3 mainly shows the

experiments and data. In Sect. 4, it analyzes classification
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performance of a wide range of normal and faults features

extracted from various fault data. In Sect. 5, it describes

and discusses the classification performance of proposed

method. Section 6 is the conclusion part of whole paper.

2 Principles of Methods

2.1 Mathematical Morphology Filter

The primary concepts of mathematical morphology consist

of two points: one is to find out the relationship among

parts of signals and the other is to use a ‘‘probe’’ structural

element to extract the primary signal features in circum-

stance of constant motion.

Basic mathematical morphological operations are

defined as erosion and dilation. The opening and closing

operations are derived from different combinations of

erosion and dilation. The following are the definition of

these operations:

Let input sequence f(n) and g(n) is discrete function

defined in F = (0,1,…,N-1) and G = (0,1,…,M-1),

respectively, N C M. The gray-scale dilation and erosion

of f(n) defined by g(n) is as follows:

ðf � gÞðnÞ ¼ maxff ðn� xÞ þ gðxÞ : x 2 Gg;
n ¼ 0; 1; . . .;N;

ð1Þ

ðfHgÞðnÞ ¼ minff ðnþ xÞ � gðxÞ : x 2 Gg;
n ¼ 0; 1; . . .;N:

ð2Þ

Set g(n), in mathematical morphology, is titled as

structural element, or it can be called as ‘‘probe’’. The

graphical features in each region can be recognized by

structural element locally. Signal feature can be extracted

by moving structural element constantly and we can use

this information for analysis and description.

The hole of graphics can be filled by dilation operation,

while the edge of a small protruding part of the graphics

erosion operation can be eliminated, which smooth signal

in some extent. Dilation operation is not in contrast to

erosion operation. Through combining erosion and dilation,

other morphological operations can be formed: opening

and closing defined as follows:

f � gð Þ nð Þ ¼ fHg� gð Þ nð Þ; ð3Þ
f � gð Þ nð Þ ¼ f � gHgð Þ nð Þ: ð4Þ

Opening operation is capable of filtering peak noise

above signal and eliminates burr while closing operation is

talented at smoothing trough noise behind signal classify-

ing litter groove structure.

To explore suitable filtering order, these two mentioned

operations are usually used at the same time only in

different sequences. There is no requirement to consider

the spectrum characteristics when using this method to de-

noise the strong noise signals for this algorithm of math-

ematical morphology depends only on the local charac-

teristics of signals to be processed.

The following Fig. 1 shows the influence of signal

morphological filtering with white noise added.

2.2 Local Mean Decomposition (LMD)

In recent years, LMD was applied to separate modulated

signals into small sets of PF. Each PF comes from the

combination of one amplitude envelope signal and one

frequency-modulated (FM) signal. LMD works as below:

separating one appointed signal into frequency modulated

signals and envelope components, which is defined as local

magnitude functions. The below paragraphs give a brief

description of real-valued LMD algorithm [38].

(1) Based on the original signal x(t), mean value, mi,k

can be determined by calculating the mean of the

successive maximum and minimum nk,c and nk,c?1,

where c is the index of the extrema. ‘‘i’’ and ‘‘k’’

represents the order of PF and the repetition No. in

PF process. The difference between the successive

extrema will decide the local magnitude, ai,k.

mi;k;c ¼
nk;c þ nk;cþ1

2
; ai;k;c ¼

nk;c � nk;cþ1

�
�

�
�

2
: ð5Þ

(2) Between mi,k(t) and ai,k(t), add straight lines of

local mean and local magnitude values.

(3) With moving average filter ~mi;kðtÞ and ~ai;kðtÞ,
remove the added local mean and local magnitude.

(4) Deduct the removed mean signal from the original

signal x(t):

hi;k tð Þ ¼ x tð Þ � ~mi;k tð Þ: ð6Þ

Fig. 1 Effect of mathematical morphology filter
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(5) Get si,k(k), frequency modulated signal:

si;k tð Þ ¼ hi;k tð Þ
~ai;k tð Þ : ð7Þ

(6) Confirm if si,k(t) is a normalized frequency mod-

ulated signal whereas ~ai;kðtÞ is close to 1. If so, go

to step (9).

(7) If si,k(t) is not a normalized frequency modulated

signal, calculate ~ai;kðtÞ � ~ai;k�1ðtÞ and return to step
1 for the same process for si,k.

(8) Envelope function, ~aiðtÞ, can be calculated by

means of multiplying all ~ai;kðtÞequals one:
~ai tð Þ ¼ ~ai;1 tð Þ � ~ai;2 tð Þ � ~ai;3 tð Þ � � � � � ~ai;l tð Þ

¼
Yl

q¼1

~ai;q tð Þ; ð8Þ

where l is maximum iteration number.

(9) The envelope function, ~aiðtÞ, is applied hereto,

which multiplies the final frequency modulated

signal, si,l(t), to determine PFi:

PFi ¼ ~ai tð Þ � si;l tð Þ: ð9Þ

(10) Subtract PFi(t) from x(t):

ui tð Þ ¼ x tð Þ � PFi: ð10Þ

(11) Phase can be obtained from frequency modulated

signal:

/i tð Þ ¼ arccos si;lðtÞ
� �

: ð11Þ

(12) Instantaneous frequency (IF) will be determined by

the unwrapped phase data and its differentiation:

wi tð Þ ¼
d/i

dt
: ð12Þ

First of all, there are two steps to acquire the local mean

of signals. One adding mean values of successive extrema

with piecewise constant interpolation and two applying

moving average filter. The difference between LMD and

EMD lies in how to determine the local mean function.

Local magnitude function stands for IA. Frequency mod-

ulated signal results in IF directly with no necessity to

adopt Hilbert transform and analytic representation. LMD

uses smoothed local means and local magnitudes while

EMD adopts cubic spline approach [38]. Compared with

each other, smoothed local means and local magnitudes

will support the natural decomposition in a better and

effective way. That is why IA and IF from LMD calcula-

tion tend to be more steady and accurate.

2.3 Fractal Correlation Dimension

An engine mechanism will occupy a range of freedom

degrees and the correlation dimension of nonlinear

dynamic system provides the estimation of its number.

That is why the correlation dimension is quite beneficial for

fault diagnosis. To sort out different faults of the dynamic

system, there is also other internal information available.

The attractors and fractal correlation dimension value in

consequence will have some kind of change when the

system operation strays away from normal status. To put it

in another way, system status changing will induce dif-

ferent fractal correlation dimension value, implying that

the changing state for system. Therefore, fractal charac-

teristics of the system can be depicted by a fractal corre-

lation dimension value from irregular signals and it is

helpful for diesel engine fault detection procedure.

To estimate the correlation dimension, it is very useful

to take GP algorithm [39] into consideration. If all vari-

ables are countable, GP algorithm can be directly applied

to real state space created by all variables. However, the

measurements of all variables in real situations will be

confronted with some difficulties. For most cases, there is

only one variable scalar time series which can be mea-

sured. Based on this time series only, it is not an easy job to

conclude further information of the system. Given that, the

theory of time delay embedding comes into use for

reconstructing the state space. This is also the first step

when it comes to the analysis of a dynamical system.

The time series can be described as

Xif g; i ¼ 1; 2; . . .; n; ð13Þ

where n is the length of time series.

Speaking of n-point time series, the attractor dynamics

can be rebuilt by resorting to the method of delays to create

multiple state space vectors via delay coordinates:

xjðm; sÞ ¼ xj; xjþr; . . .; xjþðm�1Þs
� �

;

j ¼ 1; 2; . . .; n� ðm� 1Þs;
ð14Þ

where m denotes the embedding dimension, s is the time

delay parameter and s = k4t.

Based on above mentioned methods, the time series with

n points of data are divided into nm groups:

nm ¼ n� ðm� 1Þs; ð15Þ

where nm is the points No. or coordinate vectors No. in the

fractal set.

The m-dimensional hyper sphere radius is represented

by Euclidean distance:

Diesel Engine Valve Clearance Fault Diagnosis Based on Features Extraction Techniques and… 995

123



rijðm; sÞ ¼ jxiðm; sÞ � xjðm; sÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xm�1

k¼0

xiþkr � xjþkr

� �2
:

v
u
u
t

ð16Þ

The definition of correlation integral function C(r)

comes from the m-dimensional reconstructed space right

after the reconstruction process. C(r) presents the chance

that whether there are a pair of vectors whose distance is no

less than r:

CðrÞ ¼ 1

nmðnm � 1Þ
Xnm

i¼1

Xnm

j¼1

H r � rij m; sð Þ
� �

; i 6¼ j;

ð17Þ

H r � rij m; sð Þ
� �

¼ 1 r � rij m; sð Þ� 0;
0 r � rij m; sð Þ\0;

�

ð18Þ

r ¼ ðrij;max � rij;minÞ
iþ 1

pþ 1
; r ¼ 1; 2; . . .; p; ð19Þ

where H is the Heaviside step function.

In view of rijðm; sÞ ¼ rjiðm; sÞ, using the following for-

mula the same calculation can be avoided and a half of

computation saved:

CðrÞ ¼ 2

nmðnm � 1Þ
Xnm

i¼1

Xnm

j¼iþ1

H r � rijðm; sÞ
� �

: ð20Þ

If Eq. (17) can be rewritten as

CðrÞ ¼ lim
nm!1

1

n2m

Xnm

i¼1

Xnm

j¼iþ1

H r � rijðm; sÞ
� �

; ð21Þ

because r is sufficiently small and the nm is big enough, the

reconstructed phase space attractor of fractal correlation

dimension can be derived as

DC ¼ lim
r!0

d½lnCðrÞ	
dðln rÞ ; ð22Þ

or

DC ¼ lim
r!0

lnCðrÞ
ln r

: ð23Þ

Obviously, C(r) is apparent that C(r) and point pairs

number have proportioned relationship with each other. In

fractal set, they are isolated by some distances. Only when

a point system is confirmed as a fractal set, can it be said

that the graph of C(r) in logarithmic coordinates is a linear

function. The slope of it is the same as the fractal corre-

lation dimension of system.

2.4 Wavelet Energy and Wavelet Entropy

Through using MALLAT’s method [40], a certain time

series x(k)(k = 1,2,…,N) could be decomposed as

x kð Þ ¼ A1 kð Þ þ D1 kð Þ ¼ A2 kð Þ þ D2 kð Þ þ D1 kð Þ

¼ AJðkÞ þ
Xj¼J

j¼1

DjðkÞ; ð24Þ

where j represents scale, Dj(k) stands for the detailed

components at the jth scale and Aj(k) represents the

approximation of the j th scale.

The frequency band of Aj(k) and Dj(k) could be repre-

sented by

Dj kð Þ : 2� jþ1ð Þfs; 2
�jfs

� �

;

Aj kð Þ : 0; 2� jþ1ð Þfs
� �

;

�

j ¼ 1; 2; � � � ; J; k ¼ 1; 2; � � � ;Nð Þ;

ð25Þ

where fs is the sampling frequency.

The wavelet bases which are used to disassemble the

signal are orthogonal. Due to this reason, these disassem-

bled signals could be considered as a direct estimation of

local energies at different scales [40].

Therefore, the wavelet energy of detailed components at

instant k and scale j could be represented by

Ej;k ¼ jDjðkÞj2; j ¼ 1; 2; . . .; J; k ¼ 1; 2; . . .;N: ð26Þ

Thewavelet energy of approximation components at instant

k and scale j is defined as below in pursuit of unification:

EJþ1;k ¼ jAJ kð Þj2; k ¼ 1; 2; . . .;N: ð27Þ

As a consequence, it can be described that the wavelet

energy for each scale as below:

Ej ¼
XN

k¼1

Ej;k; j ¼ 1; 2; . . .; J þ 1: ð28Þ

The definition of total wavelet energy can be concluded

as follows:

Etol ¼
XJþ1

j¼1

Ej: ð29Þ

For the jth scale, the wavelet energy ratio is treated as a

normalized value:

Pj ¼
Ej

Etol

X�N

�1

Pj ¼ 1

 !

: ð30Þ

Pj which is the wavelet energy ratio vector, stands for

time-scale energy distribution. It can also serve as a proper

instrument to recognize and describe the features of a

signal in time–frequency domain.

During the process of studying and comparing the

probability distribution, Shannon entropy can be consid-

ered as one valuable standard, which offers a measure of

any distribution information. Till this stage, the definition

of wavelet entropy can be confirmed as below considering

Shannon entropy theory and wavelet energy ratio:
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SWT ¼ SWT Pð Þ ¼ �
X

Pj � ln Pj

� �

: ð31Þ

In a sense, the wavelet entropy can stand for the degree

of signal order or disorder. Therefore, useful information

concerning basic dynamical process related with measured

signals can be provided by wavelet entropy.

2.5 FastICA Based Feature Extraction Method

In the ICA algorithm, the measured variables X 2 Rd can

be conveyed as linear combination of m unknown inde-

pendent components s = (s1,s2,…,sm)
T[Rm, namely

X ¼ As; ð32Þ

where A[Rd9m is the mixing matrix. ICA is used to

estimate unknown A and s only from the known X.

In this way, it is of great value to explore a de-mixing

matrix W which is described as

ŝ ¼ WX: ð33Þ

Therefore, vector ŝ after reconstruction tend to be

independent. W is separated into two parts, namely, dom-

inant part Wd and excluded part We. The definition of I2

illustrating the systematic part for process variation is as

below:

I2 ¼ ŝTd ŝd; ð34Þ

where ŝd ¼ WdX. The definition of squared prediction

error (SPE), which is adopted to monitor the non-system-

atic part of process variation as

SPE ¼ eTe; ð35Þ

where e ¼ X � X̂. Ie
2, which equals to the process variation

from the excluded part. Besides, it also makes up for the

wrong selection of ICs number of the dominant part. The

definition of e ¼ X � X̂. Ie
2 as below:

I2e ¼ ŝTe ŝe: ð36Þ

In terms of the performance result of estimating ICA,

FastICA algorithm turns out to be a greatly efficient way.

The fixed-point iteration scheme, which is adopted by Fast

ICA algorithm, has been proved by independent tests and it

can work 10–100 times faster than traditional gradient

descent methods for ICA.

In addition, FastICA algorithm is also better than others

due to it plays an important role in performing projection

pursuit. In this case, FastICA algorithm can offer an all-

purpose data analysis method which can be applied to

exploratory fashion and also estimation of independent

components as well. Through making comparison between

PCA and Fast ICA, the latent variables of the former are

deemed to be Gaussian-distributed and the I2, Ie
2 and SPE

of the latter is separated from normality assumption. Also,

PCA is inclined to process Gaussian information and Fast

ICA focuses on non-Gaussian information. Based on the

above mentioned point and considering the fact that many

production processes present non-Gaussian characteristic,

this paper takes Fast ICA as a way for feature extraction.

2.6 Supporting Vector Machine (SVM)

Vapnik [41] improved an optimal separating hyper plane in

case of linearly separable, leading to the formation of

statistical learning theory. Then based on statistical learn-

ing theory, SVM comes into being. SVM stands for new

learning methods, during the application of which, as a

classifier, original input data space is included into a high

dimensional dot product space. This space is titled as

feature space.

Later an optimal hyper plane is determined in the feature

space to bring the generalization capacity of combined

classifier to max degree. Therefore, there is some corre-

sponding relationship between the problems of non-linear

in low dimensional space with the problem of linear

problem in the high dimensional space.

Based on non-linear mapping function u(x), and the

linear function sets, the input vector x is included in the

high dimensional space Z:

f x; að Þ ¼ x � uðxÞð Þ þ b: ð37Þ

Feature space, in case of high dimensional, can serve as

an instrument to construct the optimal classification hyper-

plane. Taking below training data set into consideration:

y1; x1ð Þ; y2; x2ð Þ; . . .; yl; xlð Þ; x 2 Rn; y 2 �1;þ1f g:
ð38Þ

The separation task is solved through the following

optimal problem:

min
1

2
xk k2þC

Xl

i¼1

ni;

s:t:
yi x � u xið Þ þ bð Þ� 1� ni; i ¼ 1; 2; � � � ; l;
ni � 0; i ¼ 1; 2; � � � ; l;

� ð39Þ

where the coefficient C[ 0 is a penalty factor, and the

coefficient ni is a slack factor.

With the adoption of Lagrange multipliers, the quadratic

optimization problem Eq. (39) can be solved. For this

reason, it can be concluded that the hyper plane decision

function is as follows:

f xð Þ ¼ sgn
Xl

i¼1

aiyi u xið Þ � u xj
� �� �

þ b

 !

: ð40Þ

In Eq. (40), the inner product u(xi)�u(xj) needs to be

calculated in the feature space. In 1992, Boser, et al. [42],
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proposed that calculation of inner product explicitly in the

feature space was not a must item. The kernel function

K(xi,xj), based on kernel function theory, can be adopted in

input space to calculate the inner produce which conforms

to the Mercer condition. As a result, Eq. (40) can be con-

veyed as below:

f xð Þ ¼ sgn
Xl

i¼1

aiyiK xi; xj
� �

þ b

 !

: ð41Þ

The typical examples of kernel function are polynomial

kernel, radial basis function (RBF) kernel, sigmoid kernel

and linear kernel. In many practical applications [43, 44],

the RBF kernel obtains the highest classification accuracy

rate than other kernel functions, therefore, in the current

work, we mainly consider the RBF kernel.

SVM has been originally developed to solve binary

classification problems. However, practical problems often

have classes more than two. To effectively extend it for

multi-class classification, several methods have been pro-

posed, such as ‘‘one-against-one’’, ‘‘one-against-all’’, and

directed acyclic graph (DAG), where Hsu and Lin [45]

gave us a comparison between these methods and pointed

out that the ‘‘one-against-one’’ method was more suit-

able for practical use than other methods. In this study, we

adopt ‘‘one-against-one’’ method to identify the different

faults.

2.7 FastICA-SVM

Concerning the training of SVM, the performance will be

negatively affected by the irrelevant input variables. In Ref.

[46], the performance of SVM with feature extraction is

better than that without. If we infer as the similar way, the

priority in developing SVM fault detector is feature

extraction. Figure 2 presents the structure of FastICA-SVM

fault detector. In the beginning, the feature extraction based

on FastICA is adopted to transform high dimension dataset

into a lower one. Then, the separate components extracted

are adopted to count the systematic part statistic. Due to the

auto-correlation of calculated statistic, timer delay and time

difference of systematic statistics can be considered as

input vectors for FastICA-SVM. There are mainly two

phases in developing FastICA-SVM fault detector, off-line

training and on-line testing. Below is the detailed proce-

dure. Figure 3 shows the flow chart of fault diagnosis

system.

2.7.1 Phase I: Off-line FastICA-SVM training

A referenced knowledge for FastICA-SVM is built in this

phase and the development of normal operation condition

and fault operation condition datasets are also considered.

2.7.1.1 Normal Training Dataset Development Step 1:

Scale normal operation condition dataset. Obtain a normal

operation condition dataset (without shifts in the process),

denoted as Xnormal. The first step focuses on centering and

whitening Xnormal, and then denote as Znormal. The most

cross-correlation between the observed variables are

eliminated in this step.

Step 2: Execute FastICA algorithm. Initially let d = m.

Through using FastICA algorithm over Znormal, and an

orthogonal matrix Bnormal can be obtained. Therefore, the

reconstructed dataset is provided byŝnormal ¼ BT
normalZnormal.

Step 3: Determine the order of ŝnormal. In this step, the

order of ŝnormal is determine by using Euclidean norm (L2)

of each row(wi) in Wnormal: ArgiMax wik k2. Therefore, a
sorted de-mixing matrix can be obtained.

Step 4: Perform dimension reduction. Cross-validation,

majority of non-Gaussianity and variance of reconstruction

error and other methods can be applied to choose the

separate components number. However the standard cri-

terion to decide the number is missing. In this paper, the

researcher considers the number of separate components to

be the same as that of principal components.

Step 5: Calculate the systematic part statistics. The sys-

tematic part of data structure is represented by the dominant

independent components. Based on the above steps, a

dominant de-mixing matrix,Wd can be obtained. According

to Eq. (10), Bd ¼ WdQ
�i

� �T
. Hence, the dominant inde-

pendent components can be calculated by

ŝnormal d ¼ BT
dZnormal, and the systematic part statistic at

sample t can be obtained, which is

I2normal tð Þ ¼ ŝTnormal d tð Þŝnormal d tð Þ: The obtained I2normal is

usually auto-correlated. Hence, the time delay I2normal t � 1ð Þ
and time difference I2normal tð Þ � I2normal t � 1ð Þ are addition-

ally taken as input vectors for FastICA-SVM.

2.7.1.2 Fault Operation Condition Dataset Develop-

ment Besides, fault operation condition dataset is also

scaled at first, denoted as Zfault, ŝfault d represents theFig. 2 Architecture of FastICA-SVM fault detector
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dominant independent components under fault operation

condition, and it can be calculated by ŝfault d ¼ BT
dZfault.

The statistic of fault operation condition systematic part at

sample t is calculated from I2fault tð Þ ¼ ŝTfault d tð Þŝfault d tð Þ.
Also, I2fault t � 1ð Þ and I2fault tð Þ � I2fault t � 1ð Þ are considered

as the input vectors of FastICA-SVM.

2.7.2 Phase II: On-Line FastICA-SVM Testing

The trained FastICA-SVM model is evaluated in this phase.

Once the new data is obtained, then the same scaling is

applied, and the scaled dataset is denoted as Znew. The dom-

inant independent components of Znew can be obtained from

ŝnew d ¼ BT
dZnew, and the statistic of systematic part at time t

can be calculated by I2new tð Þ ¼ ŝTnew d tð Þŝnew d tð Þ. The

statistics, I2new tð Þ; I2new t � 1ð Þ and I2new tð Þ � I2new t � 1ð Þ are

fed into trained FastICA-SVMfor on-line processmonitoring.

3 Experiment and Data Set

The vibration acceleration signals used in this paper have

been acquired from the six cylinder heads in seven dif-

ferent states of WP7 diesel engine valve train. According to

Fig. 4, the experiment test rig consists of the six-cylinder

in-line diesel engine, dynamometer, LMS SCADA III

multi-analyzer system (piezoelectric accelerometer sensors

and a data acquisition system with 10 kHz sampling fre-

quency) and a dell computer. Figure 5 presents the signal-

flow graph representation of engine fault diagnosis system.

The experiment comprises normal engine state and six

valve clearance fault states. In normal state, all intake valve

clearance is 0.3 mm and all exhaust valve clearance is

0.5 mm. In fault state, one of six cylinder was fault, the intake

valve clearance is 0.4 mm and the exhaust valve clearance is

0.6 mm, as listed in Table 1 (in boldface). In the experimental

work, the enginewas operated in 2300 r/minwith 100% load,

and each sample in the fault data sets includes 2562 points.

Fig. 3 Flow chart of fault diagnosis system

Fig. 4 Experimental test rig of diesel engine
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After the experimental work, the fault and normal vibra-

tion signals were recorded by 6 accelerometer sensors with a

data acquisition system.And the placement of sensor specific

location as below: each sensor was put on the central of each

engine cylinder head. Therefore, six cylinder heads needed

six sensors. Figure 5 also shows the experimental procedure

and data processing of the fault diagnosis system. The

acceleration sensors were used to measure the normal and

fault vibration signals which were recorded with the support

of a data acquisition system. The whole process as follows:

the mathematical morphology filter was used to de-noise the

raw signals and LMD was used to decompose the de-noised

signal into a set of PFs. Since then, the statistic features,

fractal correlation dimension, wavelet energy and energy of

each PF was calculated as the features input into the classi-

fiers SVM (Fast-SVM/PCA-SVM) to identify the engine

fault under different operation conditions.

4 Features Extraction

4.1 Parametric Settings for Correlation Dimension

Calculation

The best time delay s and embedding dimension m are two

important parameters for the phase space reconstruction.

The choice of parameters quality affects the accuracy of

the correlation dimension calculation results in a direct

way.

The optimum method to determine the time delay is C-C

method proposed by Kim et al. [47, 48], and its purpose is

to select the suitable time interval as far as possible so as to

keep each component in the reconstruction space inde-

pendent. If the selection is too small, any of two adjacent

delay coordinates xðiÞand x (i ? 1) will be very numerical

close, and cannot be applied as two independent coordinate

systems, even leading to the information redundancy. If the

selection is too big, any of two adjacent coordinates irrel-

evant and does not reflect the overall information system.

The purpose of choosing embedded dimension m is to

make the original attractor and attractor reconstructed

equivalent topology. If m chosen is too small, attractor may

be fold, or even some places will appear the intersection. In

some smaller areas, the points will be included on attractor

different track leading to the shape of the attractor recon-

structed and primitive attractor is completely different. If

Fig. 5 Signal-flow graph representation of engine valve train faults

diagnosis system

Table 1 Seven diesel engine states

State Valve Valve clearance c/mm

cyl

1

cyl

2

cyl

3

cyl

4

cyl

5

cyl

6

State 1 Intake

valve

0.4 0.3 0.3 0.3 0.3 0.3

Exhaust

valve

0.6 0.5 0.5 0.5 0.5 0.5

State 2 Intake

valve

0.3 0.4 0.3 0.3 0.3 0.3

Exhaust

valve

0.5 0.6 0.5 0.5 0.5 0.5

State 3 Intake

valve

0.3 0.3 0.4 0.3 0.3 0.3

Exhaust

valve

0.5 0.5 0.6 0.5 0.5 0.5

State 4 Intake

valve

0.3 0.3 0.3 0.4 0.3 0.3

Exhaust

valve

0.5 0.5 0.5 0.6 0.5 0.5

State 5 Intake

valve

0.3 0.3 0.3 0.3 0.4 0.3

Exhaust

valve

0.5 0.5 0.5 0.5 0.6 0.5

State 6 Intake

valve

0.3 0.3 0.3 0.3 0.3 0.4

Exhaust

valve

0.5 0.5 0.5 0.5 0.5 0.6

State 7

(normal)

Intake

valve

0.3 0.3 0.3 0.3 0.3 0.3

Exhaust

valve

0.5 0.5 0.5 0.5 0.5 0.5
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m chosen is too large, though the theory is feasible, the

geometrical structure of attractor is completely opened.

However, it increases the amount of calculation and the

influence of the noise is also amplified. Therefore, appro-

priate embedding dimension is demanded to be chosen to

ensure the accurate calculation and reduce the influence of

calculation noise.

Due to these main parameters calculation are affected by

noise seriously. A non-linear analysis procedure is applied

to reduce noise level from the measured vibration signals

based on the mathematical morphology filter in the first

stage. The noise effect result of the fault condition vibra-

tion signal is illustrated in Fig. 6. The (a), (b) are the time

delay parameter s and time window sw calculated results of

raw and de-noised signals measured in the first cylinder

valve clearance fault condition. Figure 6 obviously indi-

cates that the correlation dimension parameters are sig-

nificantly influenced by noise level and the parameters

calculated results are different.

Figure 6(a), (b) are the calculation of time delay sd and
embedding dimension m under first cylinder valve clear-

ance fault condition. In Fig. 6, the mean of S(t) reflects

the autocorrelation features of the time series, the mean of

4S(t) measures the maximum deviation of all radius, and

the global minimum value Scor(t) is the length of time

sequence time window sw. The first minimum mean of

4S(t) is the optimal time delay sd, and the global mini-

mum value of the Scor(t) is the time window length sw.
The result shows that time delay sd = 3 with the raw

signal, while sd = 5 with the de-noised signal, while the

embedding dimensions m = sw/sd ?1 is the 8 and 6,

separately.

In this work, the time delay sd and embedding dimen-

sion m under seven states are calculated after de-noising in

Fig. 7 and the results are listed in Table 2.

4.2 Features Extracted

The total 26 features are calculated from 8 feature

parameters of time domain. These parameters are respec-

tively, Mean, Standard deviation, Root Mean Square

(RMS), Skewness, and Kurtosis, 8 frequency bands

Wavelet energy, 8 frequency bands Wavelet entropy, and

Fractal correlation dimension values. The total of feature

parameters can be shown in Table 3.

4.3 Dimensionality Reduction with PCA

and FastICA

The mapping process of data from higher dimension into

low dimension space can be named as feature extraction.

The purpose of this process is to prevent the curse of

dimensionality phenomenon. Both FastICA and PCA

were adopted to decrease the feature dimensionality with

95% variation of eigenvalues. In this paper, based on the

eigenvalues separately, dimensionality reduction leads to

the being of 8 independents components (ICs) and 10

principal components (PCs). In addition, it can be real-

ized that the change from data features becoming com-

ponents is independent and uncorrelated. The fast

independent and principal components are plotted in

Fig. 8.

As for training SVM, Cao, et al. [46], had demonstrated

that it was better if reducing dimensionality of SVM. Thus,

in order to develop the SVM fault classifier, the dimen-

sionality reduction based on FastICA is used for projecting

the high dimension dataset into lower one. Then the

extracted independent components are used to calculate the

systematic part statistics, and the time delay and time dif-

ference of systematic statistics are considered as input

vectors for FastICA-SVM.

Figure 9 and Table 4 to Table 6 have proved that the

training and testing accuracies of SVM, PCA-SVM, and

FastICA-SVM with varies features selected. The results

clearly indicate that FastICA-SVM is beneficial for

detecting mistakes than SVM and PCA-SVM.

Fig. 6 Noise influence for parameters calculation
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5 Results and Discussion

It shows that the result of this study in Fig. 9 and Table 4

to Table 6. The classification accuracy (%) of training and

testing, the best parameters c and g for training process and

the training time are listed in the above tables. The grid

search method is used to select the parameters c and g be-

cause the number of grid points is not too large for only

two parameters (c and g). A possible interval of c (or

g) with the grid space can be determined. Then, the cross-

validation (CV) accuracy is obtained for each grid points of

(c; g). Finally, the parameters with the highest CV accuracy

are returned and were used to train the whole training set.

Then, the classification accuracy (%) is determined by

features extracted input and the classifier type.

Fig. 7 Time delay sd and embedding dimension m under seven states

Table 2 Parameters calculation

States Time delay sd/s Embedding dimension

1 5 6

2 5 9

3 5 11

4 6 28

5 5 19

6 7 30

7 5 39

Table 3 Features extracted

Signals Position Feature parameters

Vibration Vertical six cylinder heads Mean

Standard Deviation (SD)

Root Mean Square (RMS)

Skewness

Kurtosis

Wavelet energy

Wavelet entropy

Correlation dimension
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5.1 Effect of Feature Numbers

5 statistical features (mean, SD, kurtosis, skewness, RMS) and

21 special features (5 fractal correlation dimension, 16

wavelet energy and entropy) that could explain discriminating

fault conditions are as input features. Table 4 to Table 6 show

the importance of their relative in classification and the effi-

ciency of SVMs for all features. The result shows that when

fractal correlation dimension combining wavelet energy and

entropy as the classifier input special features, the classifier

offers the best efficiency. Based on the tables, a reasonably

good efficiency is obtained with fractal correlation dimension

features. One can also be observed from the tables that more

and more certain number of features and the efficiency falls

down. It will due to consideration of some additional features

that is not contributing much about classification.

There are 26 kinds of domain features extracted from

decomposed vibration signals which are used as input

features. It is found that the order of importance of the

special features from the results, and it is considered that

the features are one by one in the order from 1 feature to 26

features. The classification efficiency of SVM, PCA-SVM

and FastICA-SVM are presented in Table 4 to Table 6,

respectively.

The tables imply that when the number of features is 21

special features (cd ? energy ? entropy), the average

classification efficiency reaches its maximum value. Also,

the average efficiency is good (98.286%) with all features

using FastICA-SVM. The average efficiency is excellent

(98.571%) When the number of features is changed to 21

special features, people generally prefer to go for 21 spe-

cial features, although the reduction in efficiency is not

enough 100%. People need to go for more features beyond

these features mentioned in this paper if the application

demands more average classification efficiency 100%.

However, selecting more features more than 21 may give

100% efficiency; however, in lots of practical situations,

considering the computational complexity, the preference

is less compared to the all choice.

5.2 Effect of Dimensionality Reduction

Table 4 to Table 6 summarize the training and testing

precision of the three ways with various features and

combinations. The tables show that SVM with dimen-

sionality reduction (PCA and FastICA) can produce higher

detection rates than without dimensionality reduction. In

Table 4, the classification process is performed at the pri-

mal time domain feature set without feature dimensionality

reduction. The classification accuracy of this process ran-

ges from 55.453% to 92.121%. The bad performance of

this classification is due to the existence of irrelevant and

useless features. Many irrelevant features make burden and

tend to reduce the performance of classifier.

After that, as presented in Table 5 and Table 6, the

classification rate with PCA and FastICA dimensionality

reduction ranged from 80% to 98.571%. It is better than

that without dimensionality reduction. Through using

FastICA and PCA dimensionality reduction, the beneficial

feature is extracted from primal feature sets. Furthermore,

the number of support vectors (SVs) reduction due to

dimensionality reduction. In this case, classification pro-

cess using FastICA dimensionality reduction needs fewer

numbers of SVs than PCA dimensionality reduction and

original feature without dimensionality reduction. The

phenomenon could be explained that FastICA finds the

components not merely uncorrelated except independent.

Independent components are comparatively more useful

for classification rather than uncorrelated components.

Because the negentropy in FastICA could take into con-

sideration, the higher order information of the original

inputs better than PCA using sample Standard deviation

matrix.

5.3 Effect of Feature Selection

Table 4 to Table 6 give the classification performance of

26 time domain features and different features combina-

tions on various data sets and make different classification

Fig. 8 Reduction of dimensions
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Fig. 9 Comparison of PCA-SVM and FastICA-SVM faults classifier with different features
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results. The classification performance increases from 80%

to 98.571% with the different features and combinations.

The result indicates that performance of classification

accuracy is increased due to the feature selection and the

classifier performance. Besides, the tables show that the

classification rates of training and testing are gradually

higher with the features number different and its contri-

bution towards classification. Furthermore, the classifica-

tion performance of the FastICA-SVM is highly increased

through combining all of the 26 time domain features. In

comparison with the 26 time domain features, because the

non-linear faults information is provided to the FastICA-

SVM through fractal dimensions, wavelet energy and

entropy in tandem without 5 time-domain statistical fea-

tures get better classification accuracy rate on data sets.

This condition should due to the bad quality of data input

unable of being non-effective to represent system nonlinear

characteristics well. In Table 4 to Table 6, the fractal

correlation dimension is the most effective feature while

the wavelet energy and entropy are second to the fractal

dimension and the statistic features the worst for our

classifier.

Finally, the faults classification using FastICA dimen-

sionality reduction and all kind of features is presented in

Table 4 SVM without feature extraction classify results

Features Best parameter (c, g) Train accuracy AccTr/% Test accuracy AccT/% Training time t/s

Correlation dimension (9.766 9 10-4, 2) 88.416 74.473 0.312

Statistic features (0.4, 0.5) 72.453 55.453 0.904

Wavelet energy (9.766 9 10-4, 3) 85.248 64.245 0.995

Wavelet entropy (2, 1) 78.113 72.352 0.993

Cd ? Sf (4, 0.014) 85.155 77.142 0.965

Cd ? energy (4, 1) 92.253 90.846 0.991

Cd ? entropy (16, 0.031) 84.224 75.174 0.952

Cd ? energy ? entropy (8, 6) 97.432 92.121 0.985

All features (4, 9.766 9 10-4) 97.542 91.115 0.985

Table 5 PCA-SVM classify results

Features Best parameter (c, g) Train accuracy AccTr/% Test accuracy AccT/% Training time t/s

Correlation dimension (9.766 9 10-4, 2) 94.571 85.857 0.205

Statistic features (0.5, 0.2) 81.571 80 0.894

Wavelet energy (9.766 9 10-4, 1) 90.714 83.286 0.986

Wavelet entropy (16, 1) 91.857 84.286 0.986

Cd ? Sf (4, 0.5) 90.143 82.456 0.901

Cd ? energy (4, 1) 95.246 92.857 0.986

Cd ? entropy (16, 0.031) 94.286 85.286 0.874

Cd ? energy ? entropy (9.766 9 10-4, 9.766 9 10-4) 98.571 96.714 0.969

All features (9.766 9 10-4, 9.766 9 10-4) 96.571 84.857 0.983

Table 6 FastICA-SVM classify results

Features Best parameter (c, g) Train accuracy AccTr/% Test accuracy AccT/% Training time t/s

Correlation dimension (4, 0.016) 97.143 87.286 0.851

Statistic features (32, 0.016) 87.143 80 0.868

Wavelet energy (1, 0.0166) 91.429 84.143 0.937

Wavelet entropy (128, 0.031) 92.354 87.214 0.289

Cd ? Sf (4, 0.031) 95.714 85.143 0.747

Cd ? energy (512, 0.008) 98.547 93.571 0.188

Cd ? entropy (1, 0.063) 92.571 88.429 0.878

Cd ? energy ? entropy (2, 1) 100 98.571 1

All features (2, 0.016) 100 98.286 1
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Table 6. It presents the best performance in faults classi-

fication rather than other ways. Based on this table, it can

be seen that performance of special features is 98.571% in

fault classification and the feature extraction using fractal

correlation dimension and dimensionality reduction with

FastICA is the best method among them, due to the fractal

correlation dimension can represent system characteristics

effectively, while FastICA seeks not only uncorrelated, but

also independent components which is more useful for

classification process. Also, the fractal correlation dimen-

sion calculated after decomposing by LMD is beneficial for

our fault diagnosis and the application of feature selection

makes the performance of classification become more

perfect.

6 Conclusions

(1) A method which combines mathematical morphol-

ogy filter, LMD, wavelet energy and entropy, and

correlation dimension together presents how to

extract the diesel engine faults features more accu-

rately, which is more useful to reflect the uncertainty

and nonlinear of vibration signal in time domain, and

can be used to classify different faults as effective

features.

(2) The FastICA based multi-class classifier SVM is

proposed to apply in faults classification process.

With this method, the higher classification accuracy

and better generalization performance can be

achieved in small samples recognition.

(3) Based on the proposed methods, a new fault

diagnosis methodology is developed by using the

features extraction, implemented via FastICA-SVM

classifier. The actual example and result show that

this methodology can improve the accuracy and

efficiency of diesel engine fault diagnosis.
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