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Abstract Detection of structural changes from an opera-

tional process is a major goal in machine condition moni-

toring. Existing methods for this purpose are mainly based

on retrospective analysis, resulting in a large detection

delay that limits their usages in real applications. This

paper presents a new adaptive real-time change detection

algorithm, an extension of the recent research by combin-

ing with an incremental sliding-window strategy, to handle

the multi-change detection in long-term monitoring of

machine operations. In particular, in the framework, Hil-

bert space embedding of distribution is used to map the

original data into the Re-producing Kernel Hilbert Space

(RKHS) for change detection; then, a new adaptive

threshold strategy can be developed when making change

decision, in which a global factor (used to control the

coarse-to-fine level of detection) is introduced to replace

the fixed value of threshold. Through experiments on a

range of real testing data which was collected from an

experimental rotating machinery system, the excellent

detection performances of the algorithm for engineering

applications were demonstrated. Compared with state-of-

the-art methods, the proposed algorithm can be more

suitable for long-term machinery condition monitoring

without any manual re-calibration, thus is promising in

modern industries.

Keywords Machine monitoring � Change detection �
Long-term monitoring � Adaptive threshold

1 Introduction

Detection of structural changes from an operational process

is a major goal in machinery monitoring which enables to

solve many practical problems ranging from early fault

detection, safety protection as well as other process control

problems. Existing works are mainly based on a retro-

spective analysis of a data stream composed of numerical

condition monitoring (CM) variables, such as vibration,

sound, power consumption. The basic idea of a standard

retrospective change detection mainly relies on estimating

the logarithm of the likelihood ratio between two distri-

butions [1, 2]. This kind of strategy argues that the detec-

tion of a change can be converted into the detection of the

parameter difference between the two distributions before

and after this change point. As a consequence, the retro-

spective change detection aims to estimate this parameter

difference of distributions based upon likelihood ratio

statistics. Change decision can be made by performing a

null hypothesis testing with a threshold. Many effective

tools for this goal such as the cumulative sum metric

(CUSUM) [3–6], geometric moving average (GMA) [7, 8]

and the generalized likelihood ratio test (GLRT) [9–12]

have been widely used. For example, Willersrud et al. [12]

developed the GLRT to make efficient downhole drilling

washout detection with the multivariate t-distribution;

Reñones et al. [6] used the CUSUM analysis for multi-
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tooth machine tool fault detection. Although these methods

have been experimentally demonstrated the effectiveness

in various fields, due to the requirement of data after

change point, a large detection delay is an essential limi-

tation of these methods for real applications [13]. On the

other hand, real-time change detection aims to detect

changes as soon as possible when a change occurs, this

requirement is crucial in many real-life scenarios such as

security monitoring [14, 15], health care [16, 17], auto-

mated factory [18, 19] as well as machine operation

monitoring studied in this paper. In operation of real-time

change detection, at each time when a datum is input, it

evaluates what extent the input datum is likely to be a

change-point by a certain type of measuring score [20]

which does not need any input data after change time. The

real-time approaches have succeeded in solving many

practical applications (e.g., wind turbine condition moni-

toring [21], driver vigilance monitoring [22]), and thus are

promising [23].

The goal of this paper is to further advance this research

line of real-time detection methods. More specifically, our

main contributions in this paper are summarized in two

folds. The first contribution is to apply a martingale-based

framework proposed in our recent article [24] to long-term

machine monitoring by combining an incremental sliding-

window strategy. The basic idea of the original martingale

is to directly learn a statistical regularity from already

observed data, and then detect possible change(s) by

investigating how much each data is deviated from the

regularity using martingale by testing exchangeability.

That framework, however, only works for at-most-one-

point change detection, thus unsuitable for the cases con-

taining multiple changes in long-term monitoring applica-

tions. In this paper, we introduce an incremental sliding-

window strategy for solving this problem.

Recall that, the threshold value for change decision

making is a key factor of detection accuracy. Potential

weakness of the majority of exiting algorithms, e.g., Refs.

[5–11], is that they need either human-made instruction/

intervention or an off-line cross-validation to confirm the

value of threshold before operation, and thus make them

largely limited in real applications. Another contribution of

this paper is to develop a new adaptive threshold when

performing change decision making. In particular, we

introduce an alternative factor: a fixed-global parameter

used to control the coarse-to-fine level of detection, instead

of the fixed value of threshold, for change detection (see

Section 3.2 for details). By using this factor, at each step of

change decision, the threshold value can be adaptively

computed from the already observed data.

Besides the methodological extensions of the proposed

method, we also conducted validations on an experimental

setup to investigate effectiveness/priority of the method for

change detection with large datasets. For more details,

please see Section 4.

The rest of the paper is structured as follows. Section 2

presents the outline of martingale framework for machine

monitoring. Section 3 formulates problems addressed in

this paper and provides our proposed methods, followed by

experimental results in Section 4. Section 5 concludes this

paper and shows the future work.

2 Martingale Based Change Detection
for Machinery Monitoring

Assuming that we have collected a data stream composed

of numerical CM variables from an operational process of a

machine, i.e., X = {x1,…, xi,…, xn} where

xi, i 2 f1; 2; . . .; ng is the variable value at time i, three

points are provided in the following to support the use of

martingale for change detection:

(1) The changes are detected by testing the null

hypothesis that all n (strangeness) values (which

corresponds to x1; x2; . . .; xn; respectively) are

exchangeable in the index, through the correspond-

ing exchangeability martingale M1;M2; . . .;Mn,

where Mn is a measurable function of s1; s2; . . .; sn,

satisfying

Mn ¼ EðMnþ1jM1;M2; . . .;MnÞ: ð1Þ

(2) The following Doob’s inequality [25] can be used for

rejecting this null hypothesis for a large value of Mn:

Pð9njMn � kÞ� 1

k
: ð2Þ

(3) This (exchangeability) martingale is constructed

from a p value, the probability of obtaining a test

statistic at least as extreme as the one that was

actually observed, and the p-value is obtained by a

strangeness value appropriately determined in each

specific application.

On the basis of the above three points, the outline of

performing martingale for change detection is described as

follows (see Ref. [25] for more details):

Step 1: The randomized power martingale (RPM) [26] is

constructed from the computed s1; s2; . . .; sn by

Mt ¼
Yt

i¼1

ðep̂e�1
i Þ; t 2 f1; 2; . . .; ng; ð3Þ

where e 2 ð0; 1Þ and p̂is are the value computed from p̂

-value functions:
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p̂iðfs1; . . .; si�1g; siÞ

¼ #fj : sðjÞ[ sðiÞg þ hi#fj : sðjÞ ¼ sðiÞg
i

;
ð4Þ

where #f�g is a counting function and hi is a random value

from a uniformly distribution of [0, 1],

j 2 f1; 2; . . .; i� 1g:
Step 2: The following inequality is then tested based on

the Doob’s inequality for any t 2 f1; 2; . . .; ng to test the

hypothesis as below:

H0 : no change : 0\Mt\k ;

HA : change occurs : Mt � k :
ð5Þ

That is, if the martingale value Mt is greater than a

predefined threshold k, HA in Eq. (5) is satisfied, i.e., a

change occurs on the time t. Otherwise, the martingale test

satisfying H0 continues to operate as long as 0\Mt\k.

3 Problem Formulation and Proposed Scheme

In Section 2, we have provided the outline of martingale-

test for change detection. Two problems have to be further

considered for long-term machinery monitoring:

(1) How to deal with multi-change detection in long-

term monitoring?

(2) Is it possible to adaptively compute the threshold

value when making change decision?

In the following, we will discuss these two problems in

details and provide our proposed schemes.

3.1 Change Detection Using Incremental Sliding-

Window

Problem 1. As shown in Eq. (3) and Eq. (5), Mt can be

sequentially processed with a fixed-length L sliding-win-

dow over the given data stream, and all possible change

candidates t 2 f1; 2; . . .; ng are tested. This process how-

ever may be unsuitable for long-term monitoring applica-

tions. A key feature of real machine operations is temporal

variations, i.e., one operation can last for a long time or

only a few seconds. Hence, it is difficult to use a fixed-

length L sliding-window to capture transitions (i.e., chan-

ges from an operational state to another) in long-term

monitoring. More specifically, a small length of L causes

over-change-detection and a large length of L causes a

large delay. To overcome this problem, we combine the

martingale with an incremental sliding-window strategy

[27] to design a real-time change detection algorithm for

Eq. (5).

Proposed scheme: By virtue of incremental sliding-

window, the length L can be automatically updated

depending on whether a change is detected or not at time t:

If t is no change : ntþ1 ¼ nt; Ltþ1 ¼ Lt þ DL;

If t is a change : ntþ1 ¼ t; Ltþ1 ¼ L1;
ð6Þ

where nt is the starting time when computing the current

martingale and Lt is the length of corresponding sliding

window at time t. The process starts with n1 = 1 and

L1 = 1, and ends with nt þ Lt [ n where n is the length of

a given data stream in off-line applications or ends at an

pre-defined stopping time in on-line applications. Here, it is

worth mentioning that DL is an increasing step to update

the sliding window and was set as 1 in the following

experiments.

3.2 Adaptive Threshold for Change Detection

Problem 2. When making change decision by testing the

null hypothesis shown in Eq. (5), the threshold of k is

essential as it balances the detection precision and recall

(their definitions will be given in Section 4.3). In general,

the value of k is pre-defined empirically or confirmed by a

prior estimation for change detection. It is, however, often

difficult to confirm the optimal value in real-world appli-

cations. To address this problem, unlike existing works that

directly used the original monitored variables for change

detection (e.g., Refs. [6–12, 25]), we utilize the Hilbert

space embedding of distribution (HED, also called the

kernel mean or mean map) to map the original data

fxig, i 2 f1; 2; . . .; ng into the Re-producing Kernel Hilbert

Space (RKHS) (see Figure 1). Without going into details,

the idea of using HED for change detection is straightfor-

ward. By this, the probability distribution is now repre-

sented as an element of a RKHS, and the change can be

thus detected by using a well behaved smoothing kernel

function, whose values are small on the data belonging to

the same pattern and large on the data from different

patterns.

Figure 1 Use of HED to map original data into RKHS for change

detection
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Proposed scheme: Inspired by Ref. [28], probabilistic

distributions can be embedded in RKHS. The center of the

HED are the mean mapping functions:

lðpxÞ ¼ EðkðfxigÞÞ;

lðfxigÞ ¼
1

t

Xt

i¼1

kðxiÞ;
ð7Þ

where fxig i = 1,2,…,t are assumed to be I.I.D sampled

from the distribution Px. Under mild condi-

tions, l ðPxÞ(same for l ðfxigÞ) is an element of the Hil-

bert space. Mapping l ðPxÞ is attractive because each data

point xi has a one-to-one correspondence with mapping

l ðPxÞ. Thus, we can use the function norm

sðlðPxÞ; kðxtÞÞ(instead of sðPfx1; x2; . . .; xt�1g; xtÞ) used in

Ref. [1]) to quantify the strangeness value st for xt. We do

not need to access the actual distributions but rather finite

samples to calculate/estimate the distribution q.
Lemma 1. As long as the rademacher average [29],

which measures the ‘‘size’’ of a class of real-valued func-

tions with respect to a probability distribution, is well

behaved, finite sample yield error converges to zero, thus

they empirically approximate lðPxÞ(see Ref. [28] for more

details).

The success of kernel methods largely depends on the

choice of the kernel function k which is chosen according

to the domain knowledge or universal kernels. In this

paper, we employ the widely-used Gaussian radial basis

function (RBF) kernel by

kðxiÞ ¼ exp � 1

2r2
jjxi � �xjj2

� �
; ð8Þ

where �x and r are the sample mean and standard deviation

of the data stream fx1; x2; . . .; xig: We next construct st to

measure the strangeness of xt to the past data stream up to

time t–1, i.e., fx1; x2; . . .; xi�1g in RKHS, as

st ¼ sðlðpxÞ; kðxtÞÞ ¼ jkðxtÞ � kct�1j; ð9Þ

where kct�1 is the kernel center of the data stream, and �j j is
distance metric. Here, it is worth mentioning that in real

engineering scenarios, the CM variables are often com-

posing of multidimensional values measured from multiple

sensors at each time instance, we thus use the Mahalanobis

distance [30] to compute the strangeness st, by considering

correlations between variables such that different patterns

in each dimension can be identified and analyzed [30],

computed by

st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkðxtÞ � kct�1Þ

0 X�1 ðkðxtÞ � kct�1Þ
r

ð10Þ

where
P

is the covariance matrix.

Since we used RBF as the kernel function as given in

Eq. (8), an isolated data point can be certified if st � a � r,

where a is a fixed-global factor controlling the confidence

level of detection and r is the standard deviation computed

from existed data (that is, an adaptive threshold).

Based on this fact, kernelized change decision can be

made by re-writing Eq. (5) as follows,

If 0\Mt\a � K � rt�1 : no change,

If Mt � a � K � rt�1 : change occurs,
ð11Þ

where K is a projection coefficient of data from RKHS to

martingale space and rt�1 can be computed adaptively

from the data stream up to time t � 1. In real implemen-

tation, the employed Gaussian function is often standard-

ized as a normal Gaussian function (i.e., l = 0 and r = 1).

Figure 2 gives typical confidence levels corresponding to

different a in Gaussian distribution. Thus K can be fixed as

K � 2:17 by an off-line estimation. The estimation is made

as follows: (a) given a set of data streams containing

changes, we first make a definition of detection accuracy as

q = N/P where N is the number of correctly detected

changes and P is the number of total detected changes, and

set up a threshold value k� to guarantee a perfect accuracy,

i.e., q = 100%; (b) then, decrease the value of k� gradually
to make sure q not decrease; (c) once q decreases, K is

computed by

K ¼ k�

5 � r
since five times of r can guarantee all changes can be

detected.

4 Experimental Verification

In this section, we aim to demonstrate the effectiveness and

priority of the proposed adaptive change-detection algo-

rithm for long-term machine monitoring. Thus, Experiment

I and Experiment II are conducted to answer the following

two questions:

Figure 2 Different a and corresponding confidence level P in a

Gaussian distribution
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(1) Will the proposed incremental sliding-window be

more suitable than the fixed-length sliding-window

for long-term machine monitoring?

(2) Can the adaptive detection algorithm be effective for

change detection and how does it perform with large

datasets?

4.1 Experimental Setup

Figure 3 shows the experimental setup where various

motor speed inputs were applied to the setup to simulate

changes in real machinery operations. We used the sound

signal as the tested CM signal for testing due to its rela-

tively large applicability in implementation. The relevant

CM sound signals were acquired by a microphone mounted

on the gearbox, and then sent to equipment for a PC.

Figure 4 shows a data stream of collected CM sound

signals where three changes indicating transitions from one

operational state to another are provided by a human

instructor.

4.2 Experiment I: Performance of Incremental

Sliding-Window

In our method, we propose to use incremental sliding-

window, instead of length-fixed sliding window, for long-

term machine monitoring. To evaluate the effectiveness/

priority of this strategy for change detection, a set of testing

threshold values from 1 to 20 at an interval of 1 were

checked. Particularly, Figure 5 shows three detection cases

of using incremental sliding-window for the testing data

stream (shown in Figure 4). It is apparent that the perfor-

mance differs greatly with different values of k, and the

best performance has been achieved when k = 7. Specifi-

cally, the smaller value of brings higher false alarms but

larger value takes a lager detection delay. Here, it is

demonstrated again the important roles of threshold value k
for change detection. In the following, since the value of

k ¼ 7 has been shown the success of change detection for

the testing data, we compare this performance with that of

using a fixed-length L sliding window detection. From

Figure 6 that shows the results of three cases of

L = {3000, 5000, 7000}, we can observe that the small

length of L = 3000 causes over-detection (i.e., more false

alarms) and the large length of L = 7000 cause a large

detection delay; it tends to achieve a good detection per-

formance when L = 5000, while one notes that it is often

difficult to fix the length of L of the sliding-window con-

sidering the great temporal variations of collected CM

signal from real machine operations.

In overall, taking the results shown in Figure 5 and

Figure 6 together, the followings were interestingly found:

• The length-fixed sliding-window martingale requires

more parameters, i.e., k and L, for performing change

detection, which requires a more complicated prior

estimation of them before usage;

• By the incremental sliding-window martingale, only

one parameter: k is required, which inspires an

extension of change detection by adaptive threshold.

Both of them inspire the adaptive threshold given in

Section 3.2, which will be evaluated in the following.

4.3 Experiment II: Performance of Adaptive

Threshold

In this section, we will evaluate the proposed adaptive

threshold for machine monitoring. Here, it is noted that

since in the Section 4.2, we have demonstrated the priority

of using incremental sliding-window for long-term

machine monitoring, in this section, we only test the per-

formance of adaptive threshold with incremental sliding-

window.

Figure 7 shows the results where all changes in the

testing CM data (the same data shown in Figure 4) have

been successfully detected without any false alarms when

setting a as 3.0 but when k decreases, more false alarms are

brought out. In addition, it is also observed that on the basis

of considering the projection coefficient K from RKHS to
Figure 3 Experimental setup for collection of testing data: (a) Front

view; (b) Schematics
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martingale space and the global fixed confidence level a,
the threshold value can be computed/adjusted adaptively

according to the standard deviation computed from the past

data at each step of change decision making as mentioned

in Eq. (11), in other words, the threshold value is not fixed

in the whole process, that is different from many existing

works [7–11, 25]. All of them are consistent with the

analysis previously made in Section 3.2. Moreover, to

verify the effectiveness of the adaptive threshold with large

datasets, we collected streams totally containing 90 chan-

ges for evaluation. The performance evaluation is based on

two retrieval performance indicators: precision and recall,

which are defined respectively as

Precision ¼ Number of Correct Detectins of Changes

Number of Detections of Changes

Recall ¼ Number of Correct Detectins of Changes

Number of Ture Changes
:

Figure 4 A collected CM sound data stream which contains three changes indicating transitions of machine operations

Figure 5 Results of using incremental sliding-window martingale: (a) detection with k ¼ 4; mean change delay is 164 with 13 false alarms; (b)

detection with k ¼ 7; mean change delay is 263 with no false alarm; (c) detection with k ¼ 20; mean change delay is 320 with no false alarm

Figure 6 Experimental results of using length-fixed sliding-window martingale for k = 7: (a) L = 3000, (b) L = 5000, (c) L = 7000
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Precision is the probability that a detection is actually

correct, i.e., a true change. Recall is the probability that the

detection recognizes a true change.

In addition, we also use a single performance indicator

F1 defined as

F1 ¼ 2	 Recall	 Precision

Recallþ Precision
:

Apparently, F1 is a harmonic mean between precision

and recall, and a high value of F1 ensures reasonably a

high balance between precision and recall.

Figure 8 shows the detection performances for different

values of a 2 {0.92, 1.84, 2.30, 2.50, 2.75, 3.00, 3.22, 3.69,

4.15, 4.61, 5.00}. Specifically, it can be found in Fig-

ure 8(a) that with an increasing value of a, the detection

precision increases and achieves the best performance

when a[ 3. On the other hand, for the recall shown in

Figure 8(b), our proposed method can always obtain a

perfect performance, that is 100% which means the all true

changes can be successfully detected for tested values of a.
These results can be more clearly observed in Figure 8(c)

where F1 can achieve the best performance when a[ 3.

All of these results are not surprising because three times of

r guarantees approximate 99.8% (as shown in Figure 2)

data points have been contained in a Gaussian distribution.

Considering a smaller a brings a smaller detection delay as

shown in Figure 7, it is thus recommended a ¼ 3 when

using the proposed method in real applications.

5 Conclusions

In this paper, we have extended our recent work [25] to

long-term machine monitoring where two schemes are

proposed: 1) using the incremental sliding-window to solve

the problem of multi-change detection; and 2) developing

an adaptive threshold when making change decision.

Experimental results on an experimental setup demon-

strated great successes of the proposed method in multi-

change detection in long-term monitoring. With this, it can

be concluded that the improved algorithm is feasible for a

new generation of long-term machine monitoring systems.

In view of this, further work will be done to continue

verifying the capability of the improved algorithm for

detecting a wider range of changes when operating a

machine to make it ready for commercial exploitation.

Figure 7 Experimental results by adaptive threshold when setting a as (a) 0.92, (b) 1.84 and (c) 3.00

Figure 8 Detection performances on large datasets: (a) precision, (b) recall, (c) F1
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In addition, considering that the detection delay is one of

essential aspects to be considered when design a detection

method, another future work is to extract informative fea-

tures to represent the raw collected data for modeling in

order to further decrease the delay of our method when

detecting changes
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