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Abstract With integrated equipment health prognosis,

both physical models and condition monitoring data are

utilized to achieve more accurate prediction of equipment

remaining useful life (RUL). In this paper, an integrated

prognostics method is proposed to account for two

important factors which were not considered before, the

uncertainty in crack initiation time (CIT) and the shock in

the degradation. Prognostics tools are used for RUL pre-

diction starting from the CIT. However, there is uncertainty

in CIT due to the limited capability of existing fault

detection tools, and such uncertainty has not been explic-

itly considered in the literature for integrated prognosis. A

shock causes a sudden damage increase and creates a jump

in the degradation path, which shortens the total lifetime,

and it has not been considered before in the integrated

prognostics framework either. In the proposed integrated

prognostics method, CIT is considered as an uncertain

parameter, which is updated using condition monitoring

data. To deal with the sudden damage increase and

reduction of total lifetime, a virtual gradual degradation

path with an earlier CIT is introduced in the proposed

method. In this way, the effect of shock is captured through

identifying an appropriate CIT. Examples of gear prog-

nostics are given to demonstrate the effectiveness of the

proposed method.

Keywords Crack initiation time � Shock � Uncertainty
quantification � Integrated prognostics � Failure time

prediction � Bayesian inference � Gears � Fatigue crack

List of Symbols

a Crack length

m;C Material parameters in Paris’ law

N Loading cycles

DK Stress intensity factor range

t0 Crack initiation time

a0 Initial crack size

n Random vector consisting of material

parameters

e Measurement error

s Standard deviation of measurement error

DN Incremental number of loading cycles

aC Critical crack size

fpriorðt0; nÞ Prior distribution of CIT and material

parameters

aobsu
Observed crack size at inspection time tu

l aobsu

�
�t0; n

� �
Likelihood to observe crack size aobsu

conditional on ðt0; nÞ
fpost t0; n aobsu

�
�

� �
Posterior distribution of CIT and material

parameters conditional on aobsu

t0 actual Actual crack initiation time in the shock

degradation

t0 virtual Virtual crack initiation time in the shock

degradation

tu Inspection time

aobs1:s
Set of observation history

faobsu : u ¼ 1; 2; � � � ; sg
ls Likelihood to observe a crack history aobs1:s
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~fpost Adjusted posterior distribution when

applying Bayesian inference in shock

degradation

d Threshold for shock detection

F Failure time

1 Introduction

Remaining useful life (RUL) prediction of component/

system has drawn significant attention from researchers and

practitioners because of its great importance for improving

reliability and availability of engineering systems. In the

context of condition based maintenance/prognostics and

health management (CBM/PHM) [1, 2], accurate online

prediction on RUL of component/system turns out to be the

key for the success of this advanced maintenance tech-

nology in system health management. Prognostic algo-

rithms have been proposed in a large number of

publications for various industrial applications. Those

algorithms are mostly either data-driven [3–7], physically

motivated [8–16] or model and data integrated [17–26].

In this paper, an integrated prognosis method is devel-

oped to account for both the uncertainty in crack initiation

time (CIT) and the shock in the degradation. The intro-

duction of uncertainty in CIT is the key to deal with the

discontinuity caused by shock in the degradation path. A

crack is typically initiated in a component, propagates due

to stress, and eventually will cause component failure. We

define CIT as the time instant when the damage is detected

and the prognosis starts. Indeed, when the CIT is adjusted,

it is the ‘‘intercept’’ with the time axis of degradation path

at the initial crack size that is adjusted, which is a newway

of adjustment. The combination of adjustment in both

‘‘slope’’ and ‘‘intercept’’ will better characterize the real

degradation path given the crack observations. To deal with

the discontinuity in the shock degradation, we aim to find a

virtual degradation path with an earlier CIT that could

achieve the same failure time as the shock degradation.

1.1 Literature Review

Prognostic models are typically categorized into three

groups: data-driven methods, physics-based methods and

integrated methods.

Data-driven models are built purely on data such as

sensor-collected condition monitoring data. They typically

require large amount of data to achieve reasonable accu-

racy. In Ref. [3], a proportional-hazards model with time

dependent stochastic covariates was used as lifetime model

to predict the failure rate and to optimize the unit

replacement policy. The set of failure time and covariates

was assumed to be a joint nonhomogeneous Markov

process. The maximum likelihood was applied to estimate

the model parameters including the coefficients of covari-

ates and the transition probabilities of the Markov process.

In Ref. [4], the degradation model was selected to be

exponential. Two error terms were considered: one was

treated as a multiplicative random variable, and the other

was treated as a multiplicative Brownian motion process.

A Bayesian procedure was applied to update the parame-

ters in the exponential model. As a research mainstream of

data-driven models, various machine learning techniques

were investigated in the literature. The authors of Ref. [5]

developed neural networks to predict bearing failure time,

which aimed to train a relationship between the bearing

service time and the corresponding vibration spectrum. The

authors of Ref. [6] developed a neural network to predict

RUL using both failure and suspension condition moni-

toring histories. An extended recurrent neural network was

proposed to predict the health condition of gears in Ref.

[7]. The incorporation of Elman context layer in the pro-

posed networks enhanced its ability to model nonlinear

time series. Data-driven models are straightforward to

establish given sufficient and well-distributed data.

Therefore, data of good quality availability is a prerequisite

for data-driven models, which is rare for costly industrial

equipment.

In contrast, physics-based models resort to physical laws

governing the defect growth, where the values or distri-

butions of the model parameters in the physical models,

e.g., material dependent parameters, are kept constant and

will not be updated based on condition monitoring infor-

mation. A commonly used law to describe crack propa-

gation is Paris’ law, which was originated in Ref. [16].

Many publications are devoted to devising numerical

algorithms to calculate the quantity (e.g., stress intensity

factor) needed in Paris’ law. Readers can refer to Refs.

[8–10] for these approaches in which finite element mod-

eling was discussed for stress analysis near crack tip. In the

physics-based prognostic models, component failure time

is defined as when the defect size exceeds a critical value.

Authors of Ref. [11] investigated several factors that

influence the crack growth trajectory in the gear tooth,

including backup ratio, initial crack location, fillet geom-

etry, rim/web compliance, gear size and pressure angle.

The research work in Ref. [12] took account of the varia-

tion of moving load on gear tooth into crack growth pre-

diction by breaking the tooth engagement into multiple

steps. Authors in Ref. [13] applied Paris’ law to predict

fatigue crack growth with utilization of transmission error

to estimate the current crack size, which improved pre-

dictive accuracy. The service life of gears was divided into

crack initiation and crack propagation periods in Ref. [14].

The strain-life method was used to determine the time

required for crack initiation, while Paris’ law was used to
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obtain the time required for the crack to grow from initial

crack size to the critical value. Kacprzynksi et al. [15]

developed a prognostic tool which predicts gear failure

probability by fusing physics-of-failure models and diag-

nostics information. The results showed variance reduction

in failure probability when diagnostics information was

present. Physical models can achieve high predictive

accuracy if appropriately built. However, it demands

comprehensive physics theory and intensive computation

to build physical models of high-fidelity. Furthermore,

physical models are unavailable for complex systems

which limit its usages in real-world applications. In addi-

tion, physical models are deterministically used in the

above mentioned literature, which means they are unable to

address the uncertainty in failure.

Recently, integrated prognostics methods [17–26] were

developed to achieve real-time RUL prediction during the

system operations by combining both condition monitoring

(CM) data and physics of failure. The integrated methods

usually have an updating process by assimilating obser-

vations, during which the uncertainty is expected to shrink

so that the confidence increases in the predicted results.

The integrated prognostics methods are more advantageous

than physics-based methods in that the model parameters

are able to be adjusted for a specific component in a

specific working condition, and more advantageous than

data driven methods in that massive data trending is not

necessary. Bayesian framework allows for uncertainty

quantification; hence, it is widely used in integrated prog-

nostics methods. A problem of crack propagation in a

fuselage panel of aircraft was considered in Ref. [17].

Bayesian inference was used to characterize parameters in

Paris’ law and error term. The work in Ref. [18] extended

the methods in Ref. [17] to consider the correlation

between model parameters. In authors’ prior work [19],

integrated prognostics methods were proposed for gear

health prediction and uncertainty quantification. Physical

models include Paris’ law, fracture mechanics model and

one-stage gearbox dynamics model. Through Bayesian

updating, the uncertainty in RUL prediction was reduced as

crack measurements became available. To increase the

efficiency of uncertainty quantification, the authors pro-

posed to use polynomial chaos expansion to accelerate the

Bayesian process in prognostics [20]. Furthermore, an ap-

proach was devised to deal with time-varying operating

conditions to make them applicable in various loading

environment [21]. Bayesian framework was also used for

bearing health prognostics. The bearing spall propagation

was investigated in Ref. [22] where Bayesian inference was

applied to reduce prediction uncertainty. In recent years an

increasing volume of literature was published that treated

prognostic model as a dynamic system mainly because of

its natural interface with real-time data. In Ref. [23], a

health indicator extracted from vibration signature was fed

into Paris’ law to update the RUL of bearings. The update

was implemented using a Kalman filter. Prognostic models

in Refs. [24–26] are established in a particle filtering

framework, in which the problem of non-linear state tran-

sition and non-Gaussian noise can be tackled.

1.2 Motivations to Consider the Uncertainty in CIT

A large grain of inherent uncertainty imposes major

challenges in prognostic methods development. There are

various sources for uncertainties, such as micro-structure

of material, operating conditions, working environment,

measurement as well as human factors. Many research

efforts go to addressing how to identify, capture and

manage these multiple uncertainties to make the RUL

prediction more accurate, precise and reliable. The

existing prognostic approaches usually start the predic-

tion at an assumed time instant when a fault at certain

severity is detected. This is based on an assumption that

the starting point of prognosis is accurate. However, due

to the limitations of the fault detection and diagnostic

technologies, there is a large variation in the accuracy of

fault detection. This variation affects the prediction

accuracy accordingly: an early starting point of prog-

nostics will lead to underestimated RUL, and late start-

ing point will lead to overestimated RUL. In authors’

prior work [19–21], it was proposed to update the

uncertain model parameters in Paris’ law to make RUL

prediction more accurate by feeding CM data to a

Bayesian framework. These model parameters actually

determine the ‘‘slope’’ of degradation path in a scale of

damage size versus time. What the Bayesian updating

process does is adjusting the ‘‘slope’’ of the degradation

path to maximize the likelihood of crack observations

when an uninformative prior is given. Apart from the

‘‘slope’’, another factor that controls the degradation path

is the ‘‘intercept’’ with time axis. Hence, to better

characterize the degradation path, it is needed to

explicitly consider the uncertainty in CIT, which deter-

mines its ‘‘intercept’’ with time axis.

1.3 Motivations to Consider the Shock Degradation

Among existing approaches to real-time prognostics, most

of them investigated components/systems undergoing a

gradual degradation with time. Such gradual degradation is

governed by a dynamic model, either data driven or phy-

sics-of-failure based, which usually leads to a continuous

degradation. Very few of them have considered the

degradation path containing shock, which appears as a

sudden jump in the degradation. The shock will cause

sudden damage increase and then accelerate the
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degradation rate. In reliability engineering, researchers

have investigated the ways of modeling shock process in

system reliability analysis [27–29]. The purpose of these

studies was to investigate reliability properties and/or

maintenance strategies considering the shock effects.

While in the present study, we look into the RUL predic-

tion in a different perspective to consider the shock in the

degradation for a specific unit under monitoring, so that the

prognostic solution can be given in real time. This purpose

is also the main focus of prognostic algorithm development

in CBM/PHM.

1.4 Shock Degradation Prediction Using CIT

Adjustment

In the crack propagation problem, model parameters in

the Paris’ law include material dependent coefficients,

which should not be affected by external forcing factors,

i.e., overload causing shock. Hence, additional uncer-

tainty source other than model parameters is needed to

account for the effect of shock on the degradation pre-

diction. Because sudden damage increment results in a

discontinuity in the degradation path, the lifetime is

shortened accordingly. Note that, if the slope of degra-

dation path is given as fixed, the degradation path with a

shortened lifetime can be considered as equivalent to a

gradual degradation path with an earlier CIT. Therefore,

the variation in CIT provides a degree of freedom in

translational adjustment for the degradation path. With

both slope and translational adjustments, the proposed

method is expected to reduce the uncertainty in RUL

prediction and to capture the effect of shock on the

degradation as well. In different applications, the shock

occurrence time might be known or unknown. If known,

the corrective action can be taken right after the shock

occurs; otherwise additional work is needed. In this

study, both the two situations will be considered.

The remainder of this paper is organized as follows.

Section 2 introduces the integrated prognostics frame-

work that gives a global view of the structure of the

proposed method. In Section 3, the Bayesian updating

procedure is presented to deal with gradual degradation

considering uncertainty in both CIT and material

parameters. Section 4 investigates integrated prognostics

for degradation with shock. Two cases are considered:

a). shock degradation with known shock occurrence

time; b) shock degradation with unknown shock occur-

rence time. The formula to compute RUL is also given

in this section. In Section 4, examples are given to show

the effectiveness and efficacy of the methods. Section 5

concludes the work.

2 Integrated Prognostics Framework

An integrated prognostics framework is proposed in this

section, and we use gears with fatigue crack as an example

to present the proposed method. The degradation types

considered include gradual degradation and shock degra-

dation. The gradual degradation model was described by

Paris’ law [16], which was a widely accepted equation

describing crack propagation rate. This equation is shown

in Eq.(1)

da

dN
¼ CðDKðaÞÞm

a t0ð Þ ¼ a0;

8

<

:
; ð1Þ

where a is crack size, N is loading cycle, DK is the range of

stress intensity factor (SIF) obtained using finite element

(FE) method, t0 is CIT, a0 is initial crack size, m and C

represent the material dependent model parameters. This

model was based on physics of failure and the model

parameters have physical meanings. In linear fracture

mechanics theory, stress intensity factors (DK) fully

describe the stress field distribution near the crack tip area.

Pairs’ law states that the crack growth rate is a function of

DK, therefore, it is based on physics of failure. The model

parameters can be obtained by regressing the Paris’ law in

a log-log scale using crack measurements, stress intensity

factors, and associated cycles in the fatigue experiment as

reported in Ref. [30]. Through the experiment, it turns out

that the parameters in Paris’ law are material dependent.

SIF together with material parameters determines the crack

growth rate from a physical point of view as given in Paris’

law. Compared to data-driven models, it provides a better

predictive capability. In this paper, parameters that are

considered uncertain include CIT t0 and material dependent

parameters n ¼ ðm;CÞ. In addition, measurement error e is

also considered, which follows a normal distribution with

zero mean and standard deviation s. The Paris’ law is

discretized using first-order Euler’s rule as in Eq.(2) to

obtain the crack size at inspection times.

a iDNð Þ ¼ a i� 1ð ÞDNð Þ þ DNð ÞC DK a i� 1ð ÞDNð Þð Þ½ �m;
a t0ð Þ ¼ a0;

�

ð2Þ

where DN is incremental loading cycles. The iteration

proceeds until the current inspection time ti is reached. The

crack size obtained is denoted as ai t0; nð Þ. The other type of
degradation contains shock. The shock causes a sudden

damage accumulation due to external impact, such as a

transient overload. In the case of fracture, the phenomenon

of shock is a sudden increase in crack size. The degradation

containing shock is defined in this paper as shock

degradation.
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The core idea of ‘‘integrated’’ prognostics method is to

combine CM data (e.g., crack sizes observations) and

physical models in a way that crack size observations can

be utilized to adjust the physical model. After the adjust-

ment, the physical model is expected to predict the RUL

better. The adjustment is incurred when a new observation

is available. The sequential adjustments form a series of

updates, which are triggered at every inspection time.

Figure 1 shows the data flow in the integrated prognostics

method proposed in this paper. The model update is

achieved by updating the distributions of uncertain

parameters through Bayesian inference. The posterior dis-

tribution of the uncertain parameters is applied in Paris’

law to calculate RUL. Meanwhile, the posterior distribu-

tion is fed into next iteration as the prior distribution. The

first prior distribution in absence of any observations is

obtained by least-square regressing the existing historical

failure paths [19].

When the updating process is executed, three cases are

considered: Case 1: no shock occurs; Case 2: shock occurs

at a known time; and Case 3: shock occurs at an unknown

time. As shown in Figure 1, when gradual degradation

without shock is considered (Case 1), the posterior distri-

bution is directly used as the prior distribution for next

iteration. However, when shock is considered (Cases 2 and

3), an adjustment is added for marginal posterior distri-

bution of CIT before it is used as the prior for the next

iteration. The purpose of this adjustment is to make sure

that a virtual gradual degradation can be identified equiv-

alently with an appropriate earlier CIT tvirtual. The equiv-

alence is defined in a sense of failure time. Accordingly,

the likelihood function also needs modifications to elimi-

nate the adverse effects brought out by the observations

before shock occurs. The details of the three cases will be

addressed in Section 3.

3 Integrated Prognostics Method Considering
Uncertainty in CIT

The well-known Paris’ law, as discussed in Section 2,

describes the crack propagation rate using the principle of

linear elastic fracture mechanics. It represents the crack

propagation rate as a function of SIF and material depen-

dent parameters m and C. Hence, given the applied loading,

both m and C are the factors that determine the ‘‘slope’’ of

degradation path in a scale of crack size versus time. The

priorwork in Refs. [19–21] focused on the adjustment of

n ¼ ðm;CÞ, which represents the ‘‘slope’’ of the degrada-

tion path. The motivation to identify CIT as another source

of uncertainty is that this uncertainty is difficult to account

for by ‘‘slope’’. It is actually a translational movement

along the time axis. In another word, the CIT is the ‘‘in-

tercept’’ with the time axis of the degradation path at the

initial crack size. By adjusting the ‘‘slope’’ and the ‘‘in-

tercept’’ simultaneously, it is expected to obtain an optimal

approximation to the real degradation path.

Denoting the initial crack size as a0 and the critical

crack size as aC, as shown in Figure 2, the degradation

paths are generated by varying CIT and physical model

parameters. As a result, the variation in the crack size at a

certain inspection time ti is contributed by both of the

Initialization 

Update Update 

Modify likelihood after shock occurs 
in Case 2 and Case 3

Case 1 
No shock occurs 

Case 2 
Shock occurs at a known time 

Adjust CIT Marginal Posterior 

Case 3 
Shock occurs at an unknown time 

Step1: Detect Shock 
Step2: Adjust CIT Marginal Posterior 

CM Data 

Prior 
Distribution 

Historical 
Data 

Likelihood 

Bayesian 
Inference 

Posterior 
Distribution 

Paris’ 
Law 

FEM

RUL

FEM Paris’ 
Law 

Figure 1 Data flow in the

proposed integrated prognostics

method
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uncertainty in CIT and the physical model parameters. The

path using a red dash line represents the actual degradation

path, which has actual values for CIT and the physical

model parameters. However, these actual values are not

known exactly beforehand. Only some beliefs or assump-

tions are available based on experience and historical data.

These beliefs or assumptions are known as a prior in

Bayesian statistics. The objective to use the Bayesian

inference is to narrow the prior distribution so that the

means will approach actual values and the standard devi-

ations will be reduced. This is achieved by feeding the

crack observations into Bayesian inference.

Define a set of random variable, n ¼ ðm;CÞ, represent-
ing the uncertainty from model material parameters. As

before, t0 stands for the CIT. Here, t0 is also considered as a

random variable to account for the uncertainty in CIT.

Suppose that several failure histories are available with the

information on inspection times and associated crack sizes.

Then a prior distribution fpriorðt0; nÞ can be obtained by

least-square regression and statistical fitting [19]. If it is

assumed that the crack measurement error follows a zero-

mean Gaussian distribution with s as the standard devia-

tion, at a certain inspection time tu the likelihood to observe

a crack size of aobsu ¼ aobsðtuÞ is

l aobsu

�
�t0; n

� �

¼ 1
ffiffiffiffiffiffi

2p
p

s
exp �

aobsu � au t0; nð Þ
� �2

s2

 !

: ð3Þ

In the Bayesian inference framework, a posterior dis-

tribution fpost t0; nð Þ can be obtained by

fpost t0; n aobsu

�
�

� �

¼
l aobsu

�
�t0; n

� �

fpriorðt0; nÞ
r l aobsu

�
�t0; n

� �

fpriorðt0; nÞdt0dn
: ð4Þ

The update process is executed at the inspection time

when a new observation on crack size is available. The

posterior distribution of the current update process will

serve as the prior distribution for the next update process.

To circumvent the intractable integration in the Bayesian

formula, importance sampling technique is used to obtain

samples which follow the posterior distribution. In order to

simplify the problem and to emphasize the different effects

from ‘‘slope’’ and ‘‘intercept’’, in the following discussions,

only uncertainties in m and t0 are considered while C is

treated as a constant.

4 Physical Model Updating Considering Shock
in the Degradation

Different from the gradual degradation, shock degradation

is another degradation type where the damage is accumu-

lated suddenly leading to a jump and discontinuity in the

degradation path. In Figure 3, the blue line depicts a

gradual degradation path with CIT t0 actual, and the marks

of circle represent crack sizes at inspection times. Assume

that a shock happens between the third and the fourth

inspection times. The shock will result in a sudden crack

increment, denoted by dotted purple line segment. After the

shock, the gradual degradation continues at an accelerated

rate. This forms a shock degradation path depicted by a

magenta line with marks of square. Because of the shock,

the lifetime is shortened with an extent denoted by a green

dash line segment. The shock degradation is a discontin-

uous curve. Material dependent model parameters should

be static because the material is not changing. It also

explains why the two degradation paths are parallel after

the shock occurs. Hence, a new uncertainty source should

be uncovered to account for the change in lifetime due to

shock. By noticing that our interest is to predict the future

performance instead of regressing over the past perfor-

mance, we can assume a virtual crack growth history back

propagating from the time when shock occurs. This virtual

Figure 2 Degradation paths generated by varying CIT and physical

model parameters

Figure 3 Shock degradation path for illustration purpose
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history is indicated in yellow dot-dash line in Figure 3.

Therefore, the objective of predicting the degradation after

shock occurrence can be achieved by identifying a gradual

degradation with a different CIT, to be more specific, an

earlier one, denoted by t0 virtual. Based on the foregoing

analysis, uncertainty in both CIT andmaterial parameter will

be considered to deal with shock degradation.We investigate

two cases in the following discussions: shock occurrence

time is known and shock occurrence time is unknown.

4.1 Shock Occurrence Time is Known

The update process is executed every time when observation

on crack size is available. The posterior distribution in the last

iteration will be used as the prior distribution in the next

iteration. By assimilating the observations, the variances of

uncertainty parameters are expected to be reduced and the

mean to approach the actual value. The shrinkage of uncer-

tainty leads to a narrower distribution,which appears to have a

peak covering a very small range of parameter values. When

we implement the Bayesian inference Eq. (4), importance

sampling technique is utilized, where the density is repre-

sented by samples from the associated distribution. This dis-

cretization of the continuous function excludes the samples

with low density, especially when sample size is limited.

When the shock occurs, there is a sudden increase in crack

size, which results in a noticeable difference between the

predicted crack size using degradation model and the obser-

vation. In order to attribute this difference to an earlier CIT, it

needs a fair extent of adjustment of CIT in its marginal pos-

terior distribution. Hence, the coverage of prior distribution

must be large enough to give moderate density for the virtual

CIT t0 virtual, otherwise the samples could not carry useful

information.Therefore, the posterior distributionbefore shock

occurs is adjusted in a way that its variance of CITmarginal is

artificially increased to make sure the vicinity of the targeted

virtual CIT t0 virtual has moderate chance to be sampled.

Let the inspection times be a set ftu : u ¼ 1; 2; � � � ;Ug.
At these inspection times, the observed crack sizes forma

set faobsu : u ¼ 1; 2; � � � ;Ug and the uncertain parameters

are denoted by t
ðuÞ
0 ; nðuÞ

� �

: u ¼ 1; 2; � � � ;U
n o

. Assume

that the measurement errors are independent among dif-

ferent inspection times; hence, the likelihood function to

observe a crack history up to an inspection time ts is

ls aobs1:s

�
�t
ðs�1Þ
0 ; nðs�1Þ

� �

¼
Ys

u¼1

l aobsu

�
�t

s�1ð Þ
0 ; n s�1ð Þ

� �

; ð5Þ

where l aobsu

�
�t
ðs�1Þ
0 ; nðs�1Þ

� �

was defined in Eq. (3). aobs1:s

refers to the set of observation history faobsu : u ¼
1; 2; � � � ; sg up to the inspection time ts. The update process

at ts can be obtained accordingly by

fpost t
ðs�1Þ
0 ; nðs�1Þ aobs1:s

�
�

� �

¼
ls aobs1:s

�
�t
ðs�1Þ
0 ; nðs�1Þ

� �

fprior t
ðs�1Þ
0 ; nðs�1Þ

� �

r ls aobs1:s

�
�t
ðs�1Þ
0 ; nðs�1Þ

� �

fprior t
ðs�1Þ
0 ; nðs�1Þ

� �

dt
ðs�1Þ
0 dnðs�1Þ

:

ð6Þ

The inspection times divide the whole lifetime into sev-

eral disjoint intervals. If the degradation is gradually hap-

pening without shock, the update of uncertain parameters is

to directly assign the posterior distribution of uncertain

parameters at current inspection time to the next inspection

time. However, if the shock occurs at a known time instant

during interval [tv�1; tv), the posterior distribution will be

adjusted before being assigned to the prior distribution for

next update. As discussed earlier, the adjustment is to

increase the variance of marginal distribution for CIT to

cover t0 virtual. Denote the adjusted distribution as

~fpost t
ðv�1Þ
0 ; nðv�1Þ

� �

. In addition, the likelihood also needs

modification. Because of the virtual degradation path, the

actual observations on crack sizes before the shock occurs

will have adverse effects on the likelihood to observe the

crack sizes after the shock. Hence, only the observations

after shock will be used to define the likelihood function in

Bayesian formula for the updates executed after shock

occurrence time. The update process considering the shock

occurring at a known time instant thus is modified to be

ls aobs1:s

�
�t
ðs�1Þ
0 ; nðs�1Þ

� �

¼

Qs

u¼1

l aobsu

�
�t

s�1ð Þ
0 ; n s�1ð Þ

� �

;when s\v

Qs

u¼v

l aobsu

�
�t

s�1ð Þ
0 ; n s�1ð Þ

� �

;when s� v

8

>><

>>:

ð7Þ

fprior t
ðsÞ
0 ; nðsÞ

� �

¼
fpost t

ðs�1Þ
0 ; nðs�1Þ

� �

;when s 6¼ v

~fpost t
ðs�1Þ
0 ; nðs�1Þ

� �

;when s ¼ v

8

<

:
ð8Þ

4.2 Shock Occurrence Time is Unknown

If the shock occurs at an unknown time, we could do the

proposed adjustment above at every inspection time to

ensure that the targeted virtual CIT will be covered within

the distribution samples. However, this approach will result

in a large amount of uncertainty in RUL prediction, which

provides little useful information in maintenance decision

making. Hence, an additional step of shock detection is

proposed to add into the update process to deal with the

case when shock occurrence time is unknown.

Shock occurrence will cause sudden increase of the

crack size. The amount of increase is assumed to be far out

of the range of measurement error. A large adjustment of

CIT from the last inspection time is expected. The average
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of predicted crack size using the distribution of CIT at the

last inspection time ought to deviate a lot from the

observed crack size at the inspection time right after shock

occurs. Therefore, a shock is said to be detected if the

amount of such deviation exceeds a predefined threshold d.
The criterion is that, shock occurs during tv�1; tv½ Þ if

E
t
ðv�1Þ
0

;nðv�1Þð Þ a tv t
ðv�1Þ
0 ; nðv�1Þ
�
�
�

� �h i

� aobsv

�
�
�

�
�
�[ d: ð9Þ

The symbol of E denotes the operator for expectation.

After identifying the shock occurrence time, update process

Eqs. (7–8) will apply.

4.3 Remaining Useful Life Prediction Updates

The ultimate goal of updating uncertain parameters is to

predict the RUL of the cracked gear more accurately. The

RUL is defined as the difference betweenfinal failure time and

current inspection time. The failure time is the instant when

the observed crack size reaches or exceeds a predefined crit-

ical value aC for the first time. With the updated parameter

distribution obtained through Bayesian inference, the RUL

prediction is given accordingly at the inspection time. Paris’

law can be written in its reciprocal form as in Eq. (10),

dN

da
¼ 1

CðDKðaÞÞm : ð10Þ

Let the current inspection cycle be Nuðt0Þ and the crack

increment be Da. The RUL is calculated by discretizing

Eq.(10) in the following way,

DNi nð Þ ¼ Niþ1 nð Þ � Ni nð Þ ¼ Da C DsK ai=2
� �� �m	 
�1

;

ð11Þ

where ai=2 ¼ a0 þ DaðNi þ Niþ1Þ=2. The RUL is the

summation
P

i

DNiðnÞ from the current inspection cycle to

the cycle when failure occurs. Therefore, the total failure

time is expressed as F t0; nð Þ ¼ Nuðt0Þ þ
P

i

DNiðnjt0Þ. This

expression shows that the uncertainty in total failure time

prediction is determined by the uncertainty in both the CIT

and the physical model parameters, t0; nð Þ. Thus more

accurate values of t0; nð Þ will produce more accurate

F t0; nð Þ. An update of F t0; nð Þ will be triggered after an

update of t0; nð Þ to adjust the lifetime prediction.

5 Examples

As shown in Figure 1, there are three cases when Bayesian

updates are applied. Case 3 can be considered as a gener-

alization of case 2 in terms of an additional step for crack

detection. Hence, it is sufficient to only verify case 3 for

case 2 to be valid. In this section, we will show the

effectiveness of the proposed method for cases 1 and 3:

gradual degradation considering CIT and degradation with

shock occurring at an unknown time.

A FE model of a 2D spur gear tooth has been built to

calculate SIFs when crack is propagating under cyclic

fatigue loading, as shown in Figure 4. The geometry and

material properties of the gear tooth are tabulate in Table 1.

The initial crack size a0 that can be detected is assumed to

be 0.1 mm. The critical crack size aC is set to be 5.2 mm,

which is about 80% of the circular thickness of the tooth.

The gear is failed when the measured crack size reaches or

exceeds this critical value.

5.1 Case 1: Gradual Degradation Considering CIT

In this case, the prior information for uncertain parameters

is assumed as: m�N 1:4; 0:2ð Þ, t0 �Nð2� 106; 2� 105Þ.
The measurement error is e�Nð0; 0:15Þ. The values of the
constants are set to be: C¼ 9:12� 10�11, a0 ¼ 0:1 mm,

aC ¼ 5:2 mm. The history of SIF is adopted from Ref. [19]

in which the input torque is 320 N�m and the effect of

dynamic load is considered. The characteristics of two

actual degradation paths are shown in Table 2.

We have two test degradation paths, which share the real

value of m ¼ 1:6, but have different CITs. The character-

istics of these two paths are given in Table 2. The two

degradation paths are shown in Figures 5 and 6. The crack

observations and updated results for the two paths are listed

in Tables 3 and 4, respectively. The updated PDFs for

distributions of t0 and m are displayed in Figures 5 and 6

for path #1, and in Figures 7 and 8 for path #2.

The update results show that, as more crack observations

are fed into Bayesian inference, the means of m and t0

Figure 4 2D FE model for a spur gear tooth [19]
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progressively approach their actual values. Meanwhile, the

standard deviations are shrinking, which makes the distri-

bution shape become narrower. This is beneficial for

improving the performance of prognostic algorithm since

narrower distribution indicates reduced uncertainty, and it

is useful in making more accurate and cost-effective

maintenance decisions. Based on the updated uncertain

parameters, the mean of the failure time approaches its

actual value accordingly. The actual values are denoted

using star marks in the Figures 7, 8, 9 and 10.

5.2 Case 3: Shock Degradation with an Unknown

Shock Occurrence Time

5.2.1 Results with the Proposed Method

In this case, the prior distributions for uncertain parameters

are given as: m�N 1:6; 0:2ð Þ, t0 �Nð6:5� 107; 0:5� 107Þ.
The measurement error is e�Nð0; 0:15Þ while the values

of the constants are set to be C ¼ 9:12� 10�11,

a0 ¼ 0:1 mm, aC ¼ 5:2 mm. SIF is evaluated using the FE

analysis in software FRANC2D, and the computed SIF

values versus crack size are shown in Figure 11, in which

the input torque is 40 N�m and the effect of dynamic load is

not considered. Third-order polynomial is used to fit the

Table 1 Material properties, and main geometry parameters [19]

Young’s modulus/

Pa

Poisson’s

ratio

Module/

mm

Diametral pitch/

in�1

Base circle radius/

mm

Outer circle/

mm

Pressure angle/

(�)
Teeth

No.

2.07� 1011 0.30 3.20 8.00 28.34 33.30 20.00 19

Table 2 Characteristics of two actual degradation paths #1 and #2

Path # m t0 / cycles Failure time / cycles Inspection interval / cycles

1 1.6 1.7�106 4215500 3�105

2 1.6 2.3�106 4815500 5�105

3 3.2 3.4 3.6 3.8 4 4.2 4.4

x 10
6

2

2.5

3

3.5

4

4.5

5

5.5

loading cycles

cr
ac

k 
le

ng
th

 (
m

m
)

Oberved crack size

Actual degradation

Failure threshold

a
C
=5.2mm

Figure 5 Degradation path #1
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Figure 6 Degradation path #2

Table 3 Update process for path #1

Update

#

Inspection

time

/ cycles

Crack

size /

mm

Mean

of m

Mean of t0
/ cycles

Mean of

Fðt0;mÞ
/ cycles

Prior 1.4 2�106 17159000

1 3015700 2.1900 1.6277 1.9572�106 4072300

2 3315700 3.0425 1.6420 2.0105�106 3972800

3 3615700 3.5473 1.6275 1.9325�106 3991700

4 3915700 4.2072 1.6134 1.8354�106 3989700

Actual

value

1.6 1.7�106 4215500
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discrete crack size observations to obtain a continuous

function for SIF. One actual degradation path, path #3, is

used to demonstrate this case, and the characteristics of the

degradation path are shown in Table 5. The actual

Table 4 Update process for path #2

Update

#

Inspection

time

/ cycles

Crack

size /

mm

Mean

of m

Mean of t0
/ cycles

Mean of

Fðt0;mÞ
/ cycles

Prior 1.4 2�106 17159000

1 3215700 1.591 1.5469 1.9827�106 5520800

2 3715700 2.3063 1.5545 1.9999�106 5358600

3 4215700 3.4307 1.5821 2.1583�106 5135000

4 4715700 5.0218 1.6073 2.3604�106 5087700

Actual

value

1.6 2.3�106 4815500

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5
x 10

-6

t
0

P
D

F

Prior

1st update

2nd update
3rd update

4th update

Actual time

Figure 7 Updated PDF of t0 for path #
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Figure 8 Updated PDF of m for path #1
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Figure 9 Updated PDF of t0 for path #2
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Figure 10 Updated PDF of m for path #2
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degradation path #3 is depicted in Figure 12. The marks of

circle represent the actual crack sizes, which are unknown.

The marks of star represent the observed crack sizes, which

deviate from the corresponding actual values due to mea-

surement error. Shock occurs between Observations #3 and

#4, and a sudden increase in crack size can be seen in

Figure 12.

The shock could be detected between update #3 and #4

using the criterion proposed in Section 3. The horizontal

boarder between these two inspection points in Table 6

separates the updated results into two parts: history before

shock occurrence and history after shock occurrence. From

Table 6, it is observed a sudden transition of changing

pattern for mean of t0 after the shock is detected. Before the

shock occurs, the mean of t0 tends to increase to reach

t0 actual ¼ 7:5� 107 cycles, which is the actual CIT of the

shock degradation path. Accordingly, the mean of failure

time Fðt0;mÞ tends to approach 1.72359108, which is the

failure time of a gradual degradation as if no shock occurs,

as depicted by dot-dash line with triangle marks in Fig-

ure 12. However, after the shock occurs, the mean of t0

inverses its changing direction to approach t0 virtual ¼
5:006� 107 cycles, which is the CIT of the virtual gradual

degradation path. Compared to the actual shock degrada-

tion, this virtual gradual degradation path compensates the

reduction of lifetime due to shock occurrence by an earlier

CIT. As a material dependent parameter, there is no such

transition in m because its value is dependent on material

property, which should not be changed by shock occur-

rence. Based on the accurate information on parameters t0
and m, the predicted mean of failure time Fðt0;mÞ suc-

cessfully approach the actual failure time in a shock

degradation, which is 1.4742�108, as depicted by solid line

with marks of circle in Figure 12.

Figure 13 shows the updates of PDF for m, in which the

bold line indicates the updates after the shock occurs. It can

be seen that, as more observations are available, the mean

of m approach the actual value. Also the variance of PDF is

reduced progressively which provides more precise infor-

mation. Figure 14 shows the updates of PDF for t0, in

which two neighbourhoods are apparent to observe. One is

in the vicinity of t0 actual ¼ 7:5� 107, denoted using a

diamond mark, and the other is in the vicinity of t0 virtual ¼
5:006� 107 denoted using a star mark. As discussed

Table 5 Characteristics of actual degradation path #3

Path

#

m t0 actual

/ cycles

t0 virtual

/ cycles

Failure

time

/ cycles

Inspection

interval

/ cycles

3 1.4354 7.5�107 4.9�107 1.474�108 1�107

Figure 12 Actual shock degradation path #3

Table 6 Update process for path #3

Update

#

Inspection

time

/ cycles

Crack

size

/ mm

Mean

of m

Mean of t0
/ cycles

Mean of

Fðt0;mÞ
/ cycles

Prior 1.6 6:5� 107 1.331�108

1 8.5�107 0.2775 1.3006 6.7311�107 2.639�108

2 9.5�107 0.3968 1.2382 6.8447�107 3.126�108

3 10.5�107 1.0214 1.3204 6.8454�107 2.183�108

4 11.5�107 2.4759 1.4303 4.7962�107 1.480�108

5 12.5�107 2.7370 1.4233 4.7805�107 1.524�108

6 13.5�107 3.6924 1.4301 4.7735�107 1.454�108

7 14.5�107 4.7976 1.4334 4.8387�107 1.465�108

Actual

value

1.4354 5.0060�107 1.474�108

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
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40

50

60

m
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Figure 13 Update PDF of m for path #3
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before, this phenomenon explains the adjustment of t0 due

to the shock occurrence, and the mean of t0 approaches

t0 virtual after the shock occurs.

5.2.2 Comparative Studies

The proposed method is compared with the physics-based

method and a data driven method in this section. The

example of shock degradation with an unknown shock

occurrence time, considered in Section 5.1.1, is used. The

results are shown in Figure 15, where the blue line repre-

sents the crack length predicted using the physics-based

method, and the orange line represents the results obtained

using the integrated method. For the physics-based method,

the model parameters are kept constant and will not be

updated. The model parameters used are obtained from the

prior distribution of initial time t and model parameter m.

Here, the initial time is 6:5� 107, and the model parameter

m = 1.6. The prediction results at inspection point 4 after

the shock occurs are shown in the Figure 14.

The integrated method is also compared with a popular

type of data driven method based on Bayesian inference

and generic degradation models [4]. The degradation

model adopted is an exponential degradation model, with

the following form:

L tð Þ ¼ aþ bt þ e; ð12Þ

where t is the inspection cycle, L(t) is the logarithm of the

measurement of the crack length. The prior distributions of

the three parameters a, b, e are a�Nð0; 12Þ,
b�N 10�7; 0:3� 10�7ð Þ2

� �

, e�Nð0; 0:12Þ respectively.

The results are represented by the yellow line in Figure 15.

According to the results in the figure, the results by the

proposed integrated method agree well with the real path

after the shock. In contrast, the crack length predicted by

the physics-based method has large discrepancy with the

measured data since the model parameters are not adjusted

based on the observed data. The proposed integrated

method performs better due to the more accurate estimating

of the model parameters. The data-driven method did not

perform as well as the integrated method either, due to its

inability to capture the shock occurrence and utilize the

real degradation mechanism.

6 Conclusions

Prognostics tools are used for RUL prediction starting from

the crack initiation time. However there is uncertainty in

CIT due to the limited capability of existing fault detection

tools, and such uncertainty has not been explicitly con-

sidered in the literature for integrated prognosis. A shock

causes a sudden damage increase and creates a jump in the

degradation path, which shortens the total lifetime, and it

has not been considered before either in the integrated

prognostics framework. This paper proposes an integrated

prognostics method considering these two important fac-

tors, the uncertainty in CIT and the shock in equipment

degradation. In the proposed integrated prognostics

method, CIT is considered as an uncertain parameter,

which is updated using CM data. To deal with the sudden

damage increase and reduction of total lifetime, a virtual

gradual degradation path with an earlier CIT is utilized,

and the effect of shock is captured through identifying an

appropriate CIT. Examples demonstrate effectiveness of

the proposed method in predicting RUL considering shock

and uncertainty in CIT.
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Figure 15 Comparison of degradation paths with different methods
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