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Abstract 

Parallel mechanisms (PMs) having the same motion characteristic with a UP kinematic chain (U denotes a universal 
joint, and P denotes a prismatic joint) are called UP-equivalent PMs. They can be used in many applications, such as 
machining and milling. However, the existing UP-equivalent PMs suffer from the disadvantages of strict assembly 
requirements and limited rotational capability. Type synthesis of UP-equivalent PMs with high rotational capability 
is presented. The special 2R1T motion is briefly discussed and the fact that the parallel module of the Exechon robot 
is not a UP-equivalent PM is disclosed. Using the Lie group theory, the kinematic bonds of limb chains and their 
mechanical generators are presented. Structural conditions for constructing such UP-equivalent PMs are proposed, 
which results in numerous new architectures of UP-equivalent PMs. The high rotational capability of the synthesized 
mechanisms is illustrated by an example. The advantages of no strict assembly requirements and high rotational 
capability of the newly developed PMs will facilitate their applications in the manufacturing industry.
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1  Introduction
Among the various lower mobility parallel 
mechanisms(PMs), those with two rotational and one 
translational motion(2R1T) are particularly useful and 
can be implemented in many applications. The Z3 head 
[1], whose parallel part is a 2R1T 3-PRS PM(P is a pris-
matic pair, R is a revolute pair, and S is a spherical joint), 
is the most well-known. Another example is the 2-UPR-
SPR PM(U denotes a universal joint),  which has been 
successfully used in the development of the Exechon 
robot [2].

It should be noted that different 2R1T PMs may have 
distinct motion characteristics. According to the virtual 
chain method [3], they can be classified into three cat-
egories: PU-equivalent PMs, RPR-equivalent PMs, and 
UP-equivalent PMs.

A PU-equivalent PM can perform three degrees of free-
dom (3-DOF) motion that is identical to the end motion 

of a PU serial chain. The two axes of rotation always 
intersect and remain perpendicular. In other words, the 
rotation center of a PU-equivalent PM is restricted to a 
line; thus, the so-called parasitic motion [4] is eliminated. 
There were few PU-equivalent PMs until the authors of 
this paper systematically investigated their type synthesis 
[5].

An  RPR-equivalent PM can perform 3-DOF motion 
that is the same as the end motion of an RPR serial chain. 
The two rotational axes are in different planes and are 
perpendicular. Li and Hervé [6, 7] disclosed numerous 
architectures of the RPR-equivalent PMs. This type of 
mechanism can be used in many applications where high 
stiffness and dexterity are required, such as in five-axis 
machining [8], aircraft wing assembly [9], and friction stir 
welding [10].

A UP-equivalent PM can perform 3-DOF motion that 
is identical to the end motion of a UP serial chain. One 
axis of rotation is fixed to the base while intersecting 
and remaining perpendicular to the other. Such features 
lead to reduced complexity in kinematic model, control, 
calibration and are thus preferable in practice. There are 
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two ways to construct UP-equivalent PMs. The first is to 
either add a passive UP serial chain to a 6-DOF 3-UPS 
PM, like the Tricept robot [11], or add an articulated UP 
serial chain to a 6-DOF 2-UPS PM, like the TriVariant 
robot [12, 13]. The passive or articulated UP serial chain 
constrains the motion of the moving platform, and no 
strict geometrical condition is required. Thus, the Tricept 
and TriVariant robots are widely used in manufacturing 
and assembly.

The second is to use identical limb chains. Kong and 
Gosselin first studied the type synthesis of UP-equivalent 
PMs using screw theory [3]. They systematically enumer-
ated numerous architectures. However, these architec-
tures require strict geometrical conditions, such as the 
intersection of three or more revolute axes at a common 
point in space, which is very difficult to implement in 
practice.

In addition, one may think that the parallel module 
of the Exechon robot [2], which is a 2-UPR-SPR PM, 
belongs to the UP-equivalent PMs family. In the follow-
ing section, we demonstrate that the mechanism is not a 
UP-equivalent PM.

Although the UP-equivalent PMs output 2R1T motion, 
their reachable workspaces are usually of concern since 
they are used for locating in most applications. However, 
it should be noted that their reachable workspaces are 
highly dependent on their rotational capabilities since the 
position variations of the moving platforms in two direc-
tions are generated by the two rotational motions of the 
mechanisms. The reachable workspaces of the Tricept 
and TriVariant robots are not large because their rota-
tional capabilities are limited to some extent by spheri-
cal joints, particularly with the existence of multiple 
spherical joints. It is meaningful to expand the rotational 
capabilities of UP-equivalent PMs to ultimately achieve 
considerable reachable workspaces.

In this paper, we attempt to invent new architectures 
of UP-equivalent PMs with high rotational capability 
and low geometrical condition requirements. That is, the 
new architectures of UP-equivalent PMs should contain 

no spherical joints and should avoid a common point of 
intersection of several revolute axes in space. Theoreti-
cally, type synthesis of PMs with two rotational DOFs 
is more difficult and complicated than that of PMs with 
either one or no rotation. Hence, although considerable 
progress has been made in terms of the general method 
for type synthesis of lower-mobility PMs [14–27], and 
some 3T or 3T1R PMs with specified kinematic prop-
erties have been proposed [28–32], few architectures of 
UP-equivalent PMs without spherical joints and strict 
assembly requirement have been disclosed.

The organization of this paper is as follows. Section 2 
presents a brief introduction of notations and proper-
ties of the UP-equivalent motion. Section 3 discusses the 
limb bonds of the UP-equivalent PMs. Section  4 con-
structs the UP-equivalent PMs in a special category. Sec-
tion 5 illustrates the rotational capability of the proposed 
mechanisms. Section  6 discusses the application of the 
proposed PMs. Section 7 summarizes the conclusions.

2 � Special 2R1T Motion
2.1 � Notations
Firstly, a brief introduction of the Lie group theory is 
given. Some displacement subgroups used in this paper 
are listed in Table  1. For more details about Lie group 
theory, please see Refs. [14–20].

Since there are usually some special geometrical con-
ditions in lower mobility PMs, superscripts are used in 
the following sections to indicate the axial direction of 
the kinematic pairs. For instance, uP represents a pris-
matic pair with its axis parallel to vector u; uR denotes a 
revolute pair whose axis is parallel to vector u; and uvU 
represents a universal joint whose two rotational axes are 
parallel to vectors u and v, respectively. In contrast, the 
spherical joint is denoted by S without superscript since 
it allows rotation around any axis passing through its 
center.

In view of practical values, limbs that contain two or 
more prismatic pairs, helical pairs, and parallelogram are 
neglected here. However, UP-equivalent PMs with these 

Table 1  Displacement subgroups

Subgroup Generator Motion

{R(N, u)} Revolute pair Rotation about the axis determined by the unit vector u and point N

{T(v)} Prismatic pair Translation parallel to the unit vector v

{T(⊥u)} Planar translation perpendicular to u

{T} Three-dimensional translation in space

{G(u)} Planar pair Planar gliding motion determined by the normal vector u

{S(N)} Spherical joint Rotation about point N

{E} Rigid connection, no relative motion

{D} General spatial motion
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pairs can also be synthesized following the method raised 
in this paper.

2.2 � Special 2R1T Motion
A special 2R1T motion can be represented by product 
{R(O, u)}{R(O, v)}{T(w)}. Such a motion can be generated 
by a uvUwP chain or a uRvRwP chain. The rotation center O 
is fixed, and thus no parasitic motion exists.

A displacement set of {R(O, u)}{R(O, v)}{T(w)} is 
obtained by the composition of three displacements. The 
first displacement is a translation parallel to w:

where the real number t is the translation amplitude.
The second displacement is a rotation of angle ψ 

around axis (O, v):

Since OMT = tw + OM, the transformation of M into 
MR1 is expressed by

The third displacement is a rotation of angle φ around 
axis (O, u). The point MR1 is transformed into the final 
position M′ as

which expresses the transformation M→M′.
The displacement M→M′ is the product of spheri-

cal rotation M→MR  =  O+exp(φu×)exp(ψv×)(OM), 
followed by translation MR→M′  =  MR  +  texp(φu×)
exp(ψv×)w.

2.3 � Special Case: Exechon Robot
Figure 1 shows a 2-UPR-SPR PM that is the parallel mod-
ule of the Exechon robot. Intuitively, it is often thought 
that the 2-UPR-SPR PM is a UP-equivalent PM. However, 
this is not true.

Limb 1 and limb 3 are UPR chains. Limb 2 is an SPR 
chain. A1 and A3 denote the central points of the two 
U-joints in limb 1 and limb 3, respectively. A2 denotes 
the center of the spherical joint in limb 2. Bi(i = 1, 2, 3) 
denotes a point on the revolute axes adjacent to the mov-
ing platform in limb i. Counting from the base, the first 
revolute axes of the two U-joints are coincident. The 
fourth revolute axes in limb 1 and limb 3 are parallel, and 
perpendicular to the fifth revolute axis in limb 2.

The kinematic bond of limb 1 is {L1}  =  {R(A1, u)}
{R(A1, v)}{T(x1)}{R(B1, v)}, where x1 is a unit vector in the 

(1)M → MT = tw +M, ∀ pointM,

(2)MT → MR1 = O + exp(ψv×)(OMT).

(3)M → MR1 = O + exp(ψv×)(OM + tw).

(4)

MR1 → M
′ = O + exp(ϕu×)(OMR1)

= O + exp(ϕu×) exp(ϕv×)(OM + tw)

= O + t exp(ϕu×) exp(ϕv×)w

+ exp(ϕu×) exp(ϕv×)(OM),

uw plane and is perpendicular to v. Using product clo-
sure, we have {L1} =  {R(A1, u)}{G(v)} =  {R(O, u)}{G(v)}, 
because O is also a point on the first revolute axis.

The kinematic bond of limb 3 is {L3} = {R(A3, u)}{R(A3, 
v)}{T(x3)}{R(B3, v)}, where x3 is a unit vector in the uw 
plane and is perpendicular to v. Through a similar analy-
sis to that of limb 1, we have {L3} = {R(O, u)}{G(v)}.

Since {L1} = {L3}, we only need to discuss the intersec-
tion of the displacement sets produced by limb 1 and 
limb 2. The kinematic bond of limb 2 is {L2} = {R(A2, v)}
{R(A2, u)}{R(A2, x2)}{T(x2)}{R(B2, u)}, where x2 is a unit 
vector in the vw plane and is perpendicular to u.

Because {R(A2, v)}{R(A2, u)}{R(A2, x2)}  =  {S(A2)}, we 
have

The intersection of limb 1 and limb 2 is given by

It is simple to determine {G(v)}∩{G(u)}  =  {T(w)}. 
Hence, {G(v)}and {G(u)}can be decomposed into prod-
ucts, including the factor {T(w)}, as

Substituting Eq. (7) and Eq. (8) into Eq. (6) yields

Because {R(O, u)}{R(O, v)}≠{R(O, v)}{R(O, u)}, 
{R(O, u)}{R(O, v)}{T(u)}∩{S(A2)}{G(u)} is only a 

(5)
{L2} = {S(A2)}{T (x2)}{R(B2,u)}

= {S(A2)}{R(A2,u)}{T (x2)}{R(B2,u)}

= {S(A2)}{G(u)}.

(6){L1} ∩ {L2} = {R(O,u)}{G(v)} ∩ {S(A2)}{G(u)}.

(7){G(v)} = {R(O, v)}{T (u)}{T (w)},

(8){G(u)} = {R(A2,u)}{T (v)}{T (w)}.

(9)

{L1} ∩ {L2}

= {R(O,u)}{R(O, v)}{T (u)}{T (w)}

∩ {S(A2)}{G(u)}{T (w)}

= [{R(O,u)}{R(O, v)}{T (u)} ∩ {S(A2)}{G(u)}]{T (w)}.

Figure 1  Exechon robot
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two-dimensional submanifold of {R(O, u)}{R(O, v)}
{T(u)}. Hence, although the parallel module of the Exe-
chon robot has three DOFs, it is not a UP-equivalent PM.

3 � Limb Bond of UP‑Equivalent PMs
3.1 � Displacement Set of UP‑Equivalent PMs
The motion generated by a UP chain has three DOF. 
Hence, three limbs are preferable for the UP-equivalent 
PMs. Each limb generates a set of feasible displacements 
(or kinematic bond) denoted by {Li}, (i =  1, 2, 3). {R(O, 
u)}{R(O, v)}{T(w)} must be the intersection of all limb 
kinematic bonds produced by all limb chains. Hence, we 
can write

3.2 � Limb Bond of UP‑Equivalent PMs
Obviously, {R(O, u)}{R(O, v)}{T(w)} should be included in 
the displacement set {Li} generated by the ith limb chain, 
that is, {R(O, u)}{R(O, v)}{T(w)}⊂{Li}. If one or two limbs 
are sufficient to produce a UP motion, one or two genera-
tors of {D} can be the second and third limb. For example, 
one can construct a UP-equivalent PM using two 6-DOF 
SPS or UPS limbs, and one uvUwP chain. This is straight-
forward and is not discussed in this paper. We only focus 
on the type synthesis of UP-equivalent PMs with lower-
mobility limbs.

There are three groups of limb bonds, distinguished by 
their dimensions (Dim).

Group 1:	� Dim({Li}) = 3
This corresponds to only one condition, i.e., 

{Li}  =  {R(O, u)}{R(O, v)}{T(w)}. The corresponding 
mechanical generator (MG) is a 3-DOF uvUwP chain. 
However, one cannot construct a UP-equivalent PM with 
three identical uvUwP chains.

Group 2:	� Dim({Li}) = 4
To obtain 4-DOF limbs, one can add {R(O, u)}{R(O, 

v)}{T(w)} to a 1-D subgroup. Only results that yield sub-
groups of {D} are considered here. A 1-D translational 
subgroup or rotational subgroup can be selected as the 
added factor.

Adding {R(O, u)}{R(O, v)}{T(w)} to a 1-D translational 
subgroup {T(t)} yields

{T2(w, t)} is generated by a serial array of two prismatic 
pairs. However, it is discarded because limbs with two 
prismatic pairs are not considered for practical purposes.

With added factor {R(A, w)}, we have

(10)
3
⋂

i=1

{Li} = {R(O,u)}{R(O, v)}{T (w)}.

(11)
{Li} = {R(O,u)}{R(O, v)}{T (w)}{T (t)}

= {R(O,u)}{R(O, v)}{T2(w, t)}.

Note that the point A does not necessarily belong to 
axis (O, w). However, if the end-effector motion is con-
strained by the other two limbs to be {R(O, u)}{R(O, v)}
{T(w)}, then there is no motion in the R pair embodying 
{R(A, w)}. Hence, combination {R(O, u)}{R(O, v)}{C(A, 
w)} is discarded.

If A∈axis(O, w), Eq. (12) becomes

The 3-D group {S(O)} is equal to product{R(O, i)}{R(O, 
j)}{R(O, k)} provided that (i, j, k) is a vector base. With 
k = w, we have{R(O, i)}{R(O, j)}{R(O, w)}{T(w)} = {R(O, 
i)}{R(O, j)}{C(O, w)} and we can use {C(O, w)} =  {T(w)}
{R(O, w)}, which gives {R(O, i)}{R(O, j)}{T(w)}{R(O, w)}, 
where i≠u and j≠v.

With added factor {R(A, v)}, we have

The 3-D group {G(v)} is equal to {R(A, v)}{R(B, v)}
{T(r)} with generally A≠O and r⊥v≠w. We also have 
{G(v)}  =  {R(A, v)}{T(r)}{R(B, v)}  =  {T(r)}{R(A, v)}{R(B, 
v)} = {R(A, v)}{R(B, v)}{R(C, v)}.

In summary, we obtain two types of 4-D products: 
{S(O)}{T(w)} = {R(O, i)}{R(O, j)}{C(O, w)} with i ≠ u and 
j≠v, and {R(O, u)}{G(v)}, in which the cylindrical 2-D 
group, spherical 3-D group, and planar 3-D group can 
be decomposed into products of their 1-D subgroups. 
Table  2 lists the 4-D limb bonds and their  MGs of UP-
equivalents PMs. 

Group 3:	� Dim({Li}) = 5
With added factor {R(A, k)}{R(B, k)}, we have

Thus, various MGs can be obtained by using product 
closure in {G(k)}, as listed in Table 3.

Adding a group of translation {T(t)}, and ∀ unit vector 
t ≠ w, in the 4-D product {S(O)}{T(w)}, we obtain

{S(O)}{T2(w, t)} is an irreducible representation of the 
reducible product {S(O)}{G(s)}, with s⊥w (the planes 
orthogonal to s are parallel to w).

{S(O)}{G(s)} has two main categories of irreducible rep-
resentations. One is {R(O, i)}{R(O, j)}{G(s)}, where (i, j, k) 

(12)

{Li} = {R(O,u)}{R(O, v)}{T (w)}{R(A,w)}

= {R(O,u)}{R(O, v)}{C(A,w)}

= {R(O,u)}{R(O, v)}{R(A,w)}{T (w)}.

(13)

{Li} = {R(O,u)}{R(O, v)}{R(A,w)}{T (w)}

= {R(O,u)}{R(O, v)}{R(O,w)}{T (w)}

= {S(O)}{T (w)}.

(14)
{Li} = {R(O,u)}{R(O, v)}{T (w)}{R(A, v)}

= {R(O,u)}{G(v)}

(15)
{Li} = {R(O,u)}{R(O, v)}{T (w)}{R(A, k)}{R(B, k)}

= {R(O,u)}{R(O, v)}{G(k)}.

(16){S(O)}{T (w)}{T (t)} = {S(O)}{T2(w, t)}.
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is a vector base (generally, i ≠ u and j ≠ v). The other 
is {S(O)}{G2(s)}, where {G2(s)} denotes one of the 2-D 
submanifolds of the 3-D group{G(s)}. We neglect {S(O)}
{G2(s)} intentionally because a spherical joint is needed 
to implement {S(O)}. Table  4 lists the MGs of 5-D limb 
bond {R(O, i)}{R(O, j)}{G(s)}.

Adding a 2D group of planar translations in product 
{R(O, u)}{R(O, v)}{T(w)}, we obtain

{X(u)}{X(v)} is called the double Schoenflies motion 
or X–X motion [18]. It is reducible and includes three 
translations and two rotations. The axes of the rotations 
are parallel to vectors u and v, whereas the locations of 
the axes can be arbitrary. For detailed MGs of the X–X 
motion, please see Ref. [18].

3.3 � Parallel Arrangement of Limbs
A UP-equivalent PM can be obtained by connecting a 
moving platform to a fixed base using the three limbs 
listed in Table 2 or Table 3. Note that the U-joints in the 
three limbs must be coincident, which causes difficul-
ties in fabrication and actuation. Henceforth, we use the 
first revolute axis to denote the fixed revolute axis of the 
U-joint and the second axis to denote the moving revo-
lute axis of the U-joint.

We set the first revolute axes of the U-joints in limbs 
2 and 3 to be coincident with the first revolute axis of 

(17)
{Li} = {R(O,u)}{R(O, v)}{T }

= {X(u)}{X(v)}.

the U-joint in limb 1, as shown in Figure  2(a). Conse-
quently, we have {R(O, u)}∩{R(A2, u)}∩{R(A3, u)} = {R(O, 
u)} because the three U-joint centers O, A2, and A3 are 
collinear.

Then, the two U-joints in limb 1 and limb 3 are com-
bined into one complex U-joint as shown in Figure 2(b). 
Note that this condition implies that {L1} = {L3} and the 
three limbs are set orthogonally. Consequently, the dis-
placement set of the moving platform is determined by 
the intersection of {L1} and {L2}.

For clarity, we denote the type of UP-equivalent PMs 
by the dimensions of the three limbs, that is, Dim({L1})-
Dim({L2})-Dim({L3}). In this way, we classify the UP-
equivalent PMs into three categories: 3-3-X, 4-4-X, and 
5-5-X, in which X can be 3, 4, or 5. Here we only focus on 
subcategory 5-5-4 for practical purposes.

4 � UP‑Equivalent PMs in Category5‑5‑4
There are three limb bonds for a 5-5-X UP-equivalent 
PM, namely, {R(O, u)}{R(O, v)}{G(k)}, {G(u)}{G(v)}, and 
{S(O)}{G(v)}. One can set any of them to be {L1} and one 
of the other two to be {L2}. However, for practical rea-
sons, we let {L1} = {L3} = {R(O, u)}{R(O, v)}{G(k)}.

When {L2} =  {R(O, u)}{G(v)}, the intersection of {L1} 
and {L2} is {R(O, u)}{R(O, v)}{T(w)}. Using the four MGs 
of {R(O, u)}{R(O, v)}{G(k)} and the four MGs of {R(O, u)}
{G(v)}, one can obtain 16 UP-equivalent PMs, as listed 
in Table  5. Figure  3 shows three UP-equivalent PMs, in 
which the first three kinematic pairs, counting from the 
moving platform in each of the three architectures, are 

Table 2  4-D limb bonds of UP-equivalent PMs

The underline in vPR, vRP, and vRR denotes that they generate 2-D motion in 
{G(v)}

{Li} MG of {Li}

{S(O)}{T(w)} SwP

{R(O, u)}{G(v)} uvUvPR, uvUvRP, uvUvRR

{R(O,u)}{R(O, v)}{R(O, w)}{T(w)} uvUwRwP, uvUwC

{R(O, u)}{R(O, v)}{T(w)}{R(O, w)} uvUwPwR

Table 3  5-D limb bonds of UP-equivalent PMs

The underline in kRRP, kRPR, kPRR, and kRRR denotes that they are MGs of {G(k)}

{Li} MG of {Li}

{R(O, u)}{R(O, v)} {G(k)} uRvRkRRP, uRvRkRPR, uRvRkPRR, uRvRkRRR, uvUkRRP, 
uvUkRPR, uvUkPRR, uvUkRRR

Table 4  5-D limb bonds of UP-equivalent PMs

The underline in sRRP, sRPR, sPRR, and sRRR denotes that they are MGs of {G(s)}

{Li} MG of {Li}

{R(O, i)}{R(O, j)}{G(s)} iRjRsRRP, iRjRsRPR, iRjRsPRR, iRjRsRRR, ijUsRRP, ijUsRPR, 
ijUsPRR, ijUsRRR

Figure 2  Arrangement of U-joints. a First rotational axes of U-joints 
are coincident, b Two U-joints are combined into a complex U-joint
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identical; this results in a maximum symmetry in the UP-
equivalent PMs. Figure  4 shows another six UP-equiva-
lent PMs in this group.

Note that {S(A2)}{T(w)} cannot be used as a limb bond 
in this group. When {L2} =  {S(A2)}{T(w)}, the intersec-
tion of {L1} and {L2} is

Another option is to let {L1}  =  {L3}  =  {G(u)}{G(v)}. 
When {L2} = {R(O, u)}{G(v)}, the intersection of {L1} and 
{L2} is {L2} itself. Thus, {R(O, u)}{G(v)} cannot be used as 
a limb bond in this group.

When {L2}  =  {S(A2)}{T(w)} and A2∈axis (O, u), the 
intersection of {L1} and {L2} is

Using the fifteen MGs of {G(u)}{G(v)} and the three 
MGs of {S(A2)}{T(w)}, one can obtain 45 UP-equivalent 

(18)

{L1} ∩ {L2}

= {R(O,u)}{R(O, v)}{G(k)} ∩ {S(A2)}{T (w)}

= {R(O,u)}{T (w)}

(19)

{L1} ∩ {L2} = {G(u)}{G(v)} ∩ {S(A2)}{T (w)}

= {R(O,u)}{G(v)} ∩ {S(A2)}{T (w)}

= {R(O,u)}{R(A2, v)}{T (w)}.

PMs. However, there is less practical potentials of those 
architectures due to the difficulties in actuation.

5 � Rotational Capability
It is obvious that the constructed PMs have unlimited 
rotational capability around one axis, i.e., the coincident 
axis of the two U-joints in each mechanism. In contrast, 
the rotational range around the other axis can also be 
considerably large, which is proved in this section by 
taking the 2-UPRR/UPR mechanism as an example. As 
shown in Figure 5, the mechanism has three limbs; limb 
1 and limb 2 are UPRR type limbs and share a common 
U-joint, and limb 3 is a UPR type limb. The central points 
of the P pair and the first R pair in limb 1 (limb 2) are 
coincident, and these points are denoted by A1 (for limb 
1) and A2 (for limb 2) hereafter. The center of the U-joint 
in limb 3 is denoted by A3, and the centers of the three 
moving platform-connected R pairs are denoted by B1, 
B2, and B3, respectively.

There are several necessary geometrical conditions 
in the mechanism. The first rotational axes of the two 
U-joints (s1, s7) are coincident. In limb 1 and limb 2, the 

Table 5  UP-equivalent PMs in group 1 in category5-5-4

{L1} = {L3} = {R(O, u)}{R(O, v)}{G(u)},{L2} = {R(O, u)}{G(v)}

2-uvUkPRR/uvUvPR
2-uvUkPRR/uvUvRP
2-uvUkPRR/uvUvRR
2-uvUkPRR/uRvPRR
2-uvUkRRR/uvUvPR
2-uvUkRRR/uRvPRR

2-uvUkRRP/uvUvPR
2-uvUkRRP/uvUvRP
2-uvUkRRP/uvUvRR
2-uvUkRRP/uRvPRR
2-uvUkRRR/uvUvRP

2-uvUkRPR/uvUvPR
2-uvUkRPR/uvUvRP
2-uvUkRPR/uvUvRR
2-uvUkRPR/uRvPRR
2-uvUkRRR/uvUvRR

Figure 3  Three UP-equivalent PMs in subcategory 5-5-4
Figure 4  Six UP-equivalent PMs in subcategory 5-5-4
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R pairs have parallel axes (s3, s4, s5, s6). In limb 3, the R 
pair has an axis (s9) parallel to line B1B2 and the second 
rotational axis (s8) of the U-joint within the same limb. 
The three P pairs (denoted by Pi for limb i) are equipped 
with motors. In addition, the rotation around axis s1 is 
also actuated. Thus, there are four inputs in total. In an 
initial configuration, as shown in Figure 5(a), s1 and s7 are 
parallel to s3, s4, s5 and s6. s8 and s9 are parallel to line B1B2 
and the second rotational axis (s2) of the U-joint in limb 
1. From this configuration, if we fix P3 as well as axis s1 
of the U-joint and give P1 and P2 with different displace-
ments, the mechanism will move to a configuration as 
in Figure 5(b), in which s2 is no longer parallel to s8, s9, 
and line B1B2. The mechanism degenerates into a 2-DOF 
mechanism with one rotational DOF around axis s1(s7) 
and a translational DOF. This is denoted by 1R1T con-
figuration. In contrast, if we fix axis s1, P1, and P2 in the 
initial configuration, and give a displacement to P3, the 
mechanism will move to a configuration in Figure  5(c), 
in which s1 and s7 are not parallel to s3, s4, s5 and s6. The 
mechanism in this configuration has three DOFs, includ-
ing two rotations around axes s1 and s2; this is called the 
2R1T configuration. The rotational angle of s1 always 
equals that of s7, and the displacements of P1 and P2 are 
the same since limb 1 and limb 2 are designed to have 
identical dimensions. Therefore, if the mechanism is in 
the initial configuration, to prevent it from moving to the 
1R1T configuration, P1 and P2 should be properly con-
trolled to ensure that |OA1| = |OA2| (O is the center of 
the U-joint in limb 1). Thus, s2 will remain parallel to s8, 
s9, and line B1B2. The mechanism continues working in 
the 2R1T operation mode.

Next, the kinematic model of the mechanism is estab-
lished. Here, we only focus on the 2R1T operation mode. 
A global coordinate system G(O-XYZ) is attached to 
the fixed base with its origin coincident with the central 
point of the U-joint in limb 1; axis Y is coincident with 

the first rotational axis of the U-joint, which is connected 
to the fixed base; axis X is parallel to the horizontal plane 
and perpendicular to axis Y, and axis Z is defined accord-
ing to the right hand rule, as in Figure 6. Similarly, a local 
coordinate system L(p-xyz) is attached to the moving 
platform with its origin located at the middle of line B1B2, 
axis x coincident with B2B1, axis y passing through point 
B3, and axis z defined according to the right hand rule.

The orientation of the moving platform can be 
expressed by a rotation around axis Y followed by a rota-
tion around the resulting axis X’. Thus, the rotational 
matrix is given by

where α and β are rotational angles around axes Y and X′, 
respectively.

The position vector of point p expressed in the global 
coordinate system can be given by

where t denotes the distance between points O and p.

5.1 � Inverse Position Solutions and Jacobian Matrix
The displacements of the three P pairs are denoted by d1, 
d2, and d3, and the rotational angle of the first axis of the 
U-joint in limbs 1 and 2 is denoted by θ, as in Figure 6. 
The inverse position problem is to find the values of d1, 
d2, d3, and θ with the moving platform parameters α, β , 
and t given. This is quite an easy problem and one can 
directly determine that θ equals α. We express the posi-
tion vectors of points Ai (i = 1, 2, 3) in the global coordi-
nate system as

(20)

G
RL = RYRX =





cosα 0 sin α

0 1 0

− sin α 0 cosα









1 0 0

0 cosβ − sin β

0 sin β cosβ





=





cosα sin α sin β sin α cosβ

0 cosβ − sin β

− sin α cosα sin β cosα cosβ



,

(21)p = [t sin α cosβ , − t sin β , t cosα cosβ]T,

Figure 5  Three configurations of the 2UPRR-UPR mechanism
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where a represents the length of OA3. We have d1 = −d2 
since P1 and P2 are properly actuated.

The position vectors of points Bi (i = 1, 2, 3) expressed 
in local coordinate system are given by

where the left superscript L denotes that the coordinates 
are expressed in the local system, m and n are dimen-
sional parameters of the moving platform.

The vectors in Eq.  (23) can be transformed into the 
global coordinate system using the following expression

Thus, we have

(22)
A1 = [d1 cos θ , 0, − d1 sin θ ]

T,

A2 = [d2 cos θ , 0, − d2 sin θ ]
T,

A3 = [0, a, 0]T,

(23)

LB1 = [m, 0, 0]T,

LB2 = [−m, 0, 0]T,

LB3 = [0, n, 0]T,

(24)Bi =
GRL

LBi+p.

(25)

B1 =





m cosα + t sin α cosβ
−t sin β

−m sin α + t cosα cosβ



,

B2 =





−m cosα + t sin α cosβ
−t sin β

m sin α + t cosα cosβ



,

B3 =





n sin α sin β + t sin α cosβ
n cosβ − t sin β

n cosα sin β + t cosα cosβ



.

Three constraint equations are established as

where the constant l represents the length of link A1B1 
and A2B2.

Substituting Eqs. (22) and (25) into Eq. (26) yields

Through Eq.  (27), the input parameters can be easily 
solved given the output parameters α, β, and t.

Differentiating both sides of Eq.  (27) with respect to 
time, and using the fact that θ̇=α̇, a set of equations can 
be derived and rearranged into matrix form as

in which ḋ = [ḋ1, ḋ2, ḋ3, θ̇]T is a vector that represents the 
input joint velocities, ẋ = [α̇, β̇, ṫ]T represents the veloc-
ities of the moving platform, and J is a 4 × 3 matrix as 
follows:

in which the detailed expressions of the elements are as

(26)
|A1 − B1| = l,

|A2 − B2| = l,

|A3 − B3| = d3,

(27)

(m cosα + t sin α cosβ − d1 cos θ)
2 + (t sin β)2

+ (−m sin α + t cosα cosβ+d1 sin θ)
2 = l2,

(−m cosα + t sin α cosβ − d2 cos θ)
2

+ (t sin β)2+(m sin α + t cosα cosβ+d2 sin θ)
2 = l2,

(n sin α sin β + t sin α cosβ)2+(n cosβ − t sin β − a)2

+ (n cosα sin β + t cosα cosβ)2 = d23 .

(28)ḋ = J ẋ,

(29)J=







J11 J12 J13
J21 J22 J23
J31 J32 J33
J41 J42 J43






,

J11 = 0, J12 = 0, J13 =
t

m− d1
,

J21 = 0, J22 = 0, J23 =
t

d1 −m
,

J31 = 0,

J32 =
a(t cosβ + n sin β)

√

a2 + n2 + t2 − 2an cosβ + 2at sin β
,

J33 =
t + a sin β

√

a2 + n2 + t2 − 2an cosβ + 2at sin β
,

J41 = 1, J42 = 0, J43 = 0.

Figure 6  2UPRR-UPR mechanism
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5.2 � Workspace and Singularity
Once the inverse kinematic model is established, the 
workspace of the mechanism can be determined by con-
sidering some constraints imposed by joints and actua-
tors. Since the mechanism has unlimited rotational 
capability around axis Y, α is fixed as zero without loss of 
generality, and only the ranges of β and t are evaluated. 
Table  6 lists the dimensional parameters of the mecha-
nism. The constraints of workspace are given as

where ψ is the angle between A3B3 and axis Y, as shown 
in Figure  6. ψ is constrained in a reasonable region to 
avoid interference between links.

By searching the potential region for points that satisfy 
the conditions in Eq. (30), the workspace of the mechanism 
is numerically determined as in Figure 7(a). The range of t 
is determined by the stroke of the actuators mounted to P1 
and P2. When P1 and P2 reach their maximum stroke, t has 
a maximum value of −216 mm, corresponding to the right 
boundary of the workspace. Figure 7(e) shows such a con-
figuration. When P1 and P2 reach their minimum stroke, 
t has a minimum value of −349.08 mm, corresponding to 

(30)







160 mm ≤ d1, d2 ≤ 360 mm,

80 mm ≤ d3 ≤ 400 mm,

π/6 ≤ ψ ≤ 5π/6,

Table 6  Architectural parameters

Parameter l a m n

Value (mm) 360 280 72 82

Figure 7  Workspace, singularity and rotational capability. a Workspace, b Singular configuration I, c Singular configuration II, d P1 and P2 reach their 
minimum stroke, e P1 and P2 reach their maximum stroke, f Rotational range with t = −320 mm, g Rotational range with t = −240 mm
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the left boundary of the workspace. Such a configuration is 
shown in Figure 7(d). The upper and lower boundaries of 
the workspace are determined by the stroke of P3 and the 
angle constraint of ψ.

From Figure 7(a), we can see that rotational angle β is 
allowed over a considerably large range, varying from 
−33° to 70°. Furthermore, when t is set to a constant 
value, the rotational capability is still very high. The 
ranges of β are −5.82°~63.89° and −25.85°~54.84° when t 
is fixed at −320 mm and −240 mm, respectively, as illus-
trated in Figure 7(a), Figure 7(f ), and Figure 7(g).

A main factor that limits the rotational capability of a 
parallel mechanism is the inherent singularity, which may 
appear in the workspace, and divide it into small pieces. 
Therefore, the singularities of the 2-UPRR/UPR mecha-
nism should be considered. Singularities of a mechanism 
can be determined by judging the determinant of its Jaco-
bian matrix [33]. For the redundantly-actuated mecha-
nism studied here, the Jacobian matrix is a 4 × 3 matrix, 
but we can easily find that J1 = −J2 (J1 and J2 are the first 
and second rows of the Jacobian matrix J, respectively) 
since d1 = −d2 always holds. Therefore, the singularities 
of the 2-UPRR/UPR mechanism can be defined by the 
following expression

Using this expression, the singularities of the mecha-
nism are found and displayed with the orange line in Fig-
ure 7(a). We find that the singularities are not within the 
workspace, which means the high rotational capability of 
the mechanism will not be affected.

In fact, the determined singularities correspond to 
configurations when points O, A3, and B3 locate at a 

(31)det(Jn) = 0, Jn =





J11 J12 J13
J31 J32 J33
J41 J42 J43



.

common line. Two singular configurations are illustrated 
in Figure 7(b) and Figure 7(c). In these configurations, the 
moving platform can have an infinitesimal translation in 
the direction perpendicular to OA3, despite all the actua-
tions being locked. In other words, any external force in 
this direction cannot be balanced by the actuate force/
torque. However, these singular configurations are not 
contained in the workspace since d3 and ψ exceed their 
permitted ranges.

6 � Application
Parallel mechanisms have been successfully applied in 
the development of various machine tools [34–37]. It is 
believed that some of the proposed UP-equivalent PMs, 
which have compact structures and less joints in the 
limbs, have promising applications in this field. For exam-
ple, by combining the 2-URPR/UPR PM and a 2-DOF 
translational gantry, a hybrid milling machine is devel-
oped as in Figure 8. The machine has a tool mounted on 
the moving platform of the PM and can operate on com-
plex surfaces by relying on the coordinated motions of 
the PM and the gantry. It has the same operational abil-
ity as the Tricept and TriVariant robots. Furthermore, 
its parallel part has the advantages of high load capacity, 
high rotational capability, and no strict assembly require-
ment, which is preferable in practice.

7 � Conclusions
1.	 A new family of UP-equivalent PMs with high rota-

tional ability and low requirements in terms of geo-
metrical conditions is disclosed using displacement 
subgroup theory. The new architectures of UP-equiv-
alent PMs do not contain spherical joints and have no 
strict assembly requirements; this has several benefits 
in terms of manufacturing cost and payload capability.

Figure 8  Hybrid milling machine
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2.	 The high rotational capability of the proposed mech-
anisms is verified by investigating a typical example. 
In contrast to the unlimited rotational capability 
around one axis, rotation around the other axis is 
allowed over a considerably wide range of −33° ~ 70°. 
The singular curve is not within the workspace, and 
thus does not affect the rotational capability of the 
mechanism.
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