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Modeling Method for Flexible Energy 
Behaviors in CNC Machining Systems
Yu‑Feng Li1,2*  , Yu‑Lin Wang3, Yan He2, Yan Wang4 and Shen‑Long Lin2

Abstract 

CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are 
widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energy 
behaviors in CNC machining systems. A method to model flexible energy behaviors in CNC machining systems based 
on hierarchical objected-oriented Petri net (HOONet) is proposed. The structure of the HOONet is constructed of a 
high-level model and detail models. The former is used to model operational states for CNC machining systems, and 
the latter is used to analyze the component models for operational states. The machining parameters having great 
impacts on energy behaviors in CNC machining systems are declared with the data dictionary in HOONet models. A 
case study based on a CNC lathe is presented to demonstrate the proposed modeling method. The results show that 
it is effective for modeling flexible energy behaviors and providing a fine-grained description to quantitatively analyze 
the energy consumption of CNC machining systems.
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1  Introduction
Presently, manufacturing companies are not only facing 
strong economic pressure due to complex and diverse 
economic trends of shorter product life cycles, increased 
diversity in customer demand, and the globalization 
of production activities but are also seeking to meet 
emerging industrial criterions including sustainability 
for environmental benefits [1, 2]. According to a report 
by Schipper [3], manufacturing is responsible for 84% 
of energy-related industrial CO2 emissions and 90% of 
industrial energy consumption. Sustainable manufac-
turing has been hailed for manufacturing enterprises to 
achieve sustainable production and improve their sus-
tainable competitive advantage [4]. Computer Numerical 
Control (CNC) machining systems are the key players for 
metal cutting in manufacturing activities. Approximately 
95% of the environmental impact of CNC machining 
systems is attributed to electrical energy consumption 
during the utilization phase [5]. Therefore, a thorough 

analysis of energy consumption in CNC machining sys-
tems is of utmost importance, to implement sustainable 
manufacturing [6].

As a prerequisite, it is important to understand and 
analyze how electrical energy use or power demanded 
is consumed in CNC machining processes. Most stud-
ies have been based on machining parameters to analyze 
energy consumption for CNC machining systems. Dra-
ganescu et  al.   [7] statistically modeled the relationship 
between energy consumption and machining param-
eters using the Response Surface Method. Diaz et al.  [8] 
and Velchev et  al.   [9] characterized the specific energy 
of machine tools as a function of material removal rate. 
Li et  al.   [10] established an empirical model of energy 
consumption based on power measurements under 
various cutting conditions with different machining 
parameters. Lv et  al.   [11] investigated the energy char-
acteristics related to machining parameters and proposed 
the power models of CNC machining systems through 
an experimental method. Camposeco-Negrete [12] mod-
eled energy consumption of machining parameters for 
a specific lathe machine tool with the Response Surface 
Method. Liu et  al.   [13] characterized the energy con-
sumption of machining parameters for a specific milling 
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machine tool. Sun et al.   [14] described the relationship 
between the specific energy consumption and the pro-
duction rate for ball milling. Shin et  al.   [15] presented 
a component-based energy-modeling methodology to 
implement online optimization. These studies mainly 
focused on identifying critical machining parameters for 
analyzing energy consumption, and energy consump-
tion was modeled as a function of certain machining 
parameters.

Some researchers have focused on modeling the energy 
consumption of components to analyze the energy con-
sumption in CNC machining system. Gutowski and 
Kordnowy broke down the energy consumption of 
machining systems according to functional components 
such as computer and fans, servos, coolant pump, spin-
dle, tool changer, and so on  [16–18]. He et al. [19] mod-
eled the total energy consumption of CNC machining by 
summing up the energy consumed by the spindle, feed, 
tool, coolant pump, fan motor and servo system. Avram 
et  al.   [20] concentrated on the energy requirements of 
the spindle and feed axes by considering the steady-state 
and transient regimes to analyze the energy consump-
tion of a machine tool system. Lee et al.  [21] proposed a 
method to simulate the energy consumption of the spin-
dle, feed, controller, and auxiliary units for analyzing the 
energy use of the machine tool.

Operational states (i.e., standby, idle, and processing), as 
an important issue impacting energy use, have been con-
sidered to understand energy use in CNC machining sys-
tems. Balogun et al.  [22] developed a mathematical model 
for energy use under various operational states. Mori 
et al.  [23] modeled the energy consumption of machining 
systems by summation of the energy demands for differ-
ent operational states. Pavanaskar et al.   [24] and Rajemi 
et al.   [25] developed analytical models for CNC machin-
ing that correlated various operational states with the 
energy consumed in the process. Dietmair et al.  [26] mod-
eled the energy consumption of machines associated with 
their operational states using a statistical discrete event 
formulation. Xie et al.  [27] proposed modeling the energy 
consumption of a turning machine tool by characterizing 
the energy consumption under various operational states. 
Peng et al.   [28] proposed a universal hybrid energy con-
sumption model for CNC machines, which is comprised 
of operational state transition model at the higher level 
and detailed theoretical or empirical component energy 
models at the lower level. However, these energy models 
are used to analyze energy use in specific operational states 
in CNC machining systems. CNC machining systems are 
inevitably confronted with frequent changes in energy 
behaviors because they are widely used to produce various 
machining tasks. These methodologies require construct-
ing totally new energy models for the changed machining 

tasks. Therefore, these methodologies are not effective to 
understand and analyze the flexible energy behaviors in 
CNC machining systems. To this end, this paper proposes 
a method to model the flexible energy behaviors in CNC 
machining systems based on a HOONet.

The outline of this paper is as follows. Flexible energy 
behaviors in CNC machining systems are described 
in Section  2. In Section  3, a modeling method based 
on HOONet is illustrated to model the flexible energy 
behaviors. The structure of a HOONet is constructed 
with a high-level model and detail models, and the corre-
sponding data dictionaries are declared in the HOONet 
models. In Section 4, a case study based on a CNC lathe 
is presented to demonstrate the proposed modeling 
method. The conclusions are presented in Section 5.

2 � Energy Behavior Descriptions in CNC Machining 
Systems

To effectively model the energy consumption of CNC 
machining systems in this environment, flexible energy 
behaviors in CNC machining systems should be under-
stood and analyzed.

The energy consumption of CNC machining systems 
is divided into the energy consumed by the operational 
states of the machine tools (e.g., standby and processing)  
[5]. Further, the energy consumed in each operational 
state is decomposed into the energy consumption of mul-
tiple components (e.g., the spindle, feed axis, and coolant 
pump motors) in use. Figure  1 depicts an example of a 
power profile of a CNC machining process. This machin-
ing process consists of three operational states: standby 
state, idle state, and processing state. The energy con-
sumption of this machining process includes the energy 
consumed in the standby state, idle state, and processing 
state. Furthermore, the machine tool components include 
the spindle motor, feed motors, fan and servo systems, 
and so on. Component modes are the different designed 
modes in which a component can stay or operate, i.e., 
ON, OFF, and HOLD   [5]. The changes in component 
modes result in shifts of the operational state. As shown 
in Figure 1, in the standby state, the component mode of 
the fan motor and servo systems is ON, while the spindle 
motor and feed motors are OFF. Energy in the standby 
state is consumed by the fan motor and server systems. 
Comparing to the energy consumption in the standby 
state, the energy consumption in the idle state includes 
the energy consumed by the fan motor and server sys-
tems and the energy used to maintain the motion of the 
spindle axes. Therefore, as shown in Figure 1, the shift of 
operational states results in the flexible energy behaviors 
in CNC machining systems.

Master–slave control is widely employed in robot 
manipulation. In most cases, the joystick or the keyboard 
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is the routine input device for the robot master–slave 
control system. The system presented in this paper is 
shown in Figure 1.

Additionally, a different series of operational states are 
needed to produce various machining tasks. Also, energy 
consumption in CNC machining systems is affected by 
various machining parameters. For producing the same 
workpieces, different machining parameters can cause 
different energy consumption. According to the experi-
ments conducted by Draganescu et al.   [7] for face mill-
ing the same amount of aluminum alloy using the FV-32 
machine tool with two different machining parameters, 
a 137316.3 kW·h energy difference was observed. There-
fore, the energy behaviors are flexible in CNC machining 
systems.

3 � HOONet Model for Flexible Energy Behaviors 
of CNC Machining Systems

Based on the characteristics of the flexible energy behav-
iors in CNC machining systems mentioned above, the 
energy consumption of CNC machining systems is 
divided into the energy consumed by the operational 
states of the machine tools (e.g., standby and processing). 
It can be conceived as a set of discrete events triggered 
by the operational state change during the machining 
process. Simultaneously, CNC machining systems are 
inevitably confronted with frequent changes in energy 
behaviors because they are widely used to perform vari-
ous machining tasks. To effectively model the energy 
consumption, the approaches need to support the con-
cepts of object-orientation including modularization 
and encapsulation. Since a hierarchical object-oriented 
Petri Net (HOONet) is a kind of discrete event mod-
eling method and integrates the merits of object-oriented 

programming and Petri nets, it offers more flexibility for 
adapting to variances in CNC machining systems. There-
fore, a HOONet is used to model the flexible energy 
behaviors of CNC machining systems. The structure of 
a HOONet is constructed with a high-level model and 
detail models. The former is used to model the opera-
tional states of CNC machining systems, and the latter is 
used to analyze the component modes of the operational 
states. The machining parameters are declared with the 
data dictionary (DD) in HOONet models.

3.1 � General Structure of a HOONet Model
Petri nets are a well-established process modeling tech-
nique that has formal semantics. A Petri net is a directed, 
connected, and bipartite graph in which each node is 
either a place or a transition. When there is at least one 
token in every place connected to a transition, the tran-
sition is enabled. Any enabled transition may fire by 
removing one token from every input place and depos-
iting one token in each output place   [29]. Considering 
its simplicity and flexibility in depicting dynamic system 
behaviors, the Petri net is widely used in various applica-
tion domains, such as manufacturing systems and busi-
ness processes.

To complement the weakness of Petri nets in terms 
of naturalness, modularity, and reusability, high-level 
Petri nets with object concepts have been suggested   
[30]. The HOONet is a high-level Petri net that cor-
responds to a class in an object-oriented paradigm, 
which can bridge the gap between the formal treat-
ment of Petri nets and the object-oriented approach. A 
HOONet will support modularization and encapsula-
tion without violating the basic philosophy of the Petri 
nets.

Figure 1  Power profile of a CNC machining system
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The HOONet is a 3-tuple; HOONet = (OIP, ION, DD). 
An object identification place (OIP) is a unique identifier 
of a class; an internal object net (ION) is a set that depicts 
the behaviors (methods) of a class; and the data diction-
ary declares the attributes of a class. The general struc-
ture of a HOONet is shown in Figure 2.

A set of places in a HOONet is defined as 
P =  {PIP, ABP}, where a primitive place (PIP) is a basic 
place to represent the local states of a system, the same 
as in basic Petri nets  [31]. The abstract place (ABP) rep-
resents abstract information (state) and can be refined 
in further modeling steps. The abstract place is depicted 
with a bold-lined circle in the HOONet model.

A set of transitions in a HOONet is defined as 
T  =  {PIT,  ABT,  COT}, where the primitive transition 
(PIT) is a basic transition, the same as in basic Petri nets  
[31]. ABT is an abstract transition, and a communicative 
transition (COT) is a transition representing a method 
call. In a HOONet model, ABT and COT are represented 
with a bold-lined rectangle and double-lined rectangle, 
respectively  [32].

3.2 � HOONet Modeling Procedure
The detailed procedure for modeling flexible energy 
behaviors in CNC machining systems includes two steps: 
1) high-level specification and modeling and 2) detailed 
specifications and modeling.

3.2.1 � High‑level Specifications and Modeling
The energy consumption of machining systems is the 
combination of the energy consumption in operational 
states (e.g., standby state, idle state, and processing state)  
[5]. The high-level HOONet model of energy consump-
tion in CNC machining systems (“MATO”) is depicted in 
Figure 3. The operational states of CNC machining sys-
tems are encapsulated as ABP “OffSta” (machine is OFF), 

ABP “StaSta” (machine is on standby waiting for the 
machining tasks), ABP “ReaSta” (machine is ready to per-
form the task), ABP “IdlSta” (machine is idle where the 
spindle motor is ON without material removal), and ABP 
“ProSta” (machine is removing the material). The differ-
ent operational states in a high-level HOONet model are 
fired according to the machining processes of the tasks. 
If the machining task is arrival and the current state of 
the machine tool is OFF, the transition M1_t1 is fired, 
and the machine tool starts to perform the task. When 
the machining task is arrival, and the current state of the 
machine tool is standby, the transition M1_t2 is fired. 
The machine tool starts to clamp the workpiece. While 
the workpiece is clamped, the transition M1_t4 is fired, 
and then the operational state of the machine tool is 
changed to the ready state. After the machining task 
is performed, there are two ways to exit the HOONet 
model. One is that the transition M1_t11 is fired; then 
the CNC machining system is turned off. Another is that 
the transition M1_t12 is fired; then the CNC machining 
system stays on standby waiting for another task.

The DD in a high-level model of MATO is expressed by 
the CPN ML’s syntax and semantics shown in Figure  3. 
The token type M in the MATO was defined with the 
complex type, and detailed attributes are described by 
the refined token types in DD at the next level. Detailed 
information in the token includes the machining param-
eters and operating mode (i.e., ON, OFF, and HOLD). 
This information is obtained from the CNC code and his-
tory data. Additionally, to describe the current state of 
the machine tool, a global variable “MX” is applied. For 
example, when the current state of the machine tool is 
standby, the MX is equal to “StaSta.”

3.2.2 � Detailed Specifications and Modeling
The energy consumption in the operational states of the 
machine tool can be further decomposed into the energy 
consumption of the components in use. Each component 
works in only one of its component modes (i.e., ON, OFF, 
and HOLD)   [5]. Therefore, the abstract places in Level 
1 are refined into a more detailed model at Level 2. The 
DD in this level is the refined declaration of the DD in the 
“MATO.” The complex-type token M in the “MATO” is 
recorded by two types of tokens, MI and MS. Token MI 
declares the machining parameters (e.g., cutting speed, 
feed rate, and cutting depth), and token MS records the 
component mode (e.g., ON, HOLD, or OFF) for the dif-
ferent operational states, expressed as a TT MS = com-
plex with OffSta │ StaSta │ ReaSta │ IdlSta │ ProSta. 
The detailed information in tokens MI and MS is shown 
as in Figure 4.

For illustration, the detailed HOONet model of StaSta 
is specified in Level 2, as shown in Figure 5. This model 

OIP

Internal structure

Data
Dictionary

OIP

ION

ABP ABTPIT COTPIP

Figure 2  General structure of a HOONet
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has two primitive places, two primitive transitions, 
and two communicative transitions. The COT “FSSY” 
calls the method to adjust the component mode of the 
fan motor and servo system, while the COT “COSY” is 
applied to adjust the component mode of the coolant 
system. If the global variable MX equals “OffSta,” COT 
“FSSY” is fired. Then, the fan motor and servo system 
are turned ON (denoted as FSOn). If MX is equal to 
“ReaSta,” COT “COSY” is fired to turn off the coolant sys-
tem for unloading the workpiece. In this operational state 
(MS = “StaSta”), the fan motor and servo system are kept 
in the “ON” state, while the spindle motors, feed motors, 
and coolant system are inactivated. Accordingly, the MS 
is recorded by {(bs, on), (ss, off), (fs, off), (cs, off)}, as 
shown in the DD in Figure 5. Similarly, other operational 
states can be modeled with different combinations of 
component modes.

Communicative transitions are detailed in Level 3 to 
describe the energy behaviors of the components. Tak-
ing the COT FSSY as an example, the HOONet model 
of FSSY is detailed in Figure 6. In the data dictionary of 
FSSY, the token FS declares the component mode of the 

fan motor and servo system (depicted as “bs”) and the 
power of the fan motor and servo system (depicted as 
“baspow”). The property “bs” inherits the common prop-
erty of the token MS in Level 2. If the value of “bs” is ON, 
the transition M3_t1 is fired, and then the component 
modes of the fan motor and servo system are changed to 
ON. When “bs” is equal to OFF, the transition M3_t2 is 
fired to turn off the fan motor and servo system.

Machining tasks are changeable in the flexible manu-
facturing environment. When the manufacturing task is 
changed, a new energy model can be efficiently derived 
from an existing energy model, just by adjusting the cor-
responding data dictionary. The energy model for the 
new manufacturing task is built automatically to estimate 
the energy consumption of the new task.

4 � Case Study
A case study based on a CNC lathe is performed to 
demonstrate the effectiveness of the proposed mod-
eling method and to quantitatively analyze the energy 
consumption of CNC machining systems. A CNC lathe 
C2-6136HK, which was made by Chongqing No.  2 

Figure 3  HOONet model of the MATO—Level 1
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Machine Tool Works of China, is used to illustrate the 
relevance of this approach. The components of the 
C2-6136HK include a fan and servos, spindle motor, feed 

axis motors (X axis motor and Y axis motor), and cool-
ant pump motor. The power consumption of the fan 
and servos, as well as the coolant system, can be directly 
measured as the usage profile, and the power values are 

Figure 4  Detailed information in tokens MI and MS

Figure 5  HOONet model of StaSta—Level 2

Figure 6  HOONet model of FSSY-Level 3
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approximately constant. The power consumption of 
the spindle and feed motors varies with the operating 
parameters and can be obtained by regression experi-
ments. The corresponding power of each component in 
the C2-6136HK is listed in Table  1. For the CNC lathe, 
a workpiece with two operations, rough machining 
(donated F1r) and finish machining (donated F1f ), is con-
sidered in this case, as shown in Figure 7. The workpiece 
is designed as a circle of Φ28.44 mm over 80 mm and the 
material of this workpiece is #45 steel; the corresponding 
machining parameters are listed in Table 2.  

Based on the modeling procedure of the proposed 
modeling method introduced in Section  3, a specific 
HOONet model was constructed to analyze the energy 
consumption of the C2-6136HK, as shown in Figure  8. 
This CNC machining system operates in five distinct 

states, i.e., the off state (OffSta), standby state (StaSta), 
ready state (ReaSta), idle state (IdlSta), and processing 
state (ProSta), which are modeled in the five ABPs in 
Level 1 and detailed in the next level. A HOONet model 
for the C2-6136HK at level 2 is shown in Figure 9. There 
are four communication transitions, including COT 
“FSSY,” COT “COSY,” COT “SPMO” and COT “FEMO,” 
which are used to call the method to adjust the com-
ponent mode of the fan motor and servo system, cool-
ant system, spindle motor and feed motor, respectively. 
Based on the machining parameters of the example 
workpiece, the corresponding associated tokens in the 
HOONet model are shown in Table 3.

The proposed method was implemented using Sim-
ulink, and the energy consumption of the workpiece was 
obtained, as shown in Table 4. 21.3 W·h of energy is con-
sumed for the rough machining of the workpiece, while 
the energy consumption for finish machining is 22.6 W·h. 
The completion time for the rough machining is less than 
that of the finish machining due to the greater cutting 
depth. Also, it can be seen that the total energy consumed 
for the workpiece is 43.9 W·h, and the total completion 
time is 182 s. These results can be used by process plan-
ners to evaluate energy-efficient process planning.

Further, the detailed energy consumption of the 
machine components for these two operations was also 
estimated by the model, as shown in Figure  10. For the 
rough machining, the energy consumption of the spin-
dle motor, feed motors, and coolant pump motor are 
14.9  W·h, 0.8  W·h, and 1.1  W·h, respectively, and the 
energy consumption for the fan motor and servos is 
5.7  W·h. In the finish machining process, the energy 
consumption of spindle motor, feed motors, and cool-
ant pump motor are 15.0  W·h, 0.9  W·h, and 1.4  W·h, 
respectively, and the fixed energy consumption of the 
C2-6136HK, including the fan motor and servos is 
6.8  W·h. Additionally, it can be seen that the largest 
amount of energy is consumed by the spindle motor. 
Besides it, the energy consumption of the fan motor and 
servos also takes a large proportion. These results pro-
vide energy transparency for machine components, and 
the detailed energy consumption can effectively support 

Table 1  Power data of the C2-6136HK

Component Power Pw/W

Fan motor and servos 250

Coolant pump motor 50

Z axis motor

 Rapid movement 500

 80 mm/min 8

 90 mm/min 9

 105 mm/min 10

 120 mm/min 13

X axis motor

 Rapid movement 500

 80 mm/min 8

 90 mm/min 9

 105 mm/min 10

 120 mm/min 13

Spindle motor

 600 r/min 550

 700 r/min 593

 800 r/min 664

Ф
29

.9
4

Ф
28

.6
9

Ф
28

.4
4

F1f
Area: 10
MRR: 0.17

F1r
Area: 50
MRR:1.09

2mm
2mm / s

2mm / s

2mm

Figure 7  Operations of workpiece

Table 2  Machining parameters of the workpiece

Cutting parameters Value

Rough machining Finish machining

Spindle speed n/(r/min) 700 800

Feed rate f/(mm/r) 0.15 0.1

Cutting depth ap/mm 0.625 0.125

Material Removal Rate MRR/
(mm2/s)

1.09 0.17
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equipment designers to make decisions about design 
improvements.

Furthermore, the results obtained by the model are 
compared with the ones measured in experiments. The 
experimental results were measured using a HIOKI 
3390 power analyzer. The energy comparison between 
the model and experiment is shown in Figure  11. The 
results obtained by the model are less than the experi-
mental results. There is a 5.3% difference for the rough 
machining and a 6.2% difference for the finish machining. 
There are several reasons for this comparison result. For 
example, in the actual machining process, there are some 
energy usages for changing the operational state of the 
CNC machining systems, such as the start-up process of 
the spindle motor. The energy consumed for these energy 
usages is not included in the proposed model.

Machining parameter variance is considered in the 
case. New machining parameters for performing this 
experimental workpiece are listed in Table  5. The new 

HOONet model can be rapidly constructed by adjusting 
the data dictionary of the constructed HOONet model, 
instead of reconstructing a totally new one. In this way, 
the energy consumption for the workpiece with the 
changed machining parameters is estimated using the 
new HOONet model. In this scenario, the energy con-
sumed for the rough machining is 20.2  W·h, and the 
energy consumed for the finish machining is 19.8  W·h. 
Table  6 presents the comparison of the results between 
the original machining parameters in Table  2 and the 
changed machining parameters in Table 5. It can be seen 
that the energy consumption for the workpiece with the 
changed machining parameters is 6.6 W·h less than using 
the original ones. Comparing the energy consumption of 
the components, the spindle motor saved the largest pro-
portion of saved energy. In detail, 1.6 W·h of energy and 
3.3 W·h of energy were saved by the spindle motor in the 
rough machining process and finish machining process, 
respectively.

Figure 8  HOONet model of the C2-6136HK—Level 1
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Figure 9  HOONet model of C2-6136HK-Level 2

Table 3  Associated tokens in the HOONet model

Operation Token required by HOONet

Rough 
machining 

(F1r)

TT M = record with
{ TT MI = record with

{machining task = 1; sp = 700; 
fp = 105; ap=0.625; clt=9.7; ut=0; ct=45.71;
rt=0.385}

TT MS = record with
{bs = with “off” |”on”;

ss = with “off” | ”hold” | ”on”;
fs = with “off” | ”hold” | ”on”;}

}

Finish 
machining 

(F1f)

TT M = record with
{TT MI = record with

{machining task = 2; sp = 800; 
fp = 80; ap=0.125; clt=0; ut=6; ct=60; rt=3.86}

TT MS = record with
{bs = with “off” |”on”;

ss = with “off” | ”hold” | ”on”;
fs = with “off” | ”hold” | ”on”;}

}

Table 4  Energy consumption and completion time for the 
example workpiece

Operation Energy consumption  
E/(W·h)

Completion time tCO/s

Rough machining 21.3 83

Finish machining 22.6 99

Total 43.9 182
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Figure 10  Energy consumption of energy-consuming components 
for two operations
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5 � Conclusions
(1)	 A method to model the flexible energy behaviors in 

CNC machining systems based on the hierarchical 
objected-oriented Petri net (HOONet) is proposed. 
The structure of a HOONet is constructed with a 
high-level model and several detail models. The 
operational states for the CNC machining systems 

are encapsulated in the ABPs at the high level. The 
ABPs in the high-level are specified in the detail 
models to analyze the component modes for the 
operational states. The DDs in HOONet models are 
declared at each level. The complex-type token M is 
recorded by two types of tokens, MI and MS. Token 
MI is used to declare the machining parameters, 
while token MS records the component mode for 
the different operational states.

(2)	 A case study based on a CNC lathe is presented to 
demonstrate the proposed modeling method. The 
results show that it is effective to model the flexible 
energy behaviors and also to provide a fine-grained 
description to quantitatively analyze the energy 
consumption of CNC machining systems.

(3)	 The energy consumption for the operations can 
be used by process planners to evaluate energy-
efficient process planning, and the detailed energy 
consumption can effectively support equipment 
designers to make decisions on design improve-
ments.

(4)	 CNC machining systems are inevitably confronted 
with frequent changes in energy behaviors because 
they are widely used to perform various machin-
ing tasks. Machining tasks are changed. The new 
HOONet model can be rapidly constructed by 
adjusting the data dictionary of the constructed 
HOONet model, instead of reconstructing a totally 
new one.
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Figure 11  Comparison results of energy consumption of rough 
machining and finish machining

Table 5  Changed machining parameters for the cylinder

Machining parameters Value

Rough machining Finish machining

Spindle speed n/(r/min) 600 600

Feed rate f/(mm/min) 120 80

Cutting depth ap/(mm) 0.5 0.25

Table 6  Comparison of the energy consumption using two 
different machining parameters (W·h)

Energy consumption Original 
machining 
parameters

Changed 
machining 
parameters

Difference

Rough machining

 Fan motor and servo system 5.7 5.2 −0.5

 Cool pump motor 1.1 1.0 −0.1

 Feed motors 0.8 0.7 −0.1

 Spindle motor 14.9 13.3 −1.6

Finish machining

 Fan motor and servo system 6.8 6.1 −0.7

 Cool pump motor 1.4 1.2 −0.2

 Feed motors 0.9 0.8 −0.1

 Spindle motor 15.0 11.7 −3.3

Total energy consumption for 
the cylinder

46.6 40.0 −6.6
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