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New Immersed Boundary Method 
on the Adaptive Cartesian Grid Applied to the 
Local Discontinuous Galerkin Method
Xu‑Jiu Zhang  , Yong‑Sheng Zhu*, Ke Yan and You‑Yun Zhang

Abstract 

Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low compu‑
tational efficiency and poor adaptability to complex shapes. A new immersed boundary method is presented, and 
this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed 
boundary to increase computational efficiency. The new immersed boundary method employs different boundary 
cells (the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the 
ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is 
tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result 
shows that the presented method has low error and a good rate of the convergence and works well in complex 
geometries. The method has good prospect for practical application research of the numerical calculation research.
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1  Introduction
The immersed boundary method (IBM) is an effective 
method for studying complex boundary. Imposing a 
boundary condition is not straightforward. To solve this 
problem, different IBMs have been proposed in literature.

Generally, IBMs can be classified into two categories, i.e., 
the continuous force approach and discrete force approach 
[1]. The continuous force approach is not suitable for com-
puting the high Reynolds number flows. Therefore, many 
researchers focus on the discrete force approach. Fadlun 
et al. [2] implemented the discrete-time forcing approach 
on a standard marker- and -cell (MAC) staggered grid. 
Tseng et al. [3] extended the idea of Verzicco et al. [4] and 
proposed the ghost-cell IBM (GCIBM) for simulating tur-
bulent flows in complex geometries. Mittal et al. [5] used 
a sharp interface IBM to simulate incompressible viscous 
flows past three-dimensional immersed bodies. Using 
the ghost point treatment as a starting point, Gao et  al. 

[6] improved the method of Tseng et al. [3]. The method 
effectively eliminates numerical instabilities caused by 
matrix inversion and flexibly. To improve the accuracy at 
the boundaries, Shinn et al. [7] implemented the immersed 
boundary method using the ghost cell approach, whereby 
the incompressible flows are solved on a staggered grid. 
To control the spurious force oscillations, Lee et  al. [8] 
proposed a fully-implicit ghost-cell IBM for simulating 
flows over complex moving bodies on a Cartesian grid. 
The method is well capable of controlling the generation 
of spurious force oscillations on the surface of a moving 
body, thereby producing an accurate and stable solution. 
To simulate high-Reynolds number compressible viscous 
flows on adaptive Cartesian grids, Hu et al. [9] present a 
new ghost-cell turbulent wall boundary condition. In the 
frame of adaptive Cartesian grids, a cell-centered, second-
order accurate finite volume solver has been developed for 
predicting turbulent flow fields. The robustness and accu-
racy of the methodology have been validated against well-
documented turbulent flow test problems. Now, the IBM 
method is applied to many fluid dynamic problems such 
as heat transfer problems [10–12], fluid-solid interaction 
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problems [13], complex/moving boundary problems [14], 
incompressible flows [15], and natural convection prob-
lems [16].

The above numerical calculation method adopts the 
finite difference method, the finite volume method or the 
finite element method. In this paper, a new IBM to solve 
the second-order partial equation applied to the local 
discontinuous Galerkin method (LDG) is presented and 
we analyzed the causes of error variation for the adaptive 
Cartesian grid. The LDG method [17–20] means it easy 
to achieve high accuracy in space and time and provides 
useful mathematical properties with respect to conserva-
tion, stability, and super convergence. In particular, the 
LDG method can use the mesh with the hanging node 
[21, 22] for calculation, and it is convenient to apply the 
method for simulating flows in complex geometries. 
Therefore, the adaptive Cartesian grid is used for future 
easier engineering applications [23–25].

This paper organized as follows: In Section  2, we 
recall the LDG method. In Section  3, the presented 
IBM including the numerical procedure, definition of 
ghost flow nodes and the algorithm of reconstruction is 
described in detail. In Section 4, the results of testing for 
the accuracy, convergence rate, and effectiveness in com-
plex geometries of the method are presented. Finally, the 
concluding remarks follows in Section 5.

2 � Local Discontinuous Galerkin Method
In this study, we tested the method applied to the LDG 
method on adaptive Cartesian grids for the following 
classical model elliptic problem:

where Ω is a bounded domain of, Rd , d = 2, 3, and n is 
the outward unit normal to its boundary Γ = ΓD ∪ ΓN .

To construct the LDG formulation, we rewrite our 
elliptic model problem as the following system of first-
order equation:

Let us multiply Eqs.  (4) and (5) by arbitrary smooth 
test function v and r, respectively, integrate them over an 
arbitrary element Ω, and apply Green’s theorem to write

(1)−�u = f , in Ω ,

(2)u = gD, in ΓD,

(3)∇u · n = gN · n, in ΓN .

(4)q = ∇u, in Ω ,

(5)−∇ · q = f , in Ω ,

(6)u = gD, in ΓD,

(7)q · n = gN · n, in ΓN .

Then we replace the exact solution (q,u) by its approxi-
mation (qN ,uN ) in the element space MN × VN , where

The method involves finding (qN ,uN ) ∈ (MN × VN ) 
such that

To complete the definition of the LDG method, we 
need to introduce some notations. Here, nK denotes the 
unit outward normal to ∂K . The functions ûN and q̂N  are 
the numerical fluxes. Let K+ and K− be two adjacent ele-
ment of Γ; Let x be an arbitrary point of the (d–1) dimen-
sion face e = K+ ∩ K−, let n+ and n− be corresponding 
outward unit normals at that point. Let (q,u) on e be 
the interior of K±. The mean values {{·}} and jump [[·]] 
of a function u and a vector q at (x, y) on an edge Γ are 
defined as

We are now ready to introduce the expressions that 
define the numerical fluxes. If e is inside domain Ω, we 
take

(8)

∫

�

q · rdxdy =

∮

Γ

ur · nds −

∫

�

u∇ · rdxdy,

(9)
∫

�

q · ∇vdxdy =

∮

Γ

vq · nds +

∫

�

fvdxdy.

(10)

MN :=

{

q ∈
(

L2(Ω)

)d
: q|k ∈ S(K )d , ∀K ∈ Γ

}

,

(11)

VN :=

{

u ∈
(

L2(Ω)

)d
: u|k ∈ S(K ), ∀K ∈ Γ

}

,

(12)
S(K ) : =

{

polynomials of degree at most k in

each variables on K
}

.

(13)

∫

Ω

qN · rdxdy =

∮

Γ

ûN r · nKds −

∫

Ω

uN∇ · rdxdy,

(14)

∫

Ω

qN · ∇vdxdy =

∮

Γ

vq̂N · nKds +

∫

Ω

fvdxdy.

(15){{u}} =
(

u+ + u−
)

/2, {{q}} =
(

q+ + q−
)

/2,

(16)
[[u]] =

(

u
+ · n+ + u

− · n−
)

/2, [[q]]

=
(

q+ · n+ + q− · n−
)

/2.

(17)q̂ := {{q}} − C11[[u]] − C12 · [[q]],
û := {{u}} + C12 · [[u]].
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Further, if e lies on the boundary of Ω,

In the LDG method, stabilization parameter C11 and 
auxiliary parameter C12 are defined on each face e as 
follows:

where v is an arbitrary but fixed vector with nonzero 
components.

We also define the artificial outflow boundary as

Then the artificial inflow can be expressed as

The addition of the artificial outflow boundary ∂Ω+ 
and artificial inflow boundary ∂Ω− equals the total 
boundary ∂Ω. In this paper, v = (1, 1)t , and then, the east 
boundary and the north boundary form the artificial out-
flow boundary.

In numerical calculation, numerical polynomial solu-
tion U in each element is approximated using different 
elements as

3 � New Immersed Boundary Method
The numerical procedure we use is as follows:

1.	 Detect the boundary and determine boundary cells. 
Record intersection of the boundary and the cells.

2.	 Detect the ghost cells in the boundary cells, and 
record the type of the boundary.

3.	 Restructure the ghost cells to impose the boundary 
condition implicitly.

4.	 Solve the equations iteratively using the successive 
substitution method.

5.	 Repeat step (3) and step (4) until the convergence is 
achieved.

Here, the boundary cell is the cell cut by the boundary 
and recording the coordinates of the intersection aids 
preparing for the following reconstruction. All cells are 
divided into two categories: physical cells and ghost cells. 
The cell is a ghost cell when the cell center is outside the 
calculation domain, and when the cell center is within the 

(18)q̂ :=

{

q+ − C11

(

u+ − gN
)

n, on ΓD,
gN , on ΓN ,

(19)û :=

{

gD, on ΓD,
u+, on ΓN .

(20)C11 =

(

1

h

)α

, C12 · n = sign(v · n)/2,

(21)∂Ω+ =
{(

x, y
)

∈ ∂Ω|v · n ≥ 0
}

.

(22)∂Ω− = ∂Ω\∂Ω+.

(23)Uh =

N
∑

i=1

Ui(t)Bi(x).

domain, it is a physical cell. The cell categories are shown 
in Figure 1.

The cell is a physical cell when the volume fraction out 
of the calculation domain ranges from 0% to 50%. Cell A 
is the cell whose the volume fraction equals 0%, and the 
edge of the cell coincide with the boundary. Therefore, 
cell A has the smallest error. Cell B is a cell whose the 
volume fraction is from 0% to 50%. Although the bound-
ary also is imposed on the cell, the edge of the cell does 
not coincide with the boundary. Cells A and B belong to 
the physical cell category, and the other three cells are 
the ghost cells. Cell E is the ghost cell whose the volume 
fraction equals 100% and this type of cell only has one 
intersection with the boundary. The neighbor cell of Cell 
E has no physical cell, and so, cell E has no influence on 
the calculation. Cell C is the ghost cell that the volume 
fraction equals to 50% and has biggest influence on calcu-
lation domain. Therefore, cell C has the biggest error. Cell 
D is the ghost cell that the volume fraction is from 50% 
to 100%. After the above analysis, the arrows in Figure 1 
denote the directions of increasing error

In our procedure, calculation occurs in the physical cell 
when updating the data and the ghost cell is only used for 
imposing the boundary conditions through the recon-
struction. Therefore before updating the data, we must 
reconstruct the ghost cell.

We employ the information of the ghost node in the 
ghost cell to restructure the numerical polynomial solu-
tion of the LDG method. The procedure of reconstruc-
tion involves two steps: identifying the information of the 
ghost cell and reconstruction

3.1 � Identify the Information of the Ghost Cell
The method is depicted in Figure  2. To reconstruct the 
numerical polynomial solution in the ghost cell, we need 
information of boundary node X and flow node G. To 
avoid the numerical instability, the boundary node is 
chosen. Now, we identify flow node G.

We first determine the position of the ghost node. The 
outward normal vector on boundary node X should be 
specified, and then the vector is rotated α° clockwise and 
then α° anticlockwise. When α° is a different value, there 
are different odd directions. Then, the positions of the 
ghost nodes are ascertained at a distance R from bound-
ary node X in the different directions. To minimize the 

Figure 1  Category of the boundary cell
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property of numerical instability, the ghost node is cho-
sen symmetrically.

Second, we locate the image of the node inside the 
flow domain using the boundary and intersection of 
the boundary. Nodes G′

0, G
′
1, G

′
2 are the images of ghost 

nodes G′
0, G

′
1, G

′
2, and nodes M1, X, M2 are the bound-

ary intersection as shown in Figure  2. Flow variables ϕ′ 
of nodes G′

0, G
′
1, G

′
2 are evaluated using Eq.  (3), and the 

value ϕ0 of the intersection (G′
0, G

′
1, G

′
2) is evaluated using 

boundary condition. The value at the ghost node is then 
ϕG = 2ϕ0 − ϕ′.

After the information of ghost cell and boundary 
node is obtained, we can start the reconstruction of the 
numerical polynomial solution.

3.2 � Reconstruction
The reconstruction is decided by the shape function of 
the LDG method

where U = (u0,u1, . . . ,uN )
T and B = (B1,B2, . . . ,BN )

T.

The coefficients can be expressed in terms of the nodal 
values:

where Uh is the vector of three values, and for linear 
interpolation, A is an N × N  matrix whose elements can 
be computed from the coordinates of the three nodes, 
when the velocity at the boundary is specified.

(24)Uh = UB

(25)U = A−1Uh, Uh = (U0,U1, . . . ,UN )
T,

(26)A =











B1
1(x1, y1) B1

2(x1, y1) . . . B1
N (x1, y1)

B2
1(x2, y2) B2

2(x2, y2) . . . B2
N (x2, y2)

...
...

...
...

BN
1 (xN , yN ) BN

2 (xN , yN ) . . . BN
N (xN , yN )











.

where (x1, y1), (x2, y2) and (xN , yN ) are the coordinates 
of the boundary node or the ghost nodes. To minimize 
the property of the numerical instability, the ghost nodes 
should be chosen symmetrically.

4 � Numerical Example
In the numerical experiment, the shape function is the 
first-order Legendre shape function and multi-dimen-
sional polynomials are formed by “tensor-product” 
approximations to preserve the orthogonal property for 
mass matrices. All the meshes are generated by the same 
code of the adaptive Cartesian grid. The interested reader 
can refer to the books of Samet for more details.

We compute the L2-norm error, L∞-norm error and the 
order of convergence.

The L2-norm error measure is given by

The L∞-norm error measure is given by

We consider the linear diffusion problem

and select the boundary condition and f
(

x, y
)

, such that 
the true solution is

The gradient is defined as q = (q1, q2). Because of the 
symmetry of the problem, the orders and error of con-
vergence are same for q1 and q2. In the table, we show 
only the error and orders of q1. NB denotes the number of 
boundary cells: NS denotes the number of starting cells, 
NG denotes the number of ghost cells, and NT denotes 
the number of the total cells.

4.1 � Boundary Condition is Imposed Through Numerical 
Fluxes

In this example, the boundary cell and boundary are as 
shown in Figures 3(a) and 3(b), and the numbers of the dif-
ferent types of cells are presented in Table 1. We can see 
that there is no ghost cell in the boundary cell and cell A is 
only the ghost cell. Figures 3(c) and 3(d) show the distribu-
tion of the error and u. There is the maximum error in the 
artificial outflow boundary. The type of the boundary cell is 
presented in Table 1. There is no ghost cell and all bound-
ary cells are cell A. It does not need reconstruction and the 
boundary condition is imposed through numerical fluxes.

(27)

�e(x)�L2 = �u(x)− uh(x)�L2 =





�

Ω

|u(x)− uh(x)|
2dv





1
2

(28)
�e(x)�(L∞) = �u(x)− uh(x)�(L∞) = max|u(x)− uh(x)|.

(29)−�u = f
(

x, y
)

,
(

x, y
)

∈ Ω = (0, 0.32)2,

(30)u
(

x, y
)

= ex+y.

Figure 2  Definition of ghost flow nodes



Page 5 of 10Zhang et al. Chin. J. Mech. Eng.  (2018) 31:22 

The error and convergence rate are presented in 
Table 2. We observe that L∞ and L2 in q achieve 3.5th and 
2.0th order super convergence and that L∞ and L2 in u all 
achieve 1.5th order super convergence.

4.2 � Boundary Condition is Imposed Through 
Reconstruction

In this example, Figures  4(a) and 4(b) show the bound-
ary cell and boundary. The boundary cell includes three 

categories: Cells A, C and E. Cells A and E are the ghost 
cells and Cell C is the physical cell. Cells A and E have 
no influence on imposing the boundary condition. The 
boundary condition is imposed through reconstruction 
in Cell C. The numbers of the different type cell is listed 
in Table 3. There are more boundary cells and total cells 
than those in Section 4.1 and the boundary is more com-
plicated. From Figure 4(c), we can see that the maximum 
error is in the artificial outflow boundary. From Fig-
ure 4(d), we can see that there is a smooth curve in dis-
tribution in u instead of linear distribution described in 
Section 4.1. This shows that the error is larger.

The error and order of convergence are listed in Table 4, 
and we observe that the convergence order of L∞ and L2 
in u is the 1.5th order, and it is equal to that described in 
the Section 4.1. The convergence order of L∞ and L2 in 
q reach 1.5th and 2.0th order super convergence and the 
values are is lower than the case described in Section 4.1.

Figure 3  Boundary cell and error distribution by imposing the boundary condition through numerical fluxes: (a) Boundary cell; (b) Partial enlarge‑
ment of the boundary cell with the boundary; (c) Error distribution of variable u; (d) Distribution of variable u

Table 1  Numbers of cells with different starting cells

i Ns NB NG NT

1 20 × 20 316 0 2740

2 30 × 30 476 0 4560

3 40 × 40 636 0 6580

4 50 × 50 796 0 8800

5 60 × 60 950 0 11220

6 80 × 80 1276 0 16660
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4.3 � Boundary Condition is Imposed Hybrid
In this example, the boundary is a curve, and the cat-
egory of the boundary cell is generated automatically 
according to the generation algorithm of the adaptive 
Cartesian grid. It tests the error and super convergence 
at the arbitrary boundary and here we hope to find the 
impact factors of error change. The manner of impos-
ing the boundary condition depends on the type of the 
boundary.

Table 2  Errors and orders of convergence on different cells

i q1 u

L∞ Order L2 Order L∞ Order L2 Order

1 2.55 × 10−5 8.79 × 10−5 4.63 × 10−3 7.17 × 10−4

2 1.05 × 10−5 3.48 4.72 × 10−5 2.44 3.10 × 10−3 1.58 4.81 × 10−4 1.57

3 5.51 × 10−6 3.51 3.05 × 10−5 2.39 2.32 × 10−3 1.56 3.63 × 10−4 1.54

4 3.30 × 10−6 3.53 2.17 × 10−5 2.33 1.87 × 10−3 1.53 2.91 × 10−4 1.51

5 2.14 × 10−6 3.57 1.65 × 10−5 2.28 1.56 × 10−3 1.49 2.43 × 10−4 1.48

6 1.04 × 10−6 3.66 1.07 × 10−5 2.20 1.17 × 10−3 1.45 1.83 × 10−4 1.44

Figure 4  Boundary cell and error distribution imposing the boundary condition through numerical fluxes: (a) Boundary cell; (b) Partial enlarge‑
ment of the boundary cells A, C, and E (3, 2, 1) with the boundary; (c) Error distribution of variable u; (d) Distribution of variable u

Table 3  Numbers of cells with different starting cells

i Ns NB NG NT

1 20 × 20 472 316 1804

2 30 × 30 712 476 3020

3 40 × 40 952 636 4300

4 50 × 50 1192 796 5680

5 60 × 60 1432 956 7160

6 80 × 80 1912 1276 10420
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A circular boundary is chosen because the slope varies 
from − ∞ to + ∞. Magnified views are shown in Fig-
ures 5(a) and 5(b). There are all types of boundary cells, 
and it difficult to distinguish every cell. The number of 
cells is listed in Table  5. The numbers of the boundary 
cell, ghost cell and total cell in this example lie between 
the corresponding numbers for the examples in Sec-
tions 4.1 and 4.2.

In Figure  5(c), there is the maximum error in bound-
ary, but it is more complicated than in the previous two 
examples. From Figure 5(d), it is clear that the distribu-
tion in u is better than that in Section 4.2.

The error and convergence order are listed in Tables 6 
and 7. It is obvious than the error lies between the error 
in the two example above. Good convergence rate is 
achieved. The error decreases with the increase of grid 

Table 4  Errors and orders of convergence on different cells

i q1 u

L∞ Order L2 Order L∞ Order L2 Order

1 1.59 × 10−4 2.21 × 10−4 3.85 × 10−2 5.10 × 10−3

2 9.94 × 10−5 1.84 1.21 × 10−4 2.35 2.63 × 10−2 1.49 3.48 × 10−3 1.50

3 7.23 × 10−5 1.75 7.89 × 10−5 2.35 2.00 × 10−2 1.50 2.64 × 10−3 1.51

4 5.68 × 10−5 1.68 5.66 × 10−5 2.31 1.61 × 10−2 1.49 2.13 × 10−3 1.50

5 4.68 × 10−5 1.62 4.31 × 10−5 2.28 1.35 × 10−2 1.47 1.78 × 10−3 1.47

6 3.46 × 10−5 1.56 2.80 × 10−5 2.22 1.02 × 10−2 1.44 1.35 × 10−3 1.44

Figure 5  Boundary cell and error distribution when imposing the boundary condition hybrid: (a) Boundary cell; (b) Partial enlargement of the 
boundary cell with the boundary; (c) Error distribution of variable u; (d) Distribution of variable u
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number, but it is abnormal that the order of the conver-
gence oscillates. We need to analyze the reason for this 
oscillation.

In Figure  4(b), the boundary cell includes a variety 
of cells, and it is obvious that Cells B and D form the 
large majority. According to the algorithm of the adaptive 
Cartesian grid, the number of every cell is out of control. 
If the total number of the cell is increasing, all physical 
cells infinitely approach Cell A, and the error of all ghost 
cell must be lower than that of cell.

The percentage of ghost cells decreases with an 
increase in the starting cell as shown in Figure  6, and 
the error decreases with increase in the total number of 
cells as shown in Figure 7. It is clear that the error in the 

complex geometries is close to that in the case that the 
grid comprise only all physical cells.

The conclusion is derived that the algorithm works well 
in complex geometries and that the change in the per-
centage of different cells is the main cause of the oscilla-
tion of the order of convergence.

Table 5  Numbers of the cells for different starting cell

i Ns NB NG NT

1 20 × 20 324 156 2072

2 30 × 30 484 220 3352

3 40 × 40 644 288 4808

4 50 × 50 811 383 6587

5 60 × 60 964 456 8760

6 80 × 80 1284 572 12124

Table 6  Errors and orders of convergence on the different cell with the Dirichlet boundary

i q1 u

L∞ Order L2 Order L∞ Order L2 Order

1 1.05 × 10−4 1.27 × 10−4 8.39 × 10−3 6.75 × 10−4

2 3.63 × 10−4 − 5.05 6.83 × 10−5 2.52 5.31 × 10−3 1.86 3.34 × 10−4 2.87

3 8.76 × 10−5 7.48 4.59 × 10−5 2.09 4.93 × 10−3 0.39 2.61 × 10−4 1.29

4 4.82 × 10−5 3.94 3.27 × 10−5 2.22 5.21 × 10−3 − 0.36 2.18 × 10−4 1.20

5 1.22 × 10−5 9.44 2.51 × 10−5 1.83 4.85 × 10−3 0.48 1.71 × 10−4 1.67

1.22 × 10−5 0.00 1.62 × 10−5 2.65 3.15 × 10−3 2.62 1.02 × 10−4 3.15

Table 7  Errors and orders of convergence on the different cell with the Neumann boundary

i q1 u

L∞ Order L2 Order L∞ Order L2 Order

1 1.25 × 10−4 1.25 × 10−4 8.65 × 10−3 7.06 × 10−4

2 3.59 × 10−4 − 4.33 6.72 × 10−5 2.48 5.32 × 10−3 1.99 3.56 × 10−4 3.05

3 5.80 × 10−5 9.60 4.51 × 10−5 2.10 5.22 × 10−3 0.10 2.83 × 10−4 1.20

4 4.51 × 10−5 1.66 3.22 × 10−5 2.23 5.70 × 10−3 − 0.57 2.33 × 10−4 1.26

5 2.92 × 10−5 2.99 2.48 × 10−5 1.79 5.30 × 10−3 0.50 1.86 × 10−4 1.58

6 2.77 × 10−7 28.21 1.59 × 10−5 2.69 3.23 × 10−3 3.00 1.11 × 10−4 3.10

Figure 6  Percentage of the ghost cell with different starting cell
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5 � Conclusions
1.	 The traditional IBM applied to the numerical con-

struction of discrete points is developed for the new 
IBM applied to the reconstruction of the distribution 
function in LDG method.

2.	 The numerical performance of the LDG method is 
studied in the grid with a hanging node (the adaptive 
Cartesian grid). The numerical result shows that the 
method works well.

3.	 The boundary condition is imposed through a com-
bination of the numerical flow and reconstruction 
of distribution function in LDG method. When the 
boundary condition is imposed through numerical 
fluxes, the error is minimum. When the boundary 
condition is imposed through reconstruction, the 
error is maximum.

4.	 From error distribution, the maximum error of the 
variable always exists at the boundary. Neither recon-
struction nor numerical fluxes is directly imposed on 
the condition in a finite volume method or a finite 
element method. This is the main reason for the dif-
ference in error distribution compared with the clas-
sical numerical methods.

5.	 The presented method works well in complex geom-
etries. The error and convergence rate are adopted 
for evaluating the accuracy. The error depends on the 
number and type of the cell and is always near the 
physical cell.
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