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Analysis of the Load‑Stress Response 
Characteristics of the Bogie Frame in Intercity 
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Abstract 

Load spectra research for bogie frame requires establishing the load-stress relationship on working condition, which 
has been omitted by the researchers. With the load-stress of the bogie frame of an intercity Electric Multiple Unit 
(Hereinafter referred to as EMU) as the research object, an optimization model of the load-stress transfer relationship 
is established. The load-stress coefficient for EMU bogie frame was calibrated in the laboratory bench and online test 
was arranged on Dazhou-Chengdu line. Comparison of nonlinear and linear neural networks proves that the linear 
transitive relation between the load and stress of the bogie frame in the operating process is highly suitable. An opti‑
mization model of the load-stress transfer coefficient is obtained. The data calculated with the modified coefficient 
are closer to the dynamic stress results in the actual operating process than the data calculated with the calibration 
coefficient. The coefficient of the modified transitive relation is unaffected by operating area, empty load, heavy load, 
or other conditions in the operating process of the intercity EMU. The real loads in actual situations are obtained. 
The model of online load-stress relationship that is highly suitable for line stress calculation is finally established. The 
research is helpful for further damage calculation and inferring the time history signal of the load in load spectra 
research.
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1  Introduction
The study of load spectrum is the hotspot of the cur-
rent bogie frame research [1–3]. How to obtain the load 
spectrum of the bogie frame, there are many researchers 
have done a lot of work. How to describe the relationship 
between load and stress under on-line conditions to cal-
culate the damage consistency is lack of attention from 
the researchers at present. The load spectrum of a bogie 
is usually obtained with the method of measured load 
spectrum. It can also be obtained with the multi-body 
system dynamics simulation method. Another method to 
obtain the load spectrum is to use the correlation among 
the power spectral densities (PSDs) of time domain 
signals.

Wang et al. [4] studied the load spectra of high-speed 
train bogies by conducting a long-term on-track test on 
the Wuhan–Guangzhou passenger line.The research 
showed that wheel profiling improves the loading con-
dition of the bogie frame. However, the transfer relation 
between load and stress was not discussed in the study 
because of the different working conditions. Zhu et  al. 
[5] conducted a theoretical study on and an experimen-
tal validation of elastic dynamic load spectra on the bogie 
frame of a high-speed train. The computed result proved 
that the simplified load series is reasonable. The contri-
bution of modal stress to the overall damage is small. 
However, the overall damage in the line test was calcu-
lated with a laboratory bench calibration coefficient. Ren 
et  al. [6] presented methods to measure the axle spring 
load, trailing arm seat lateral force and dynamic stresses 
of powered and non-powered bogies of a 350 km/h EMU. 
The characteristics of the forces and the stresses for 
the EMU were investigated by Hilbert transform of the 

Open Access

Chinese Journal of Mechanical 
Engineering

*Correspondence:  hzou@bjtu.edu.cn 
Engineering Research Center of Structure Reliability and Operation 
Measurement Technology of Rail Guided Vehicles of Ministry 
of Education, Beijing Jiaotong University, Beijing 100044, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-018-0226-5&domain=pdf


Page 2 of 11Zou et al. Chin. J. Mech. Eng.  (2018) 31:26 

sample data. The characteristics of the measured loads 
are useful to establish load conditions for laboratory 
tests of bogie’s fatigue assessment. But the relationship of 
loan-stress has not been given out in the research.

Mi et al. [7] used load-stress linear transfer relations to 
calculate stress. A line test dynamic load spectrum was 
obtained as an input by using the finite element method 
to calculate line stress. The maximum calculated equiva-
lent stress was similar to the measured equivalent stress. 
However, the difference between time domain stress 
calculated by the load and the measured stress was not 
discussed. Ma et al. [8] combined simulations with multi-
body dynamics and partial experimental data to obtain 
axle box dynamic loads. Given the differences and limita-
tions in line conditions, operating conditions, and vehi-
cle model types, the method cannot fully and accurately 
reflect structural load characteristics under practical 
conditions.

Wolfsteiner et  al. [9] presented an alternative method 
that estimates load spectra directly from the PSDs of the 
corresponding time signals. However, the load-strain 
relationship was not presented.

Research on the load spectrum of the bogie frame 
can adopt multi-body system dynamics simulation to 
obtain the main load of the bogie. Rigid and elastic bogie 
frames are used to establish a model for multi-body sys-
tem dynamics. Simulation calculation indicates that the 
loads of rigid and elastic bogie frames possess similar 
maximum dynamic amplitude; however, the function 
frequency of a bogie with an elastic frame is significantly 
higher than that of a bogie with a rigid frame within a dif-
ferent dynamic amplitude range of the main load [10, 11]. 
If a bogie frame is regarded as a rigid body, its load-stress 
transitive relation is linear, and the load-stress coefficient 
obtained with a quasi-static method can be employed 
as a reference for research on the load spectrum [12]. If 
a bogie frame is regarded as an elastic body [13–15], a 
transient analysis can be conducted, and the input could 
include modal information coupled with nonlinear pro-
cessing of the wheel-rail relationship [16–19]. As a result, 
the transitive relation between the measured load and 
stress is nonlinear and thus requires the adoption of 
a nonlinear fitting method for optimized fitting of the 
multi-input model.

Although the method of measured load spectrum is 
costly, it can effectively reflect the actual load of the line 
and the relationship between load and stress. In this 
study, the bogie frame of an intercity EMU was adopted 
as the research object to obtain online load and stress 
data. Two different transitive relations were compared. 
An optimized, simplified model was established, and 
the modified linear transitive relation coefficient of load 
and stress under the condition of one running line was 

obtained. The dynamic stress data obtained with the 
modified transitive relation were significantly similar to 
the dynamic stress results in the actual operation. The 
coefficient of the modified transitive relation was unaf-
fected by the operating conditions of the intercity EMU, 
such as speed, operating area, and empty or loaded 
condition.

The intercity EMU under study is a new motor train 
unit independently researched and designed by China for 
smooth microcirculation between cities. The unit oper-
ates in modified lines and on a non-ballasted track. Its 
maximum operating speed is 200 km/h.

2 � Quasi‑Static Calibration Coefficient
Quasi-static load-stress calibration is performed in a lab-
oratory to study the load-stress transitive relation of the 
intercity EMU. The calibration site is shown in Figure 1. 
The assembly of the bogie frame follows the technical 
requirements of its actual operating condition, and the 
calibration load system is shown in Figure 2.

The bogie frame has many load systems, such as sink-
float, side roll, torsion, lateral, motor bracket, gearbox 
bracket, anti-yaw, wheel brake, and traction loads. A 
global load and key stress points are adopted to analyze 
the transitive relation and completely verify the idea pro-
posed in this paper. The measuring points utilized include 
D13, D15, D26, D34, D46, D48, D55, and D57, which rep-
resent key response points in various regions. The spe-
cific locations of these points are shown in Figure 3.

The calibration data of the laboratory bench are shown 
in Table 1.

As shown in Table 1, all eight selected measuring points 
have different response factors for all loads. Therefore, 
a closed computational model composed of eight stress 
points and nine loads is formed. The calculation methods 
for sink-float, side roll, and torsion loads are presented 
in a previous study [1]; the other loads are obtained with 
component sensors, which are calibrated by grouping the 
bridge circuits consisting of various sensitive points in 

Figure 1  Bogie frame calibration site
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each component part [20]. Repetitious data are not pre-
sented in the current paper.

3 � Online Test
The calibrated and well-assembled bogie frame is 
mounted on the intercity EMU; the operating area is 
Dazhou–Chengdu. Given that the online test involves 
other test projects, the braking system signals are 
removed, and the wheel braking coefficient of the transi-
tive relation matrix is ignored.

The test bench indicates that the transitive relation 
load-stress response is

Figure 2  Bogie frame load distribution

Figure 3  Locations of measuring points on the motor bogie frame

Table 1  Calibrated load-stress data on laboratory bench με

F1 lateral load is 30 kN, F2 sink-float load is 12 kN, F3 side roll load is 12 kN, F4 torsion load is 12 kN, F5 vertical gearbox bracket load is 30 kN, F6 vertical motor bracket 
load is 40 kN, F7 wheel brake load is 15 kN, F8 longitudinal load is 30 kN, and F9 anti-yaw load is 20 kN

Measuring point F1 F2 F3 F4 F5 F6 F7 F8 F9

D13 11 43 49 − 52 19 0 26 − 3 − 2

D15 25 71 76 − 70 26 7 36 15 − 1

D26 − 28 − 8 2 116 − 60 30 − 78 − 10 − 18

D34 2 7 2 − 73 7 − 15 3 34 26

D46 1 − 2 −9 − 63 13 128 − 114 7 7

D48 − 1 − 1 5 58 61 89 − 104 6 5

D55 14 13 14 − 98 71 − 14 − 52 − 20 − 14

D57 − 20 4 3 62 − 28 72 35 − 1 4
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A group of test signals of the test run with a speed of 
160  km/h are selected. The frequency spectral maps of 
some of the original signals are shown in Figures 4, 5, 6, 7.

As shown in the frequency spectral maps, the frequency 
spectra are mainly concentrated in the low- and medium-
frequency responses below 100  Hz. This result is con-
sistent with that in other studies [21–23]. The frequency 
spectrum of the motor bracket load is concentrated at 
20 and 60 HZ. The frequency spectrum of the gearbox 
bracket load is concentrated below 10 Hz. The torsion load 
spectrum is concentrated below 10  Hz. The frequency 
spectrum of the stress response is concentrated at 20 and 
60 Hz. Accordingly, a 100 Hz low-pass filter and a 50 Hz 
band-pass filter are adopted to remove some random dis-
turbances and power-frequency interferences.

If the load-stress response characteristics satisfy a 
linear relationship, then the stress value can be calcu-
lated using the load value, that is, the stress value is the 
product of the filtered load signal and the correspond-
ing transitive relation coefficient. Subsequently, the cal-
culated stress value and the actual measured stress value 
can be compared. In Figure  8, the calculated value of 
the assumed linear response at measuring point D46 is 
smaller than the measured value (blue line covers the 
red line; difference will be shown in Table 2). In Figure 9, 
the calculated value of the assumed linear response at 
measuring point D48 is greater than the measured value 
(red line covers the blue line; difference will be shown in 
Table 2).

4 � Fitting Evaluation Method
Given that the adopted frequency is 1000  Hz and the 
maximum speed is maintained within 200  km/h, a 
400 km run takes approximately 3 h, and the amount of 
sample data is approximately 107. For simplification, the 
stress distribution evaluation method can be adopted 
for the fitting evaluation of such a large amount of data. 
However, the stress distribution function has no chrono-
logical order; consequently, it has poor relativity with the 
time-domain signal. Thus, this paper adopts percentage 
mean square error (PMSE) for fitting evaluation.

where d(n) is the calculated stress and x(n) is the actual 
measured signal. Values that are less than 2 are disre-
garded to eliminate the interference error of the 0 value 
signal.

PMSE, expressed as follows, is adopted as an evaluation 
index:

where N is the fitting sample size.
The fitting evaluation method can be utilized to iden-

tify the difference between the stress value calculated 
using the calibration coefficient and the actual stress 
value in the operation process.

(2)e(n) = (d(n)− x(n))/x(n),

(3)PMSE =
1

N

N
∑

k=1

e2(k)π,

Figure 4  Motor bracket load frequency spectrum

Figure 5  Gearbox bracket load frequency spectrum
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The fitting error of each stress calculated according to 
the load time history signal and the load-stress calibra-
tion coefficient is shown in Table 2.

5 � Neural Network Fitting
According to different transfer functions, the neural net-
work can be divided into single-layer perceptron neural 
network, linear neural network, multi-node BP neural 
network, RBF/GRNN network, Hopfield neural network, 
random neural network, and so on. Single-layer percep-
tron neural networks are mainly utilized to solve binary 
pattern recognition problems. Linear neural networks 
can be used for simple linear separable stress values and 
linear fitting. BP networks can be employed for linear 
non-separable pattern recognition, function fitting, and 
optimization. RBF/GRNN networks can be used for the 
function approximation of small samples. Hopfield net-
works can be employed to solve complex pattern recog-
nition problems and achieve prediction and optimization 
in time domain [22].

The RBF/GRNN network trains a number of network 
nodes according to sample size [24, 25]. If the sam-
ple size is larger than 105, the network will suffer from 
heavy operational burden, and a space overflow error will 
occur. Given that the amount of sample data obtained 
through the test is 107, an optimized BP neural network 
is adopted in this study for calculation.

The BP network algorithm is the most widely used 
algorithm for perceptron networks [26]; approximately 
80% of neural network models adopt a BP network or a 
modification of a BP network. A multilayer perceptron 
network usually consists of three parts: input, hidden, and 
output layers. The input and output layers have one layer, 
whereas the hidden layer may have multiple layers. Cur-
rently, the two-layer hidden network is the most widely 
used network [26]; its structure is shown in Figure 10. For 
a multi-layer feedforward network, the number of nodes 
in a hidden layer is the key to success. If the number of 
nodes is too small, the network cannot obtain sufficient 
information to solve the problem; if the number of nodes 
is too large, the training time will be increased. More 
importantly, too many nodes in a hidden layer may lead to 
the so-called “overfitting” problem, that is, the test error 
will increase and lead to reduced fitting capability. There-
fore, the number of nodes in a hidden layer should be 
rationally selected. Deciding on the number of hidden lay-
ers and nodes in a hidden layer is a complex task, but the 
general principle is to select a few nodes in a hidden layer 
to correctly reflect the input–output relationship and sim-
plify the network structure. In this study, a network struc-
ture incremental pattern is adopted. That is, a few nodes 
are set to train the network and test the learning error. 
The number of nodes is then gradually increased until the 
learning error has no significant reduction.

The transfer function and number of network nodes 
are adopted as parameters to compare nonlinear and lin-
ear optimization.

Figure 6  Torsion load frequency spectrum

Figure 7  Stress frequency spectrum of measuring point D46

Figure 8  Comparison of the stress calculated by calibration coef‑
ficients and the measured signal at measuring point D46
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The transfer function can be divided into three catego-
ries, as shown in Figure 11. Nonlinear logsig function is 
expressed as Eq. (4), and nonlinear tansig is expressed as 
Eq. (5). The linear transfer function is purelin, i.e., y = x, 
whose linear coefficient is the coefficient of the network 
node.

The calculation method is shown in the flowchart in 
Figure 12.

With D46 as the calculation object, the nonlinear net-
work has eight inputs (lateral, sink-float, side roll, tor-
sion, gearbox bracket, motor bracket, longitudinal, and 
anti-yaw loads) and one stress point as the output. Part 
of the data calculated in the optimization process is listed 
in Table 3. As shown in Table 3, the optimal result is that 
all hidden layers form a linear transitive relation network.

The optimal solution is the network structure with a lin-
ear transitive relation. The coefficient of the linear input 
layer with one node and the first layer of the hidden layer is

The coefficient of the first linear hidden layer and the 
second linear hidden layer is

Therefore, the transitive relation between the input 
layer, which includes eight input loads, and the output 
layer at the D46 measuring point is

(4)log sig(n) =
1

1+ exp(−n)
,

(5)tansig(n) =
2

1+ exp(−2n)
− 1.

(6)
IW = (−0.1− 0.15 − 0.35 3.74 0.02 0.36 0.001 0.003),

(7)LW = −1.23.

(8)
D46 = IW × LW ×
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Table 2  Calculated stress values and  the measured signal 
fitting error

Mse1 represents the percentage mean square error between the stress value 
calculated with Eq. (1) and the measured stress value

Error Measuring points

D13 D15 D26 D34 D46 D48 D55 D57

Mse1 0.36 2.26 1.88 1.97 2.54 1.63 0.84 1.74

Figure 9  Comparison of the stress calculated by calibration coef‑
ficients and the measured signal at measuring point D48
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Figure 10  Typical topology of a neural network
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Figure 11  BP neural network transitive relation function
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Therefore, the neural network that contains two hidden 
layers can be converted into a single-layer linear network, 
the topology structure of which is shown in Figure 13.

The transitive relation of the two-node linear network 
structure can be simplified into a one-node single-layer 
linear network through the same method.

As shown in the process in Figure  13, the transitive 
relation coefficient between the stress at D46 and the 
eight loads is expressed as Eq. (9), which is optimized by 
the linear neural network. Similarly, a single-layer net-
work computational method can be utilized to obtain the 
transitive relation coefficients between D13, D15, D26, 
D34, D48, D55, and D57 and the eight input loads.

A set of calculated stress values can be obtained by 
using the modified transitive relation in Eq.  (10). The 
optimized stress errors are shown in Table  4. The local 
area model is zoomed in in Figure  14. The differences 
among the actual measured, unmodified calculated, and 
optimized calculated signals are clear. Compared with 
the unmodified calculated signal, the optimized calcu-
lated signal fits the actual measured signal more.

Figure 12  Calculation flowchart of network structure optimization

Table 3  Network parameters and  corresponding calcula‑
tion error and calculation time

The operating environment is MATLAB R2014 run on an Intel (R) Core (TM) 
I7-4790 CPU with 3.6 GHz processor and 16 GB RAM

Two hidden layer 
transitive relation

One node Two nodes

Error Calculation 
time t (s)

Error Calculation 
time t (s)

‘tansig’ × ’tansig’ 0.20 5010 0.20 4148

‘logsig’ × ’tansig’ 0.20 4163 0.20 4991

‘purelin’ × ’tansig’ 0.20 4977 0.20 4150

‘tansig’ × ’logsig’ 0.20 4143 0.20 4959

‘logsig’ × ’logsig’ 0.22 4985 0.20 4823

‘purelin’ × ’logsig’ 0.20 4671 0.20 4983

‘tansig’ × ’purelin’ 0.08 1184 0.08 1686

‘logsig’ × ’purelin’ 0.07 1034 0.07 1685

‘purelin’ × ’purelin’ 0.06 103 0.06 767
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6 � Linear Transitive Relation Significance Test
Mathematical Model Description [27]: If k factors, X1, X2, 
…, Xk, exist, and dependent variable y has the following 
linear relationship, then



Page 8 of 11Zou et al. Chin. J. Mech. Eng.  (2018) 31:26 

Equation  (11) is a multiple linear regression function, 
where βi (i = 1, 2, …, k) is called the regression coefficient. 
If all X1, X2, …, Xk have no significant influence on y, the 
coefficient in the model (Eq. (11)) is βi =  0 (i = 1, 2, …, k). 
The significance test aims to assess whether

The three error statistics are total deviation square 
sum S2T =

n
∑

i=1

(yi − ȳ)2, residual sum of squares 

S2E =
n
∑

i=1

(yi − ŷi)
2, and the regression sum of squares 

S2R =
n
∑

i=1

(ŷi − ȳ)2. If β1 = β2 = …=βk =  0, then 

S2T
σ 2 ∼ χ2(n− 1) and S

2
R

σ 2 ∼ χ2(k) is true.
The above property shows that the identified S2T should be 

small if H0 is true and that large S
2
R

S2E
 is a low-probability event. 

The rejection region form is 
{

S2R
S2E

> c

}

. Therefore, if H0 is 

correct, the critical value of the given significant level α is

When y and X1, X2, …, Xk have a significant linear rela-
tionship, the significance of each variable Xi (i = 1, 2, …, k) 
should be verified. If Xi exerts no significant effect on Y, then 
βi should be zero, that is, H0i: βi = 0 (i = 1, 2, …, k) should be 
tested. Its rejection region form is {|βi| > ci}, where

(11)
f (x1, x2, . . . , xk) = y

= β1x1 + . . .+ βkxk + ε ε ∼ N (0, σ 2).

H0 : β1 = β2 = . . . = βk = 0.

(12)c =
k

n− k − 1
F1−α(k , n− k − 1)

(13)

ci = SE

√

ciiF1−α(1, n− k − 1)

n− k − 1
, cii = diag((XTX)−1).

After substituting the stress time history data, relevant 
load time history data, and optimized coefficient of D46 
into the above equation, the following can be obtained.

If S
2
R

S2E
> c then it falls in the H0 rejection region; this 

condition indicates that the linear relationship coefficient 
of all X and Y cannot be zero. Thus, a linear relationship 
is established.

Each linear coefficient influences the significance level, 
which is presented in Table 5.

βi> ci, (i = 1,…, 8), indicating that H0i (i = 1,…, 8) falls in 
the rejection region, and all variables (x1, x2, x3, x4, x5, x6, 
x7, x8) have a significant linear impact on y.

7 � Prediction of Stress at the Speed of 200 km/h
After obtaining the optimized transitive relation in the 
test run at an operating speed of 160 km/h, the load data 
obtained in a formal test at a speed of 200  km/h can be 
utilized to predict stress data. The coefficient calibrated in 

S2R
S2E

= 19.56,

c =
8

10485927
F1−α(8, 10485927) = 1.929E − 06.

Iutput Output

Layer

W 

b
8 

1 

1 

Figure 13  Single-layer linear network

Table 4  Calculated stress values of modified transitive relation and actual measured signal error

Mse2 represents the percentage mean square error between the stress value calculated with Eq. (10) and the measured stress value

Error Measuring points

D13 D15 D26 D34 D46 D48 D55 D57

Mse2 0.06 0.14 0.20 0.11 0.06 0.08 0.13 0.11

Figure 14  Comparison of the enlarged views of the three types of 
signals at an operating speed of 160 km/h
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the laboratory and the actual measured signal can be used 
for comparison. The local area model is zoomed in in Fig-
ure 15. The stress data predicted by the modified transitive 
relation and measured signal error are shown in Table 6.

8 � Comparison of Multiple Working Conditions 
and Analysis

After modifying the transitive relation between load 
and stress, the load data of the intercity EMU at differ-
ent working conditions, such as entering or departing 

the depot, upgoing line, downgoing line, and heavy vehi-
cle load, are substituted into the aforementioned transi-
tive relation and the transitive relation calibrated in the 
laboratory. Two calculated stress errors at the measuring 
points are shown in Tables 7 and 8.

As shown in Tables 7 and 8, all the stress value errors 
calculated with the optimized transitive relation are 
smaller than the stress value errors obtained with the 
laboratory-calibrated transitive relation. The optimized 
transitive relation can truly reflect the load-stress transi-
tive relation of the bogie frame under the constraints of 
line operation. The data in Tables  7 and 8 also indicate 
that the modified load-stress transitive relation does not 
significantly vary in different working conditions.

The laboratory-calibrated load-stress transitive relation 
differs from the real load-stress transitive relation. This 
difference is caused by the difference between the con-
straints on the road and those on the laboratory bench, 
even if the laboratory bench installs the bogie, including 
spring, axle box, rod, anti-yaw bracket, and other related 
accessories, according to actual operating conditions. The 
most significant influencing factors are rigidity matching 
and gap issues. Different constraint stiffness values and 
contact gaps in the same direction may offset or increase 
the stress caused by different loads. Another cause for 
such a difference is the effect of the changing wheel-rail 

Table 5  Each linear coefficient influences the significance level 1 × 10‒2

i 1 2 3 4 5 6 7 8

ci 0.02 0.22 0.12 0.2 0.01 0.02 0.004 0.002

βi 12.42 18.51 43.29 − 462.01 − 3.03 − 44.23 − 0.14 − 0.37

Figure 15  Comparison of the enlarged views of three types of 
signals at an operating speed of 200 km/h

Table 6  Stress predicted by modified transitive relation and measured signal error at an operating speed of 200 km/h

Error Measuring points

D13 D15 D26 D34 D46 D48 D55 D57

Mse2 0.06 0.12 0.14 0.05 0.06 0.07 0.10 0.10

Mse1 0.34 1.92 1.59 1.65 2.32 1.19 0.78 1.38

Table 7  Measured values and the calculated value errors of the laboratory-calibrated coefficients under multiple work‑
ing conditions (Mse1)

Error Measuring point

D13 D15 D26 D34 D46 D48 D55 D57

Entering or departing the depot calculation error 0.09 1.17 0.80 1.02 0.86 1.52 0.21 0.99

Upgoing line working condition calculation error 0.29 1.96 1.38 1.59 1.74 1.59 0.73 1.14

Downgoing line working condition calculation error 0.31 1.89 1.43 1.66 1.84 1.57 0.71 1.12

Heavy vehicle working condition calculation error 0.30 2.13 1.81 2.00 2.36 1.81 0.95 1.35



Page 10 of 11Zou et al. Chin. J. Mech. Eng.  (2018) 31:26 

contact point on the arm of force. Therefore, from a 
statistical perspective, the optimized load-stress transi-
tive relation is more reasonable than that calibrated by 
laboratory bench. The stress calculated by the optimized 
transfer coefficient still exhibits a certain degree of devia-
tion from the measured signal. Such deviation is mainly 
caused by partial loads. For example, primary vertical 
damper loads and secondary horizontal damper loads are 
not measured in this test. Another reason is that elastic 
vibration phenomenon exists in the local structure (e.g., 
motor bracket). Overall, load and stress exhibit a linear 
relationship under the operating conditions.

The frequency-domain analysis indicates that when 
elastic vibration does not occur, the transitive relation 
can be described as a linear transitive relation, namely, 
x = ΣKiFi, where Fi denotes the load, Ki denotes the tran-
sitive relation coefficient, and x denotes the response 
strain. The linear relationship reflects the transitive rela-
tion between the load and stress of the vehicle under such 
assembly process conditions. When the line conditions 
deteriorate and the load changes, the strain response will 
change accordingly. When the vehicle weight increases 
and the load increases, the strain response will also 
increase. The linear relationship significance test and 
the comparison of data under different working condi-
tions also prove that a linear transitive relation exists and 
remains unchanged.

9 � Conclusion
1.	 Spectrum analysis of the load and the stress signal 

indicated that the main frequency components of the 
intercity bogie frame are 20 Hz to 60 Hz.

2.	 An optimized nonlinear model and a linear model 
were compared in terms of load and stress data from 
a large sample. With the use of a BP neural network, 
the fitting error of the linear transitive relation was 
smaller than the nonlinear fitting error.

3.	 A simplified neural network model can represent 
the transitive relation between load and stress. The 
stress value error calculated with the transitive rela-
tion under different operating conditions was smaller 
than the stress value error calculated with the cali-

brated transitive relation on the laboratory bench. 
This finding indicates that the modified transitive 
relation did not vary significantly under various 
working conditions.

4.	 The verification and validation of the linear model 
provide strong support for the linear superposition of 
the load signal. The modified transitive relation can 
be utilized to calculate the damage consistency and 
infer the time history signal of the load according to 
the time history signal of stress.
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Table 8  Measured values and  calculated value errors of  the optimized transitive relation coefficients under  different 
road conditions (Mse2)

Error Measuring point

D13 D15 D26 D34 D46 D48 D55 D57

Entering or departing the depot working condition calculation error 0.03 0.06 0.08 0.02 0.05 0.03 0.04 0.02

Upgoing line working condition calculation error 0.10 0.21 0.14 0.08 0.31 0.07 0.10 0.10

Downgoing line working condition calculation error 0.06 0.12 0.14 0.05 0.06 0.07 0.10 0.106

Heavy vehicle working condition calculation error 0.03 0.10 0.29 0.08 0.04 0.23 0.11 0.12
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