
He et al. Chin. J. Mech. Eng.  (2018) 31:29 
https://doi.org/10.1186/s10033-018-0235-4

ORIGINAL ARTICLE

Effect of Degree‑of‑Symmetry 
on Kinetostatic Characteristics of Flexure 
Mechanisms: A Comparative Case Study
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Abstract 

The current research of kinetostatic characteristics in flexure mechanisms mainly focus on the improvement of 
accuracy. To reduce or eliminate the parasitic motion is considered as an approach by using the common knowledge 
of symmetry. However, there is no study on designing the flexure mechanisms with symmetrical features as many 
as possible for better kinetostatic performance, when considering the resulting cost by the symmetry. In this paper, 
the concept of degree of symmetry (DoS) is proposed for the first time, which is committed to symmetry design in 
the phase of conceptual design. A class of flexure mechanisms with 0-DoS, 1-DoS, 2-DoS and 3-DoS are synthesized 
respectively based on the Freedom and Constraint Topology method. Their overall compliance matrices in an analyti‑
cal form formulated within the framework of the screw theory are used to analyze and compare the effect of different 
number of DoS on the kinetostatic characteristics for flexure mechanisms. The finite element analysis (FEA) simula‑
tions are implemented to verify the analytical results. These results show that the higher the DoS is, the smaller the 
parasitic motion error will be. The flexure model with 3-DoS is optimized according to the overall compliance matrix 
and then tested by using the FEA simulation. The testing result shows that with the best combination parameters, the 
parasitic motion error for 3-DoS mechanism is almost eliminated. This research introduces a design principle which 
can alleviate the unwanted parasitic motion for better accuracy.
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1  Introduction
Nature can always inspire humans to create various use-
ful devices/instruments. From observing the natural 
structures and movements of living organisms, mechani-
cal designers regard strategic use of symmetry as a pow-
erful design tool. The symmetrical design in flexure (aka 
compliant systems) can be found everywhere in nature, 
from a mirror-symmetry bird wing in the macro world to 
a large variety of axis-symmetry protein structures in the 
micro world. Apart from the facts in the natural world, 
symmetrical geometry also exhibits a wide use in the 
artificial world. In compliant mechanisms [1], symmetry 
design is important to guarantee the stability the overall 

desired performances in which symmetry creates bal-
ance, harmony, order, and aesthetically pleasing results 
[2].

Flexure mechanisms, with the inherent advantages 
of selective compliance characteristics [3, 4], have been 
widely used in the field of precision engineering, such 
as scientific instruments, optical alignment devices, 
micro-/nano-positioning stages, precision manufactur-
ing machines [5]. These flexure mechanisms are typi-
cally hard to design compared to their rigid counterparts. 
Because the accuracy of flexure mechanisms is highly 
sensitive to many external disturbances, such as vibration 
and thermal variations, and also some intrinsic factors, 
such as material property and mechanism configuration.

In order to formulate an index for accuracy, para-
sitic motion is defined as any undesirable motion along 
the constraint directions of a mechanism [6]. There 
are several methods to reduce and even to eliminate 
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the parasitic motion. The first method is to tune the 
structural parameters and material properties without 
changing the type of flexure mechanisms. Li et al. [7, 8] 
analyzed a family of [PP]S parallel mechanisms and took 
the 3-PRS parallel mechanism as an example to reveal the 
relationship between structural parameters and parasitic 
motion, and then showed the necessary structural con-
dition for a 3-PRS parallel mechanism without parasitic 
motion. However, it is rather difficult to eliminate the 
parasitic motion by optimizing the geometrical param-
eters. The second one is designing a parasitic-motion 
compensation module, as done in linear-motion flexure 
mechanisms [9]. Trease et al. [10] and Cannon et al. [11] 
constructed a linear-motion flexure mechanism with 
higher accuracy by mirroring two double-parallelogram 
flexure modules. A class of compliant Roberts mecha-
nisms can also be combined both in serial and parallel to 
compensate for the parasitic motion [12]. In respect to 
the multi-axis motion mechanism, an extended parasitic 
motion compensation approach that characterizes 3D 
flexure deformations with twists and parasitic error with 
compliance elements is proposed to synthesize multi-axis 
flexure mechanism [13]. It is noted that symmetry design 
is essentially a special case of the latter method, which is 
to design a system free of parasitic motion directly. Sev-
eral practical full-symmetrical compliant mechanisms 
have been studied by Hao et  al. [14–16], in which tri-
symmetrical planar structures enabled three large-range 
out-of-plane motions.

This paper aims to explore the method of parasitic 
motion free design with aid of the knowledge of sym-
metry. A new term named as the Degree of Symme-
try (DoS) is coined for advancing systematical design, 
with a particular emphasis on type synthesis of flexure 
mechanisms. It can be argued that synthesis of flexure 
mechanisms is more difficult than that of their rigid-
body counterparts. Therefore, the attempt in this paper 
is to design a group of specific flexure mechanisms with 
one rotational degree-of-freedom (DOF) and one trans-
lational DOF that are parallel to each other. Each one is 
composed of several beams uniformly contained in two 
planes. Based on the known methodology, in this paper a 
class of flexure mechanisms with different DoS are to be 
synthesized, and further to be used to identify the rela-
tionship between the number of symmetrical planes and 
their kinetostatic performance characteristics.

In fact, there exist a dozen of literatures about symme-
try design, but few design concerns towards how much 
the symmetry obtained can provide better performance. 
In these prior art, researchers generally design a class of 
symmetrical flexure mechanisms firstly, and then analyze 
their parasitic motions, and finally draw a conclusion that 
the symmetry design can effectively improve accuracy 

and other performances. Is it necessary to design the 
flexure mechanisms with symmetrical planes, axes, or 
points as many as possible for reducing or even eliminat-
ing the parasitic motion, when considering the resulting 
cost by the symmetry? This paper will focus on the effect 
of the DoS on the kinetostatic characteristic of flexure 
mechanisms with a comparative case study.

The rest of this paper is organized as follows. Section 2 
provides an introduction to the Freedom and Constraint 
Topology (FACT) method as well as the equivalent con-
straint model of selected flexure primitive within the 
framework of the screw theory. A group of 2-DOF flex-
ure mechanisms with X-DoS are synthesized by using the 
graphic method (FACT) in Section 3. Their overall com-
pliance matrices for evaluating parasitic motions are for-
mulated, followed by the FEA simulation in comparisons 
with the analytical models in Section  4. Based on the 
forehead context, Section  5 discusses the effect of DoS 
on the kinetostatic performance. Finally, conclusions are 
drawn (Additional file 1).

2 � Theoretical Foundation
2.1 � Definition of Degree‑of‑Symmetry
Symmetry is one of the most important of all properties 
in the identification of mechanisms. It is well known that 
symmetry is always described by reference to symmetry 
planes, axes and the center of symmetry. In this paper, 
the Degree-of-Symmetry (DoS) is specifically constrained 
with plane symmetry.

A plane of symmetry is an imaginary plane that bisects 
a structure into halves, which is a mirror image of the 
other. It is a symmetry of a pattern in the Euclidean plane. 
For a flexure mechanism, it can have one or more planes 
of symmetry. Thus, the Degree-of-Symmetry reflects the 
number of planes of symmetry in the mechanism. For 
example, 1-DoS mechanism means there is only a plane 
of symmetry and it can be XY-plane, YZ-plane or ZX-
plane when the mechanism is placed in the Cartesian 
coordinate system. The visualization of DoS is shown in 
Figure 1.

2.2 � Type Synthesis Approach
As well known, some systematic approaches including 
the constraint-based design method [17] and the Free-
dom and Constraint Topology (FACT) method [18], 
have gained a great success in the design field of flexure 
mechanisms. Using the graphic FACT approach, which is 
based on the connection of screw theory with the con-
straint-based design theory in a geometrical way, is very 
powerful for designing simple cases. It has clear mean-
ing to map geometrical entities such as lines and plane, to 
physical elements such as the compliant beams. Further-
more, all of them can be included in the chart of FACT, 
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and modelled in the freedom spaces or constraint spaces. 
In this regard, a freedom space of a rigid body represents 
all of its allowable motion in space when subjecting to a 
specified constraint arrangement. While the constraint 
space represents all possible constraint arrangements in 
such a prescribed motion pattern.

What is more significant, the FACT approach can 
be completely embedded into the framework of screw 
theory, making the compliance matrix characterized by 
screw theory more powerful [19], since it offers critical 
geometric insight into various motion behavior of flexure 
mechanisms, including the metrics quantifying parasitic 
motion of flexure mechanisms [20].

2.3 � Coordinate Transformation of Screws and Compliance 
Matrix

Screw theory underlies the foundation of both instanta-
neous kinematics and statics [21]. Physically, a unit zero-
pitch screw presents a pure rotation or a revolute pair in 
kinematics, or a unit pure force in static along the line in 
space. A unit infinite-pitch screw denotes a pure trans-
lation or a prismatic pair in kinematics or a pure couple 
in statics, as shown in Figure 2. One calls a screw a twist 
if it represents the instantaneous motion of a rigid body, 
and a wrench if it denotes a system of forces and couples 
acting on the rigid body. Surely, a wrench and a twist can 
be also used to describe the motion of a rigid body sup-
ported by a compliance structure.

When a load is applied on the functional body of a 
general flexure mechanism, as shown in Figure 3, it will 
generate some specified deformation or motion. In this 
paper, it is assumed that the deformation is sufficient 
small so that the linear elastic theory can apply.

In this context, the transformation between a deforma-
tion twist ξ = (θ; δ) = (θx, θy, θz; δx, δy, δz)T and the load 
wrench F = (τ; f) = (τx, τy, τz; fx, fy, fz)T is represented by 
a 6 × 6 compliance matrix C to formulate the mapping of 
compliance, written as

However, compliance matrices may undergo a transfor-
mation representation when calculating the overall com-
pliance matrix of a flexure mechanism. This requires the 
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Figure 1  Visualization of DoS: a 1-DoS, b 2-DoS, and c 3-DoS

Figure 2  Two special cases of a unit screw: a a line, and b an infinite-
pitch screw Figure 3  General form of flexure mechanism
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compliance matrices of all flexures to be implemented in 
a uniform coordinate frame. Let ξ and F be the twist and 
the wrench with respect to a global coordinate frame, 
while ξ′ and F′ be the twist and the wrench with respect 
to a local coordinate frame. For a general Euclidean 
change of coordinate, and suppose that the coordinate 
transformation is represented by a 3 × 3 rotation matrix 
R and a translation vector t =  (x, y, z)T, an adjoint rep-
resentation [Ad] between a local coordinate frame and a 
global one, the transformation matrix, is determined by

where T is a 3 × 3 skew-symmetric matrix defined by the 
translation vector t.

Thus, the compliance matrix C with respect to the 
global coordinate frame can be finally obtained as:

where Δ is an operator for transforming the axis coor-
dinate into the ray coordinate and C′ is the compliance 
matrix with respects to the local coordinate frame.

Calculation of the resultant compliance of a general 
flexure mechanism with serial, parallel or a hybrid topol-
ogy is different. For a serial flexure mechanism, the defor-
mation of the end-effector is the superimposition of the 
deformation of individual elements. When the com-
pliance of the ith flexure element is denoted by Csi, the 
overall compliance matrix of a serial flexure mechanism 
is calculated as

where [Adi] is the coordinate transformation operator 
from the ith flexure to the global frame.

For a parallel flexure mechanism, the overall stiffness 
matrix of a parallel flexure mechanism Kp is the sum 
of individual element stiffness in the same coordinate 
frame, calculated as

where Cpj denotes the compliance of the ith flexure ele-
ment (Additional file 1).

In an overall compliance matrix, the principle diago-
nal elements are always considered as the reference of 
rotational degrees of freedom about x, y and z-axes as 
well as the reference of translational degrees of freedom 
along x, y and z-axes [22]. Other non-principal diagonal 

(2)[Ad] =

[

R 0

TR R

]

,

(3)
ξ = [Ad]ξ ′ = [Ad]C ′

F
′
= C�[Ad]�F

′,

C = [Ad]C ′
[Ad]T,

(4)Cs =

m
∑

i=1

[Adi]Csi[Adi]
T,

(5)K p =

n
∑

j=1

(

[Adj]Cpj[Adj]
T
)−1

,

compliance elements can be used to indicate the parasitic 
motion [23].

2.4 � Equivalent Constraint Model of Flexures
In the family of flexure mechanisms, a beam is widely 
used as a basic flexure element both generating twist 
deformations and providing wrench constraints. In terms 
of the difference in profiles, the beams can be classified as 
notch-type ones (such as circular flexures) and uniform 
ones (such as wire flexures, plate flexures); straight ones 
and initial-curve ones; and slender ones (Euler–Bernoulli 
beams) and short ones (Timoshenko beams). Different 
profiles of these beams definitely lead to variance in free-
dom and constraint due to their compliance properties.

As shown in Figure 4, when the cross section of a beam 
is circular, the coordinate frame is located at its centroid 
C, and the compliance matrix of the uniform wire beam 
with the length l and the radius r of cross sections can be 
written as

where A = πr2, Ix = Iy = πr4
/

4, J = Ix + Iy = πr4
/

2.

By comparing the compliances of the wire flexure with 
circular cross section in different directions, the equiva-
lent constraint model can be established for realizing the 
simplification from structure to topology. When ratio of 
the length to the radius is larger than 40, we have

From the above results, it can be observed that this 
flexure offers several orders of magnitude higher stiffness 
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Figure 4  Wire flexure characterized with circular cross section
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along its axis compared with any other direction. We can 
thus conclude that a slender cylinder flexure, with ratio 
of the length to the radius being larger than 20, approxi-
mates an ideal wire flexure imposing a rigid constraint 
along its z axis and allowing other five DOFs. Therefore, 
the constraint model equivalent to this kind is a wire 
constraint.

3 � Type Synthesis and Parasitic Error Analysis 
of X‑DoS Flexure Mechanisms with Cylindrical 
Motion

3.1 � Type Synthesis
In this section, we deal with the design of a group of flex-
ure mechanisms characterized by the different number of 
DoS. The type synthesis approach we used is the graphic 
FACT, which is intuitively visible and preferable if the 
cases are not so complicated. Since the main purpose 
to this paper is on the relationship between the number 
of DoS and the kinetostatic performances, some simple 
parallel flexure mechanisms are appropriate enough in 
certain sense. Moreover, all flexure elements employed 
here are identical with a uniform circular cross section 
for convenience. Based on the knowledge of equivalent 
constraint model above, we built a general flexure mech-
anism formed by connecting a moving platform to a base 
one through wire flexure elements, as shown above in 
Figure 3, which will generate deformation on the moving 
platform when undergoing a generalized load.

Type synthesis of flexure mechanisms starts with speci-
fying a freedom space. The objective is to find all beams 
with circular cross section in a parallel arrangement to 
perform the desired motion. The following will describe 
a general procedure for the type synthesis by taking the 
flexure mechanisms with cylindrical motion for instance.

Step 1. Denote the specified freedom pattern of a flex-
ure system with one rotational motion and one transla-
tional motion whose axes are parallel to each other. The 
freedom space is depicted in Figure 5.

Step 2. Find the complementary line constraint space, 
which represents those available constraints of the flex-
ure systems, based on the chart of FACT, as illustrated in 
Figure 6.

Step 3. Determine all possible reciprocal line subspaces. 
In the subspaces, an axis is set up to have the identical 
direction with that of the desired DOFs, and constraints 
of the flexure systems should be found in an easier way. 
One possible constraint subspace is illustrated in Figure 7.

Step 4. Select constraint subspace types in terms of differ-
ent level of symmetrical geometry from constraint spaces 
obtained in Step 3. Note that the constraint subspaces 
should be realized physically as illustrated in Figure 8.

Note that the flexure mechanisms constructed based 
on the above steps can be classified into four types, i.e., 
0-DoS type, 1-DoS type, 2-DoS type, and 3-DoS type, 
as shown in Figure  8. Generally, when formulating the 
screw-based compliance models, the global coordi-
nate system is placed at the mass center of the moving 
platform where an important geometrical insight into 

Figure 5  Desired freedom space

Figure 6  Desired constraint space

Figure 7  Possible constraint subspace
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the motion characteristic of flexure mechanisms can be 
revealed. However, instead of designing a hybrid flex-
ure mechanism, by applying a mirror-symmetrical serial 
connection, the global coordinate system is located at 
the middle part between the moving platform and the 
fixed platform for the 3-DoS flexure mechanism. All four 
mechanisms have been elaborated in Figure 9.

3.2 � Compliance Modelling
As sketched in Figure 9(c), the flexure mechanism char-
acterized by two symmetrical planes is formed by con-
necting a moving platform to a fixed one through four 
identical circular wire flexures (r is the radius of cross 
sections) in parallel. Two parallel flexures (labeled with 1 
and 2) intersect, with an angle 2θ, at the middle of one 
side edge on the moving platform, and span, with the 
distance a of two end points, on the fixed platform. The 
other two flexures are arranged similarly with an inter-
val distance d. A global coordinate frame is located at the 
center of the moving platform, and the local coordinate 
frames are located at the center of each flexure element. 
All axes of the local/global coordinate frames are labeled 
in Figure 8.

Note that the compliance of each element can 
be obtained under the uniform coordinate frame 
although the compliance matrix about each flex-
ure center, which has deduced in Eq. (6), is identi-
cal. The rotational matrices Ri and the translational 
vector ti  =  (x,  y,  z)T associating with each flexure for 
calculating adjoint transformations [Eq.  (2)] are listed 
in Table 1, the rotation matrices are expanded as below: 

Rx(θ) =





1 0 0

0 cos θ − sin θ

0 sin θ cos θ



, Rx(−θ) =





1 0 0

0 cos θ sin θ

0 − sin θ cos θ



, 

where θ  =  0 if the flexure elements are perpendicular 
with two platforms.

Based on Eqs. (2) and (3), the corresponding overall 
compliance matrix of the 2-DoS flexure mechanism with 
respect to the global coordinate frame is derived as

which can be re-written in the form as

By analyzing the principal diagonal elements of the 
matrix, the type of degree of freedom of this flexure 
mechanism can be easily demonstrated. In addition, 
other non-principal diagonal compliance entries can be 
considered as the reference of parasitic motion errors 
[21].

(8)C2−DOS =

(

4
∑

i=1

(

[Adi]Cc[Adi]
T
)−1

)−1

,

(9)C2−DOS =















c11 0 0 0 c15 0
0 c22 0 c24 0 0
0 0 c33 0 0 0
0 c42 0 c44 0 0
c51 0 0 0 c55 0
0 0 0 0 0 c66















.

Figure 8  Possible constraint subspace that can be realized physi‑
cally, using identical uniform wire beams

Figure 9  Flexure mechanisms with different number of DOS: a 
0-DOS, b 1-DOS, c 2-DOS, and d 3-DOS
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Note that each entry in the compliance matrix of the 
2-DoS mechanism is determined by the material and 
geometric properties, such as the cross-section radius 
of wire beam, the angle between two intersecting beams. 
Therefore, it is difficult to write the expressions of all 
entries explicitly. Luckily, enlightened by the combina-
tion with screw theory and kinematics, the form of over-
all compliance matrix reveals whether there is parasitic 
motion or not. Thus, in the initial qualitative preliminary 
analysis, we only focus on the form of each overall com-
pliance matrix. As a result, the overall compliance matri-
ces, with respect to the corresponding defined global 
coordinate frames, of other flexure mechanisms (Fig-
ure  9(a), 9(b) and 9(d)) are represented below and Eqs. 
(9)–(12) are normalized using the method in Ref. [16]. In 
this way, the deformations can sum up together in differ-
ent dimensions because of the dimensionless processing.

According to all the above overall compliance matri-
ces, it can be concluded that the smaller parasitic motion 
errors occurs when there are more symmetric planes 
existing in the flexure mechanisms. In other words, the 
DoS of a flexure mechanism leads to some straightfor-
ward effect on its parasitic motion error. It is worth men-
tioning that all these flexure mechanisms have the same 

(10)C0−DOS =















c11 c12 0 c14 c15 0
c21 c22 0 c24 c25 0
0 0 c33 0 0 c36
c41 c42 0 c44 c45 0
c51 0 c53 c54 c55 0
0 0 c63 0 0 c66















,

(11)C1−DOS =















c11 0 0 0 c15 c16
0 c22 c23 c24 0 0
0 c32 c33 c34 0 0
0 c42 c43 c44 0 0
c51 0 0 0 c55 c56
c61 0 0 0 c65 c66















,

(12)C3−DOS =















c11 0 0 0 0 0
0 c22 0 0 0 0
0 0 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66















.

dominant motion pattern which consists of a rotation 
about the x axis (θx) and a translation along the x axis 
(δx).

3.3 � Parasitic Motion Error Analysis
Now, let us take a close look at the overall compliance 
matrix formula of each flexure mechanism when a force 
fx is imposed on the mobile platform. According to the 
screw theory and the theory of linear elasticity, the defor-
mation denoted by the twist ξ = (θ; δ) = (θx, θy, θz; δx, δy, 
δz) and the load wrench F = (τ; f) = (τx, τy, τz; fx, fy, fz) are 
connected by the generic 6×6 compliance matrix, writ-
ten as

where the parameters in the compliance matrix are 
normalized for summing up deformations together 
reasonably.

Considering the first case without symmetric plane 
(0-DoS mechanism), there exists such a resulting defor-
mation, expressed as

In fact, only the translational motion along x-axis is 
useful to perform desired function, the rest of entries are 
unwanted since they bring into some parasitic motions. 
In this case, the moving platform translates by δx along 
x direction, companying with three other parasitic 
motions, which are two parasitic rotations about x and 
y axes, denoted by θx and θy respectively, and a parasitic 
translation along y axis, denoted by δy. As known, para-
sitic motion is always detriment to the accuracy of a flex-
ure mechanism, Clearly, this 0-DoS mechanism is not 
desired for practical application.

As for the second case (1-DoS mechanism), it has one 
yoz symmetrical plane. Based on the matrix obtained 
above, the resulting deformation is deduced as

The preliminary motion for translation along x axis 
remains unchanged, but the number of parasitic motions 
decreases into two that are the parasitic rotations about y 
and z axes, denoted by θy and θz, respectively. Comparing 
with the former 0-DoS case, the presence of one symmet-
rical plane leads to better performance due to eliminating 
one type of parasitic motion.

For the third case, it has the widest popularity when 
designing 2-DOF cylindrical flexure mechanisms. There 

(14)















θx
θy
θz
δx
δy
δz















=















c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66





























τx
τy
τz
fx
fy
fz















,

ξ0 = θx + θy + δx + δy = c14fx + c24fx + c44fx + c54fx.

ξ1 = θy + θz + δx = c24fx + c34fx + c44fx.

Table 1  Information for adjoint transformation

Beam number Rotational matrix Translational vector

1 R1 = Rx(θ) t1 = (− d, − a/a2.2, − a cot (θ))T

2 R2 = Rx(− θ) t2 = (− d, a/a2.2, − a cot (θ))T

3 R3 = Rx(θ) t3 = (d, − a/a2.2, − a cot (θ))T

4 R4 = Rx(− θ) t4 = (d, a/a2.2, − a cot (θ))T
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are a number of related literatures that address how to 
eliminate parasitic motion. Most of them claim that the 
introduction of a compensation module can effectively 
tradeoff the unwanted parasitic motion error. With the 
above-mentioned result, the flexure mechanism with two 
symmetric planes also has parasitic motion, but shows 
improvement when comparing with the 0-DoS and 1-DoS 
mechanisms. The resulting deformation of the 2-DoS 
mechanism is expressed as ξ2 = θy + δx = c24fx + c44fx.

As can be seen, the best design should be the last one, 
whose overall compliance matrix is ideally pure diagonal. 
This is because all symmetric planes result in the advan-
tage of no parasitic motion. Though it is challenging to 
design a 3-DoS flexure mechanism from all selected 
motion type, the attempt to design flexure mechanisms 
with maximum degree of symmetry is still meaningful.

4 � FEA Simulation Verification
In this section, a series of finite element analysis (FEA) 
simulations are implemented for demonstrating the ben-
efit in presence of more symmetrical planes in the flex-
ure mechanism. The tool used is commercial package 
ANSYS 15.0, where SOLID-187 element is selected for all 
rigid platforms while BEAM-189 element is selected for 
all flexure beams which connecting the moving platform 
with the fixed platform.

Flexure mechanisms with different mobility and stiff-
ness can be obtained by changing their geometrical 
parameter. The chosen material is Aluminum Alloy, 
whose Young’s modulus is E = 70 GPa, Poisson’s ratio is 
μ = 0.34, and the cross-section radius of all wire flexures 
in the mechanisms is r = 5 mm. To guarantee the ratio of 
the length to the radius to be larger than 40, the height 
between the moving platform and the fixed one should at 
least be 200 mm. Thus, the length of the platform, which 
is also the distance a as shown in Figure 8 is 60 mm. The 
interval distance d is also set to be 60 mm.

Four models that have different number of DoS rang-
ing from zero to three are built in terms of the geometri-
cal parameters provided above. When applying the same 
force fx = 0.01 N to the moving platform of four flexure 
mechanisms, they generate a deformation twist along 
x axis companied by several parasitic motion, which 
lead to inequality between the maximum displacement 
(DMX) displaying on the panel of Nodal Solution and the 
selected directional displacement (SMX) displaying on 
the panel of Nodal Solution. Therefore, the difference of 
DMX and SMX can be used as an indication of parasitic 
motion for these four designs. All corresponding devia-
tions generated by the simulation results shown in Fig-
ure  10  are illustrated in Figure  11. It can be concluded 
that the higher the DoS, the smaller the parasitic motion 
error.

5 � Optimal Parametric Design
Analyzing overall compliance matrix for different flex-
ure mechanisms in Section 3, it is known that the result-
ant mechanism with three symmetric planes can lead to 
no parasitic motion theoretically because of its diagonal 
compliance matrix form. As a result, in this section we 
considerately concentrate on the optimization design 
for the 3-DoS flexure mechanism and find out the effect 
of design parameters on its compliance matrix, whose 
entries are considered as the reference of rational and 
translational DOF or DOC.

In this case, the entry c11 and c44, in the diagonal should 
be the dominant ones for ensuring a rotation along the 
x-axis and a translational about the y-axis. Quantitatively, 
these two entries that have been already normalized 
should be much larger than the other entries in the diag-
onal. The much larger the ratio of the DOF entry to the 
DOC entry is, the better the kinetostatic characteristic of 
the mechanism is. For this reason, we derive symbolically 
every entry by four parameters (d, a, θ, r) as below:

where E is the Young’s modulus, G is the shear modulus.
First of all, the compliance ratios (c11/c22, c11/c33, c44/c55, 

c44/c66) are plotted in Figures 12 and 13. The two figures 
illustrate the effect of the beam orientation (θ) on the 
compliant ratios, associating with the rotational DOF 
about the x-axis and the translational DOF along the 
x axis. It is shown that with the increase of the angle 
of beam orientation, the compliance ratios c11/c22 and 
c44/c66 both decrease. This result suggests that the com-
pliance for rotational motion about the y-axis becomes 
notable, so does the translational motion along the z-axis. 
It can be understood that the original flexure mechanism 
will evolve into a new flexure mechanism with 2 extra 
DOFs including rotation about y-axis and translation 
along z-axis. In Figures 12 and 13, except two downward 
lines, there is one upward line and one almost steady line, 
indicating the constraint capacity against freedom capac-
ity. It is a common sense that the compliance in the DOC 
direction should be small enough while as large as pos-
sible in the DOF direction. Therefore, the trend in com-
pliance ratio c11/c33 towards better rotational constraint. 
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c11 =
a

Eπr4 sin θ
,

c22 = a3/[πr2 sin θ(2Ga2r2 sin2 θ + 12Ed2r2 sin4 θ+

Ea2r2 cos2 θ + 4Ea2d2 cos2 θ)],

c33 = a3/[πr2 sin θ(2Ga2r2 cos2 θ + Ea2r2 sin2 θ+

12Ed2r2 cos2 θ sin2 θ + 4Ea2d2 sin2 θ)],

c44 = a3

12Eπr4 sin3 θ
,

c55 =
a3

4Eπr2 sin3 θ(3r2 cos2 θ+a2)
,

c66 =
a3

4Eπr2 sin θ
�

3r2 sin4 θ+a2 cos2 θ
� ,
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For the value of compliance ratio c44/c55, almost constant 
larger than 50, can be referred to a translational DOF 
along the x-axis. 

Based on the illustrated analysis above and in view of 
the design purpose for this paper, θ = π/4 is selected to 
enable all compliance ratios to be large enough for better 
performance, so that we can obtain relatively high com-
pliance in the specified DOF direction and relatively low 
compliance in the specified DOC direction.

Then, we focus on the effect of the distance a on the 
compliant ratios associating with the two desired DOFs. 

The compliance ratios (c11/c22, c11/c33, c44/c55, c44/c66) are 
plotted against the distance a in Figures 14 and 15. Fig-
ure  14 shows that as the distance of intersecting beams 
increases, the compliance ratios c11/c22 and c11/c33 both 
decrease to approximate 288. It means that c22 and c33 are 
still two orders of magnitude smaller than the compli-
ance c11 so that they can be reasonably neglected for the 
qualitative study. On the contrary, the compliance ratio 
c44/c55 rises when the distance a increases, and the com-
pliance ratios c44/c66 is independent of the parameter a. 

Figure 10  FEA simulations of each flexure mechanisms: a 0-DOS flexure mechanism, b 1-DOS flexure mechanism, c 2-DOS flexure mechanism, 
and d 3-DOS flexure mechanism
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The effect of the interval distance d on the compliant 
ratios is further investigated. From the expression of the 
compliance matrix, the parameter d only affects c22 and 
c33 with same upward trend. Moreover, as shown in Fig-
ure 16, under θ = π/4, c11/c22 ad c11/c33 are identical with 
the change of b.

Finally, the influence of the cross-section radius of 
beams is analyzed. Since the equivalent constraint model 
subjects to its ratio of the length to the radius, for the 
equivalent wire constraint model as used in this paper, 
there is no doubt that the smaller the radius of the beam 
is, the more ideal the wire flexure approximation is. 

Nevertheless, significantly reducing the radius of flexure 
beam is not economic because of the manufacturing cost.

On the basis of the above comprehensive quantitative 
analysis, the optimal parameters for the 3-DoS mecha-
nism are listed in Table  2. The FEA simulation is also 
implemented using the optimal parameters under the 
same force fx = 0.01 N, showing that the value of DMX 
is equal to the value of SMX  (Figure  17). Compared to 
the simulations in Section  4, the displacement along x 
axis after optimization is about two times larger than the 
original one. With the optimal parameters, the flexure 
mechanism is less stiff and lower power consumption.

6 � Discussions
As mentioned in Section 1, there are mainly three meth-
ods to reduce or even eliminate the parasitic motion for 
a flexure mechanism. Compensation designs are always 
preferred as reported by numerous literatures, which can 
be simply constructed with high accuracy by mirroring 
two identical flexure modules. In a word, almost all exist-
ing flexure mechanisms use the principle of symmetry 
design and combinations of the homogenous modules 
to achieve the compensation for parasitic motion. In the 
design processing, it is better to generate as many DoS as 
possible from the very beginning based on the findings in 
this paper. With different DoS, we can further adopt cer-
tain methods to alleviate the unwanted parasitic motion.

In addition, design and synthesis of a class of flex-
ure mechanisms with cylindrical motion in a compact 
but simple way is significant for further applications, 
such as the joint for realizing a snack-like robot’s three 

Figure 11  Parasitic motion error for each flexure model

Figure 12  Compliance ratios associating with the rotational freedom

Figure 13  Compliance ratios associating with the translation 
freedom
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dimensions’ gaits [24]. Recently, a new version of robots 
called in-pipe inspection robots was proposed to inves-
tigate the internal space of the pipes (for detecting the 
cracks, leaks, etc.), where implementing non-destruc-
tive tests are commonly based on screw motion [25]. As 
known, in-pipe inspection robots are supposed to move 
fast and continuous with constant pitch of rate, and it 
is possible because of cylindrical locomotion with the 
required accuracy.

7 � Conclusions
A class of flexure mechanisms with different number of 
DoS have been designed followed by discussing the effect 
of symmetrical geometry on their kinetostatic char-
acteristics. These mechanisms with zero, one or more 
symmetric planes, are obtained from FACT method. 

Figure 14  Compliance ratios associating with the rotational freedom

Figure 15  Compliance ratios associating with the translation 
freedom

Figure 16  Compliance ratios associating with the rotational freedom

Table 2  Optimal parameters for 3-DoS flexure model

Beam orienta‑
tion
θ

Two end points 
distance
a (mm)

Interval dis‑
tance
d (mm)

Radius of beam
r (mm)

θ = π

/

4 200 200 5

Figure 17  Simulation for optimal design
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Each flexure mechanism is composed of several iden-
tical beams distributed in two planes orthogonal to the 
motion direction. Analytical model for the overall com-
pliance matrix has been derived within the framework 
of the screw theory. These models have been used to 
analyze the influences of different DoS on the parasitic 
motion. Moreover, the FEA simulations are carried out 
for verifying the analytical results. An optimal design 
with θ = π

/

4and a = d = 200 mm has been obtained and 
simulated.

As a new concept, the DoS concentrates on symme-
try design theory. Moreover, the comparative case study 
on designing a group of symmetrical flexure mecha-
nisms with cylindrical motion is instructive to snack-like 
robots’ design.

Authors’ Contributions
J-JY was in charge of the whole trial; X-BH, G-BH wrote the manuscript; W-WZ 
assisted with sampling and laboratory analyses. All authors read and approved 
the final manuscript.

Author details
1 School of Mechanical Engineering and Automation, Beihang University, 
Beijing 100191, China. 2 School of Engineering‑Electrical and Electronic Engi‑
neering, University College Cork, Cork, Ireland. 

Authors’ Information
Xiao-Bing He, born in 1994, is currently a master candidate at School of 
Mechanical Engineering and Automation, Beihang University, China. E-mail: 
18811375101@163.com.

Jing-Jun Yu, born in 1974, is currently a professor at Beihang University, 
China. His research interests include mechanisms and robotics. Tel: +86–10–
82313904; E-mail: jjyu@buaa.edu.cn.

Wan-Wan Zhang, born in 1994, is currently a master candidate at School 
of Mechanical Engineering and Automation, Beihang University, China. E-mail: 
1076643918@qq.com.

Guang-Bo Hao, born in 1981, is currently a permanent full-time Lecturer 
in Mechanical Engineering at School of Engineering-Electrical and Electronic 
Engineering, University College Cork (UCC), Ireland. His research focuses on 
compliant mechanisms.

Competing Interests
The authors declare that they have no competing interests.

Ethics Approval and Consent to Participate
Not applicable.

Funding
Supported by National Natural Science Foundation of China (Grant No. 
51575017)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 28 June 2017   Accepted: 16 April 2018

Additional file

Additional file 1. Brief introduction of the paper.

References
	[1]	 L L Howell. Compliant mechanisms. In: 21st Century Kinematics. London: 

Springer, 2013: 457–463.
	[2]	 R M Panas, J B Hopkins. Eliminating underconstraint in double paral‑

lelogram flexure mechanisms. Journal of Mechanical Design, 2015, 137(9): 
092301.

	[3]	 L L Howell, B M Olsen, S P Magleby. Compliant mechanisms. New York: 
Wiley, 2001.

	[4]	 L L Howell, et al. Handbook of compliant mechanisms. Chichester, West 
Sussex, United Kingdom: Wiley, 2013.

	[5]	 G B Hao, J J Yu, H Y Li. A brief review on nonlinear modelling methods 
and applications of compliant mechanisms. Frontiers of Mechanical Engi-
neering, 2016, 11(2): 119–128.

	[6]	 S Awtar, A H Slocum. Constraint-based design of parallel kinematic XY 
flexure mechanisms. ASME Journal of Mechanical Design, 2006, 129(8): 
816–830

	[7]	 Q Li, J M Hervé. 1T2R parallel mechanisms without parasitic motion. IEEE 
Transactions on Robotics, 2010, 26(3): 401–410.

	[8]	 Q Li, Z Chen, Q Chen, et al. Parasitic motion comparison of 3-PRS parallel 
mechanism with different limb arrangements. Robotics and Computer-
Integrated Manufacturing, 2011, 27(2): 389–396.

	[9]	 S Z Li, J J Yu, G H Zong, et al. A compliance-based compensation 
approach for designing high-precision flexure mechanism. ASME 2012 
International Design Engineering Technical Conferences and Computers and 
Information in Engineering Conference. New York: American Society of 
Mechanical Engineers, 2012: 293–301.

	[10]	 Y M Moon, B P Trease, S Kota. Design of large-displacement compliant 
joints. ASME 2002 International Design Engineering Technical Conferences 
and Computers and Information in Engineering Conference, 2002: 65–76.

	[11]	 B R Cannon, T D Lillian, S P Magleby, et al. A compliant end-effector for 
microscribing. Precision Engineering, 2005, 29(1): 86–94.

	[12]	 N B Hubbard, J W Wittwer, J A Kennedy, et al. A novel fully compliant 
planar linear-motion mechanism. International Design Engineering Techni-
cal Conferences and Computers and Information in Engineering Conference, 
ASME, 2004: 1–5.

	[13]	 S Z Li, J J Yu. Design principle of high-precision flexure mechanisms 
based on parasitic-motion compensation. Chinese Journal of Mechanical 
Engineering, 2014, 27(4): 663–672.

	[14]	 G B Hao, F K Dai, X Y He, et al. Design and analytical analysis of a large-
range tri-symmetrical 2R1T compliant mechanism. Microsystem Technolo-
gies, 2017(8): 1–8.

	[15]	 G B Hao. Determinate synthesis of symmetrical, monolithic tip-tilt-
piston flexure stages. Journal of Mechanical Design, 2017, 139(4): 
042303–042303–9.

	[16]	 G B Hao. Design and analysis of symmetric and compact 2R1T (in-plane 
3-DOC) flexure parallel mechanisms. Mechanical Sciences, 2017, 8: 1–9.

	[17]	 D L Blanding. Exact constraint: Machine design using kinematic principle. 
New York: ASME Press, 1999.

	[18]	 J B Hopkins, M L Culpepper. Synthesis of multi-degree of freedom, paral‑
lel flexure mechanism concepts via freedom and constraint topology 
(FACT). Part II: Practice. Precision Engineering, 2010, 34(2): 271–278.

	[19]	 J J Yu, S Z Li, H J Su, et al. Screw theory based methodology for the 
deterministic type synthesis of flexure mechanisms. ASME Journal of 
Mechanisms and Robotics, 2011, 3(3): 031008.

	[20]	 J B Hopkins, M L Culpepper. A screw theory basis for quantitative and 
graphical design tools that define layout of actuators to minimize para‑
sitic errors in parallel flexure systems. Precision Engineering, 2010, 34(4): 
767–776.

	[21]	 R Murray, Z X Li, S Sastry. A mathematical introduction to robotic manipula-
tion. New York: CRC Press, 1994.

	[22]	 G B Hao, X W Kong. A normalization-based approach to the mobil‑
ity analysis of spatial compliant multi-beam modules. Mechanism and 
Machine Theory, 2013, 59(1): 1–19.

	[23]	 H J Su, H J Shi, J J Yu. A symbolic formulation for analytical compliance 
analysis and synthesis of flexure mechanisms. ASME Journal of Mechanical 
Design, 2011, 134(5): 051009.

	[24]	 B Klaassen, K L Paap. GMD-SNAKE2: A snake-like robot driven by wheels 
and a method for motion control. IEEE International Conference on Robot-
ics and Automation, 1999. Proceedings. IEEE Xplore, 1999, 4: 3014–3019.

	[25]	 A Nayak, S K Pradhan. Design of a new in-pipe inspection robot. Procedia 
Engineering, 2014, 97: 2081–2091.

https://doi.org/10.1186/s10033-018-0235-4

	Effect of Degree-of-Symmetry on Kinetostatic Characteristics of Flexure Mechanisms: A Comparative Case Study
	Abstract 
	1 Introduction
	2 Theoretical Foundation
	2.1 Definition of Degree-of-Symmetry
	2.2 Type Synthesis Approach
	2.3 Coordinate Transformation of Screws and Compliance Matrix
	2.4 Equivalent Constraint Model of Flexures

	3 Type Synthesis and Parasitic Error Analysis of X-DoS Flexure Mechanisms with Cylindrical Motion
	3.1 Type Synthesis
	3.2 Compliance Modelling
	3.3 Parasitic Motion Error Analysis

	4 FEA Simulation Verification
	5 Optimal Parametric Design
	6 Discussions
	7 Conclusions
	Authors’ Contributions
	References




