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Abstract 

Most of researchers focused on traditional six degrees of freedom (DOF) Stewart flight simulator, which can not be 
adaptive in fighter‑aircraft flight simulator. A three rotational DOF flight simulator of fighter‑aircraft based on dou‑
ble parallel manipulator and hybrid structure is presented. The flight simulator is composed of two identical 3‑RRS 
(revolute‑revolute‑spherical) spherical parallel manipulators and one cabin, called Twins. The cabin has an additional 
independent DOF for 360° continuous rotation, so it can be applied as a flight simulator for a fighter‑aircraft to 
achieve spin maneuvering. Because of the introduction of the hybrid structure and double parallel manipulator of the 
mechanism, the redundancy exists with respect to both kinematics and actuation. Kinematics is carried out and Jaco‑
bian matrix is established by means of screw theory. The inverse kinematics is given out by the analytical method. 64 
groups inverse solutions are showed in a table by permutation. Forward kinematics is solved by an effectively numeri‑
cal method. The forward numerical method is realized based on the analytically inverse kinematics and Jacobian 
matrix. The numerical examples show that the forward numerical method can be used in real‑time control. The rolling 
motion is considered in forward kinematics and a numerical example is given out. The proposed flight simulator can 
spin and there are three rotational DOF with a hybrid structure so that the novel flight simulator can be used in the 
field of the fighter‑aircraft for pilots to train.
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1 Introduction
Flight simulators are devices in which air crews and pilots 
can train without the use of an actual aircraft [1]. In 
flight training, they are used mainly to reduce costs and 
increase safety. In their most sophisticated form, they 
simulate an aircraft’s vehicular motion, instrumentation 
and sounds, gravitational forces, radar and electro-opti-
cal sensor displays, and out-the-window views. Accord-
ing to the USA’s Federal Aviation Administration (FAA) 
regulations, any device called a Flight Simulator must 
have at least one motion platform, otherwise it can only 
be termed a Flight Training Device [2]. Therefore, the 
vehicular motion platform in flight simulator is one of the 
most important parts.

Since Stewart’s initial use of a 6-DOF parallel manipu-
lator as a flight simulator in 1965 [3], this approach has 
become standard. Over the past five decades, the Stew-
art parallel manipulator has been used to make signifi-
cant contributions to aeronautical research [4–7]. Even 
so, there is still the disadvantage of the Stewart-type 
flight simulator in that its posture rotation range is less 
than 30°. The limitation of the posture range of a Stewart 
parallel manipulator hinders its ability to serve as a flight 
simulator of a fighter-aircraft. The motion of a fighter-
aircraft involves continuous 360° rolling frequently. In 
order to achieve continuous 360° rolling, Kim et  al. [8] 
presented an innovative motion base as a flight simulator, 
based on a 6-DOF parallel mechanism, called Eclipse-II. 
The Eclipse-II allows continuous 360° rotation in A, B, 
and C-axes as well as translational motions in X, Y, and 
Z-axes. However, the rotations of the Eclipse-II parallel 
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manipulator are achieved by two circular guide rails, 
which severely affect the dynamical performance. As a 
matter of fact, in both the Stewart and Eclipse-II simu-
lators, translational movements are nearly inoperative. 
Low-cost flight simulator with a reduced-DOF (less than 
six) platform was proposed by Pouliot and Gosselin [9], 
which revealed result comparable to those of a 6-DOF 
Stewart platform. Subsequently, Shui et al. [10] proposed 
a more advanced and innovative reconfigurable spherical 
motion generator to enable continuous spherical motion 
of the flight simulator. The mechanism enables unlimited 
workspace with respect to 3-DOF spherical motion with 
rapid, continuous, and precise motion capabilities. How-
ever, it is actuated by an electromagnetic motor with a 
highly complicated configuration that causes the volume 
of manipulator to be huge. So far, no parallel manipula-
tor can be used as a flight simulator to accomplish a 360° 
continuous rotation in practice.

Although it is not necessary to be able to continuously 
rotate in all orientations, a flight simulator of a fighter-
aircraft needs to be able to roll in an additional 360° to 
perform most motions of a fighter-aircraft. Therefore, the 
purpose of this study is to achieve continuous 360° rota-
tion of a fighter-aircraft flight simulator.

Many researchers have focused on hybrid platforms 
such as the famous Tricept by Neumann [11] and Trivari-
ant by Huang et  al. [12] that provide a good workspace 
volume. They are typically a combination of a parallel 
manipulator and a serial manipulator. As a hybrid alter-
native, a double parallel manipulator was proposed for 
enlarging the workspace by Lee et al. [13, 14]. Tsai et al. 
[15] used a double parallel manipulator to enlarge the 
workspace of the manipulator and analyzed its kinematic 
properties. Furthermore, many researchers have noted 
that the redundancy of a double parallel manipulator 
can improve its abilities and performance, for example, 
enlarging the volume of the workspace. There are two 
main types of redundancy for the parallel manipulator: 
(a) kinematic redundancy and (b) actuation redundancy 
[16, 17]. Zanganeh and Wang et  al. [18–20] studied the 
kinematic redundancy of a parallel manipulator by ana-
lyzing its kinematics, and pointed out that the extra DOF 
not only allow for execution of the original output task, 
but also additional tasks such as increasing the work-
space. It is notable that the Eclipse-II is a redundant actu-
ation parallel manipulator. Redundant actuation has been 
proven to be a good method to enhance performance 
of parallel manipulators. Nokleby et al. [21] proved that 
redundant actuation can improve force capabilities. Kim 
et al. [22] investigated the redundantly actuated parallel 
manipulator and proved that redundant actuation of a 
parallel manipulator not only can improve force capabili-
ties, but can also enhance the stiffness of a manipulator. 

Li et al. [23] derived the conclusion that redundant actua-
tion has little effect on the stiffness when the actuators 
are on prismatic joints and enhances stiffness value 
greatly when the actuators are on revolute joints.

Although the novel mechanisms are proposed one by 
one, they don’t adapt for the flight simulator. Regarding 
existing parallel manipulators, the 3-DOF spherical par-
allel manipulator is a compact configuration with large 
rotational posture [24]. Therefore, given the above con-
clusions, a flight simulator of a fighter-aircraft based on 
a double and hybrid 3-RRS [25–28] spherical parallel 
manipulator was chosen for this study.

The remainder of this paper is organized as follows. In 
Section  2, the structure of the Twins flight simulator is 
described. In Section  3, the kinematic properties of the 
Twins are discussed, including the development of the 
direction-cosine matrixes in Section  3.1 with analytical 
spherical theory, the analysis of DOF in Section  3.2, and 
the development of the Jacobian matrix via screw theory 
in Section 3.3. Inverse kinematics and forward kinematics 
are conducted in Sections 4 and 5. Numerical examples are 
provided in Section 6. Lastly, the conclusions are discussed.

2  Architectural Description
As shown in Figure  1, the flight simulator is a hybrid 
manipulator developed on the basis of two identical 
3-RRS spherical parallel mechanisms and one cabin with 
an independent DOF. Therefore, it has kinematic redun-
dancy and a redundantly actuated manipulator as well. 
The basic makeup of the whole platform consists of two 
fixed platforms, one cabin, six RRS legs, two flange-bear-
ing-gear decelerators, and eight motors.

Figure 1 Flight simulator of fighter‑aircraft called “Twins”. 1. Spherical 
joint (substituted with one Hook joint and one R joint); 2. R joint; 3. 
Fixed platform; 4. Motor; 5. Moving platform; 6. Connecting rod; 7. 
Flange-Bearing-Gear reducer; 8. Gear reducer; 9. Leg; 10. Cabin
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As shown in Figure  2, all joints are located on spheri-
cal surface and all joint axes intersect at a single point O 
(center of the sphere). The active joints are Ci and Ci′, and 
the passive joints are Bi, Bi′, Ai and Ai′, i = 1, 2, 3. A fixed 
Cartesian coordinate frame O – xyz and a moving Carte-
sian coordinate frame O ′– uvw are positioned at the center 
of the sphere. In the fixed coordinate frame, the x-axis is 
normal to plane C1ON, and extends outwards. The z-axis 
superposes on line MN, and extends upwards. The y-axis 
is defined by the right hand rule. In the moving coordi-
nate frame, the u-axis is normal to plane A1ON, the w-axis 
superposes on line QV (the points Q and V are the geo-
metrical center of triangles ∆A1′A2′A3′ and ∆A1A2A3), and 
extends outwards. The v-axis is defined by right hand rule.

Looking at Figure  2, based on the symmetrical rule 
[29], γ1 = 120°, γ2 = 120°, γ3 = 120°, γ1′ = 120°, γ2′ = 120°, 
γ3′ = 120°. α1 is the angle between the Bi-axis and Ci-
axis, and similarly α1

′ is the angle between the Bi′  axis 
and Ci′  axis. α2 is the angle between the Bi-axis and Ai-
axis, α2′ is the angle between the Bi′  axis and Ai′  axis. 
β1 is the angle between line MN and line OCi. β2 is 
the angle between line QV and OAi.  0° < α1 = α1′ < 90°, 
0° < α2 = α2′ < 90°, 0° < β1  < 90°, 0° < β2 < 90°.

Looking at Figure  3, to achieve 360° rotation of the 
cabin, two flange-bearing-gear reducers are used. The 
outer flange is fixed to the moving platform by bolts, 

and the inner flange is fixed to the cabin by bolts as well. 
Together, the outer flange and inner flange serve as a 
bearing. Three axis-fixed gears are fixed to the mov-
ing platform via shafts, and the center gear is linked to a 
motor.

3  Degrees of Freedom and Jacobian Matrix
3.1  Development of Direction-cosine Matrices
The direction cosines of a vector are the cosines of the 
angles between the vector and the three coordinate axes. 
Deriving direction cosines are required in this paper to 
perform inverse kinematics and obtain the Jacobian 
matrix. A 3-RRS spherical parallel manipulator and its 
mirror image are shown in Figure 4.

On the basis of analytical theory of spherical space [30], 
the direction cosines matrices of Bi, Bi′ are built first. The 
fixed Cartesian coordinate frame of the two 3-RRS spher-
ical parallel manipulators is shown in Figure 4, where the 
x-axis and x′-axis are inverses of each other, as are the 
z-axis and z′-axis and the y-axis and y′-axis. The direc-
tion cosines matrices of oBi and oBi′ in the fixed Cartesian 
coordinate frame O-xyz are as follows:

(1)oBi = R(z,φi)





sin α1 sin θi
−(sin(π− β1) cosα1 + cos(π− β1) sin α1 cos θi)
cos(π− β1) cosα1 − sin(π− β1) sin α1 cos θi



,

Figure 2 Configurational parameters of the “Twins”

Figure 3 Flange‑bearing‑gear reducer
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where θi and θi′ are input angles of the Ci-axis and 
Ci′-axis, and where φ1 = 0°, φ2 = γ1 = 120°, and 
φ3 = γ1+γ2 = 240°.

The rotation matrix R(z, φi) with reference to the 
z-axis is as follows:

In the fixed Cartesian coordinate frame, the direction 
cosines matrices of °Ci and °Ci′ can be given directly as 
follows:

In the moving coordinate frame, the direction cosines 
matrices of Ai and Ai′ are expressed as follows:

(2)oB′
i = R(z,φi)





− sin α′
1 sin θ

′
i

−(sin(π− β1) cosα
′
1 + cos(π− β1) sin α

′
1 cos θ

′
1)

− cos(π− β1) cosα
′
1 + sin(π− β1) sin α

′
1 cos θ

′
1



,

(3)R(z,ϕi) =





cosϕi − sin ϕi 0
sin ϕi cosϕi 0
0 0 1



.

(4)oC1 = R(z,ϕ1)(0 − sin β1 − cosβ1)
T,

(5)oC2 = R(z,ϕ2)
oC1,

(6)oC3 = R(z,ϕ3)
oC1,

(7)oC ′
1 = R(z′,ϕ1)(0 − sin β1 cosβ1)

T,

(8)oC ′
2 = R(z,ϕ2)

oC ′
1,

(9)oC ′
3 = R(z,ϕ3)

oC ′
1.

(10)A1 = R(z,ϕ1)
(

0 − sin β2 cosβ2
)T

,

(11)oA2 = R(z,ϕ2)
oA1,

(12)oA3 = R(z,ϕ2)
oA3,Figure 4 Fixed Cartesian coordinate frames of the “Twins”

Figure 5 Yaw, pitch, and roll angles

In the fixed coordinate frame, oAi and oAi′ can be 
depicted as follows:

where T is the Euler angle rotation matrix with regard to 
the moving coordinate frame O′ − uvw , and is depicted 
as follows:

where λ, ε, υ are the yaw, pitch, and roll angles (see 
Figure 5).

(13)A′
1 = R(z′,ϕ1)

(

0 − sin β2 − cosβ2
)T

,

(14)A′
2 = R(z,ϕ2)A

′
1,

(15)A′
3 = R(z,ϕ3)A

′
1.

(16)oAi = TAi, i = 1, 2, 3,

(17)oA′
i = TA′

i, i = 1, 2, 3,

(18)

T=





1 0 0
0 cos� −sin�
0 sin� cos�









cosε 0 sinε
0 1 0

−sinε 0 cosε



×





cosυ −sinυ 0
sinυ cosυ 0
0 0 1



,
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3.2  Degrees of Freedom Analysis
When the cabin is fixed, the degrees of freedom of the 
mechanism can be obtained by using the modified for-
mula of Grübler–Kutzbach:

where M is the number of degrees of freedom, d is the 
number of common order, d = 6 – χ (χ is a common con-
straint), fi is the number of degrees of freedom of the ith 
joint, g is the number of joints, n is the number of bod-
ies in the mechanism, and η is the number of over-con-
straints. The screw theory is used to analyze the number 
of over-constraints η, and the screws in limbA1B1C1 are 
shown in Figure 6.

$
r
1 is defined as the reciprocal of screw $1 such that

The reciprocal screw $r1 of limbA1B1C1 is derived using 
Eqs. (20) and (21):

(19)M = d(n− g − 1)+

g
∑

i=1

fi + η,

(20)$1 =







































$̂11 : (a11 b11 c11; 0 0 0 ),

$̂12 : (a21 b21 c21 ; 0 0 0),

$̂13 :
�

1 0 0 ; 0 z1 − y1
�

,

$̂14 : (0 1 0 ;−z1 0 x1),

$̂15 :
�

0 0 1; y1 − x1 0
�

.

(21)$
r
1 ◦ $1 = 0.

(22)$
r
1 :

(

x1

z1

y1

z1
1; 0 0 0

)

,

where

The same method is used to obtain the reciprocal 
screws. $

r
2, $

r
3, $

r′
1 , $

r′
2 , $

r′
3  of limbA2B2C2

, limbA3B3C3
,

limb
A
′

1
B
′

1
C
′

1

, limb
A
′

2
B
′

2
C
′

2

, limb
A
′

3
B
′

3
C
′

3

,  limbA3B3C3,  limb
A
′

1B
′

1C
′

1
, 

limb
A
′

2B
′

2C
′

2
, limb

A
′

3B
′

3C
′

3
 as follows:

Rank($r) = 3, so the number of over-constraints η = 3, 
$
r
1, $

r
2, $

r
3, $

r′
1 , $

r′
2 , $

r′
3  are nonlinear relative to each 

other, and χ = 0, and n = 14, g = 18, d = 6, 
g
∑

i=1

fi = 30; thus

Therefore, the mechanism has three degrees of free-
dom, and the cabin’s spin becomes a redundant degree of 
freedom with regard to the w-axis.

3.3  Jacobian Matrix
A Jacobian matrix is a mapping relationship between the 
angular velocity of active joints and the angular velocity 
of the moving platform. The establishment of a Jacobian 
matrix is fundamental to the analysis of forward kine-
matics in this paper. There are many methods for estab-
lishing a Jacobian matrix. In general, a Jacobian matrix is 
obtained by virtue of derivations of constraining equa-
tions. It is troublesome to obtain a Jacobian matrix by 
virtue of derivations if the constraining equations are too 

(23)











i1 =
�

x1 y1 z1
�

, i′1 =
�

x′1 y′1 z′1
�

;

i2 =
�

x2 y2 z2
�

, i′2 =
�

x′2 y′2 z′2
�

;

i3 =
�

x3 y3 z3
�

, i′3 =
�

x′3 y′3 z′3
�

.

(24)











i1 =
�

x1 y1 z1
�

=
�

oA11
oA12

oA13

�

,

j1 = (a21 b21 c21) =
�

oB11
oB12

oB13

�

,

k1 = (a11 b11 c11) =
�

oC11
oC12

oC13

�

.

(25)$
r
=



























































$
r
1 :

� x1
z1

y1
z1

1 ; 0 0 0
�

,

$
r
2 :

� x2
z2

y2
z2

1 ; 0 0 0
�

,

$
r
3 :

� x3
z3

y3
z3

1 ; 0 0 0
�

,

$
r′
1 :

�

x1′
z1′

y1′
z1′

1 ; 0 0 0
�

,

$
r′
2 :

�

x2′
z2′

y2′
z2′

1 ; 0 0 0
�

,

$
r′
3 :

�

x3′
z3′

y3′
z3′

1 ; 0 0 0
�

.

(26)M = 6(14 − 18− 1)+ 30+ 3=3.

Figure 6 Screws in limbA1B1C1
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many. For simplicity, in this paper, screw theory is used 
to build a Jacobian matrix [31–33] for which the moving 
platform angle velocity $p is derived as follows:

where

and where ξ1, ξ2, ξ3, ξ4, ξ5 are angular velocities associ-
ated with unit screws $̂11, $̂12, $̂13, $̂14, $̂15.

The next step is to establish a relationship between 
ξ1 and $p while eliminating ξ2, ξ3, ξ4, ξ5. r$1 denotes a 
reciprocal screw and is derived by means of the following 
rules:

(1) r$1 is through the center of the spherical joint of the 
A1-axis and B1-axis;

(2) r$1 does not intersect with the C1-axis.

Figure 6 shows the position of r$1,

and from derivation of the rules, the reciprocal product is

Substituting Eq. (29) into Eq. (27),

Substituting Eq. (20) and Eq. (26) into Eq. (31) results 
in

where ξ1 = θ̇1 . The next step is to establish the equations 
of the other limbs of Eq. (26) by the same means.

The following equation is associated with all of the 
limbs.

where 
ω̇ = (�̇ ε̇ υ̇)T, θ̇ =

(

θ̇1 θ̇2 θ̇3 θ̇
′

1 θ̇
′

2 θ̇
′

3

)T
,

(27)$p = $̂11ξ1 + $̂12ξ2 + $̂13ξ3 + $̂14ξ4 + $̂15ξ5,

(28)$p : (�̇ ε̇ υ̇; 0 0 0),

(29)r$1 = [(i− j); i× (i− k)],

(30)r$1 ◦ $̂1i = 0, i = 2, 3, 4, 5.

(31)r$1 ◦ $P = r$1 ◦ $̂11ξ1.

(32)[i× (i− j)]





�̇

ε̇

υ̇



 = [i× (i− j) · k]ξ1,

(33)Jqω̇ = Jpθ̇ ,

(34)Jp =















i1 × j1·k1 0 0 0 0 0
0 i2 × j2·k2 0 0 0 0
0 0 i3 × j3·k3 0 0 0
0 0 0 i′1 × j′1·k

′
1 0 0

0 0 0 0 i′2 × j′2·k
′
2 0

0 0 0 0 0 i′3 × j′3·k
′
3















,

Jq is not a square matrix, so herein, the Jacobian matrix 
is defined as

Rewriting Eq. (32) yields

4  Inverse Kinematics
In the equations of inverse kinematics, the posture 
parameters (�, ε, υ) of the moving platform are given. 
The objective is to calculate the input angle θi and θ ′1 , 
i = 1, 2, 3. In the inverse kinematic analysis, the kine-
matic equations of the 3-RRS spherical parallel manip-
ulator are the same as those of the 3-RRR spherical 
parallel manipulator, but the 3-RRR spherical parallel 
manipulator is an over-constrained mechanism that is 
difficult to practically assemble. That is why we chose a 
flight simulator model based on 3-RRS spherical paral-
lel manipulators.

When considering the independently redundant DOF 
of the cabin, because there are three outputs and eight 
inputs, it is innumerable about the inverse solutions. 
If we ignore the independently redundant DOF of the 
cabin, and fix the independent DOF of cabin, the analy-
sis of the inverse kinematics is as follows.

The angle α2 between Ai-axis and Bi-axis is invariable, 
according to GOSSELIN’s method [34]

Substituting Eq. (1) and Eq. (16) into Eq. (38), yields

(35)
Jq =

(

i1 × j1 i2 × j2 i3 × j3 i′1 × j′1 i′2 × j′2 i′3 × j′3
)T

,

(36)J = J−1
p J q.

(37)J ω̇ = θ̇ .

(38)ji · ii = cosα2, i = 1, 2, 3.

(39)Ei sin θi + Fi cos θi = Gi, i = 1, 2, 3,

(40)



























Ei = (cosφisinα1ii1 + sinα1sinφiii2),

Fi = (−cosβ1sinφisinα1ii1 + cosβ1cosφisinα1ii2

− sinα1sinβ1ii3),

Gi=− (cosα1sinβ1sinφiii1 − cosα1cosφisinβ1ii2

− cosα1cosβ1ii3 − cosα2).
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xi is defined as Eq. (42) as

Then Eq. (38) is transformed into Eq. (43)

Simplifying Eq. (43) yields Eq. (44)

where Li = Gi − Fi,Mi=− 2Ei,Gi + Fi = Ni.

Then

Finally

By repeating Eqs. (38)–(45), θ ′i  is derived by the same 
method:

All forms of the combination according to Eq. (46) and 
Eq. (47) are shown in the Table 5 of Appendix 1.

5  Forward Kinematics
For the forward kinematics, without considering the 
independently redundant DOF of the cabin, the angles 
of the input θi and θ ′i , i = 1, 2, 3 are given, and the pos-
ture (�, ε, υ) of the moving platform is determined. How-
ever, considering the redundant actuation, the DOF 
of the moving platform of the flight simulator is three; 
thus, it can only choose three angles of the input at one 
time. Herein, we choose θi(0 < θi < π, i = 1, 2, 3. ) as 
the inputs, and the remaining three angles of the input 
θ ′i(0 < θ ′i < π , i = 1, 2, 3 ) are obtained via inverse kin-
ematics. In general, the forward kinematics of a parallel 
manipulator is fairly complicated when using the analyti-
cal method, and many solutions are derived. Moreover, in 
practical application, the configuration of a manipulator 
is just one of the forward solutions. The motion of the 
flight simulator is continuous and the control system is 
based on a dynamical model of MIMO (multiple input 
multiple out) that needs to obtain the posture of the 
moving platform in real-time using the forward equa-
tions. Thus, an effective numerical method is employed 
to solve the forward equations. The numerical method 
was first used in Stewart’s parallel manipulator [35].

The basic idea is to assume initial posture angles 
ω0 = (�0, ε0, υ0)

T of the moving platform, and the 

(41)ii =
(

oAi1
oAi2

oAi3

)T
, i = 1, 2, 3.

(42)xi = tan(θi/2), i = 1, 2, 3.

(43)(Gi − Fi)x
2
i − 2Eixi + Gi + Fi = 0, i = 1, 2, 3.

(44)Lix
2
i +Mixi + Ni = 0, i = 1, 2, 3,

(45)xi =

(

−Mi ±

√

M2
i − 4LiNi

)

/2Li, i = 1, 2, 3.

(46)θi = 2 arctan (xi), i = 1, 2, 3.

(47)θ ′i = 2 arctan
(

x′i
)

, i = 1, 2, 3.

corresponding input angles p0 =
(

θ01 , θ
0
2 , θ

0
3

)T 
are obtained according to the initial posture 
ω0 = (�0, ε0, υ0)

T by inverse kinematics. At the same 
time, giving three initial input angles chosen from the 
six input angles, assuming that ′p0 =

(

′θ1,
′ θ2,

′ θ3
)T then

defining

Then

The initial posture becomes

J s is 3× 3 dimensional sub Jacobian matrix of J , where

The above process is repeated, and the iterative equation 
is

The iteration is stopped by the constraint condi-
tion  max

∣

∣

∣�θki

∣

∣

∣ < δ, i = 1, 2, 3 . �θki  is an element of 

�p(k) , and δ is the permissible error. J s must be nonsin-
gular when the manipulator performs a continuous 
motion and the iteration must converge to a unique 
solution. Eq. (53) is similar to the Newton-Raphson 
iteration, but the physical and geometrical meanings 
are more significant, and the whole process of the algo-
rithm is different. Appendix 2 shows a flow chart of the 
algorithm.

(48)�p(1) =′ p0 − p0,

(49)











�p(1) =
�

�θ
(1)
1 , �θ

(1)
2 , �θ

(1)
3

�

,

�ω
(1) =

�

��
(1)
1 , �ε

(1)
2 , �υ

(1)
3

�

.

(50)�ω
(1) = J s�p(1),

(51)
ω1 = ω0 +�ω

(1) =

(

�0 +��
(1), ε0 +�ε(1), υ0 +�υ(1)

)

,

(52)

J s =





i1 × j1 · k1 0 0
0 i2 × j2 · k2 0
0 0 i3 × j3 · k3





−1



i1 × j1
i2 × j2
i3 × j3



.

(53)ωk+1 = ωk + J−1
s (ωk)(p

′
0 − pk).

Table 1 Parameters of the manipulator

α1 (rad) α2 (rad) β1 (rad) β2 (rad)

π/5 π/5 π/20 29π/36
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6  Numerical Examples
The parameters of the manipulator are set in Table  1. 
For initial values ω0 = (0, 0, 0)Tand ω0 = (0.1, 0.1, 0.1)T , 
the inverse kinematical solutions are θ01 = 1.89417, 
θ02 = 1.89417, θ03 = 1.89417, and θ01 = 1.74548, 
θ02 = 2.29808, θ03 = 2.05784 according to the first row 
of Table  1. Because the spherical analytical method is 
employed, θ0i  is not zero when ω0 = (0, 0, 0)T . Figure  7 
contains a schematic chart showing the position of θi. 

For initial values ′p0 = (1.89417, 1.89417, 1.89417)T   
and p0 = (1.74548, 2.29808, 2.05784)T  along with 

ω0 = (0.2, 0.2, 0.2)T and ω0 = (−0.025,−0.025,−0.025)T

then the forward solutions converge to ω = (0, 0, 0)T  and 
ω = (0.1, 0.1, 0.1)T , thus proving that the algorithm is cor-
rect. Herein, we must point out that as long as ω0 is less 
than the range of the workspace, the result must converge 
to the correct solution, and the solution must be unique. 
However, the algorithm is like the Newton-Rapshon algo-
rithm in that it is sensitive to the initial values. The results 
listed in Tables  2 and 3 show that the algorithm is cor-
rect. For θ ′i , i = 1, 2, 3, obtained via the inverse equations, 
the posture of ω0 = (0.1, 0.1, 0.1)T is shown in Figure  8 
when the inverse solution is determined by the first row of 
Table 1 (identical to column 1 of Table 3).  

As shown in Tables  2 and 3, the results are obtained 
numerically by the forward algorithm and analytically 
by the inverse equations. The time costs of the numeri-
cal forward algorithm are less than 3 ms using MATLAB 
software by Intel Core i7-3.2G CPU, thus proving that 
the algorithm of the iteration meets the typical real-time 
control requirement of less than 6 ms.

To consider the independent DOF of cabin, the for-
ward solution is obtained in two steps. The first step is 
to obtain the posture (�, ε, υ)T by the numerical method. 

Figure 7 Position of θi

Table 2 Forward kinematics example 1

Parameters 1 2 3 4 5 6 7 8

′θ1 (rad) 1.89417 ‒ ‒ ‒ ‒ ‒ ‒ ‒
′θ2 (rad) 1.89417 ‒ ‒ ‒ ‒ ‒ ‒ ‒
′θ3 (rad) 1.89417 ‒ ‒ ‒ ‒ ‒ ‒ ‒
� (rad) 0.00000 ‒ ‒ ‒ ‒ ‒ ‒ ‒
ε (rad) 0.00000 ‒ ‒ ‒ ‒ ‒ ‒ ‒
υ (rad) 0.00000 ‒ ‒ ‒ ‒ ‒ ‒ ‒
θ ′1 (rad) 1.89417 1.89417 1.89417 − 1.89417 − 1.89417 − 1.89417 − 1.89417 1.89417

θ ′2 (rad) 1.89417 1.89417 − 1.89417 − 1.89417 − 1.89417 1.89417 1.89417 − 1.89417

θ ′3 (rad) 1.89417 − 1.89417 − 1.89417 − 1.89417 1.89417 1.89417 − 1.89417 1.89417

Table 3 Forward kinematics example 2

Parameters 1 2 3 4 5 6 7 8

′θ1 (rad) 1.74548 ‒ ‒ ‒ ‒ ‒ ‒ ‒
′θ2 (rad) 2.29808 ‒ ‒ ‒ ‒ ‒ ‒ ‒
′θ3 (rad) 2.05784 ‒ ‒ ‒ ‒ ‒ ‒ ‒
� (rad) 0.10000 ‒ ‒ ‒ ‒ ‒ ‒ ‒
ε (rad) 0.10000 ‒ ‒ ‒ ‒ ‒ ‒ ‒
υ (rad) 0.10000 ‒ ‒ ‒ ‒ ‒ ‒ ‒
θ ′1 (rad) 2.24689 2.24689 2.24689 − 1.72881 − 1.72881 − 1.72881 − 1.72881 2.24689

θ ′2 (rad) 1.81504 1.81504 − 2.02941 − 2.02941 − 2.02941 1.81504 1.81504 − 2.02941

θ ′3 (rad) 2.08712 − 1.51476 − 1.51476 − 1.51476 2.08712 2.08712 − 1.51476 2.08712
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Then the posture (�, ε, υ)T is changed by the cabin’s spin 
with reference to the w-axis of the moving coordinate.

Defining φ as the angle of the cabin’s spin with refer-
ence to the w-axis, the rotation matrix with reference to 
the w-axis of the moving coordinate is

Defining (�′, ε′, υ ′)T as the final posture by virtue of 
the spin of cabin, then

the results of the numerical example are shown in 
Table 4.

(54)R(w,φ) =





cosφ − sin φ 0
sin φ cosφ 0
0 0 1



,

(55)(�′, ε′, υ ′)T = R(w, φ)(�, ε, υ)T,

7  Conclusions
(1) The flight simulator for a fighter-aircraft with a 

hybrid configuration of symmetrically double parallel 
manipulators named Twins is presented.

(2) Twins is a multi-functional flight simulator. It can be 
used as a normal flight simulator like Stewart mecha-
nism. And when the cabin spins that will be a flight 
simulator of fighter-aircraft.

(3) Screw theory is used to establish the Jacobian matrix 
that simplifies the process of establishing the Jaco-
bian by the means of closed equations.

(4) A numerically forward kinematics is adopted by 
the inverse kinematics and Jacobian matrix and the 
method is more simple.
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Appendix 1
See Table 5.

Figure 8 Posture of column 1 in Table 3

Table 4 Forward kinematics example with cabin’ spin

θ
′
1
(rad) θ

′
2
(rad) θ

′
3
(rad) � (rad) ε (rad) υ (rad) ϕ

(

rad
)

�
′
(rad) ε

′
(rad) υ

′
(rad)

1.74548 2.29808 2.05784 0.10000 0.10000 0.10000 3π/5 − 0.12601 0.06420 0.10000
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Table 5 Solution sets of inverse kinematics

Parameters θ1 θ2 θ3 θ
′
1

θ
′
2

θ
′
3

1 + + + + + +
2 + + + + + −
3 + + + + − −
4 + + + − − −
5 + + + − − +
6 + + + − + +
7 + + + − + −
8 + + + + − +
9 + + − + + +
10 + + − + + −
11 + + − + − −
12 + + − − − −
13 + + − − − +
14 + + − − + +
15 + + − − + −
16 + + − + − +
17 + − − + + +
18 + − − + + −
19 + − − + − −
20 + − − − − −
21 + − − − − +
22 + − − − + +
23 + − − − + −
24 + − − + − +
25 − − − + + +
26 − − − + + −
27 − − − + − −
28 − − − − − −
29 − − − − − +
30 − − − − + +
31 − − − − + −
32 − − − + − +
33 − − + + + +
34 − − + + + −
35 − − + + − −
36 − − + − − −
37 − − + − − +
38 − − + − + +
39 − − + − + −
40 − − + + − +
41 − + + + + +
42 − + + + + −
43 − + + + − −
44 − + + − − −
45 − + + − − +
46 − + + − + +
47 − + + − + −
48 − + + + − +
49 − + − + + +
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Appendix 2
Numerical algorithm of the forward kinematics
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