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Abstract 

In spectrum analysis of induction motor current, the characteristic components of broken rotor bars (BRB) fault are 
often submerged by the fundamental component. Although many detection methods have been proposed for this 
problem, the frequency resolution and accuracy are not high enough so that the reliability of BRB fault detection is 
affected. Thus, a new multiple signal classification (MUSIC) algorithm based on particle swarm intelligence search is 
developed. Since spectrum peak search in MUSIC is a multimodal optimization problem, an improved bare-bones 
particle swarm optimization algorithm (IBPSO) is proposed first. In the IBPSO, a modified strategy of subpopulation 
determination is introduced into BPSO for realizing multimodal search. And then, the new MUSIC algorithm, called 
IBPSO-based MUSIC, is proposed by replacing the fixed-step traversal search with IBPSO. Meanwhile, a simulation 
signal is used to test the effectiveness of the proposed algorithm. The simulation results show that its frequency 
precision reaches 10−5, and the computational cost is only comparable to that of traditional MUSIC with 0.1 search 
step. Finally, the IBPSO-based MUSIC is applied in BRB fault detection of an induction motor, and the effectiveness 
and superiority are proved again. The proposed research provides a modified MUSIC algorithm which has sufficient 
frequency precision to detect BRB fault in induction motors.
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1  Introduction
Induction motors are essential components and play an 
irreplaceable role in industrial production process [1]. 
Although this motor is simple-structure, low-cost, reli-
able and robust, it is also prone to failure due to reasons, 
such as harsh working environment, internal incipient 
defects [2]. Broken rotor bars (BRB) or end ring crack-
ing is one of the most common faults of induction motor, 
which accounts for about 10% of all failures [3]. This 
percentage is inconspicuous, but BRB fault will not only 
reduce the efficiency, but also cause other faults, such 
as bearing fault, air-gap eccentricity [4]. In severe cases, 
broken pieces of the rotor bar may even damage the sta-
tor windings during operation [5]. Therefore, rotor fault 

detection of induction motor in early stage is essential 
and significant.

When broken bars occur, new sideband components at 
fbrk= (1 ± 2ks)f1 Hz will appear in the stator current spec-
trum, where k= 1, 2, 3,…, f1 is the supply frequency and 
s is the motor slip [6]. So the sideband components can 
be regarded as fault characteristics, and their frequency 
detection is key to identify the BRB fault. However, the 
strongest fault-related components at (1 ± 2s)f1 Hz are 
quite close to fundamental component due to small slip 
value and their amplitudes are relatively small, which 
make them easy to be submerged by the leakage of fun-
damental component, reducing the reliability of BRB 
fault detection. In addition, their signal property differs 
significantly under various motor-working conditions. 
When motor runs in steady state, the values of fbrk are 
almost constant, and when motor is running in transient 
state, such as start up or load change, the values of fbrk are 
variable, that is to say, the fault-related components are 
non-stationary signals. For these two different properties 
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of stator current, scholars have adopted many different 
signal processing methods.

In transient state, promising results have been obtained 
through approaches based on short-time Fourier trans-
form [7], continuous or discrete wavelet transform [7, 8], 
fractional Fourier transform [9], complex empirical mode 
decomposition [10] and Synchrosqueezing transform 
[11]. Yet, the frequency resolution and accuracy of these 
methods are low, which restrict their applications.

For steady state of induction motor, spectrum analysis 
based on discrete Fourier transform (DFT) is the most 
popular method for BRB fault detection. However, in 
this case, the influence of spectrum leakage of funda-
mental component is more serious due to smaller slip 
value. To solve this problem, many distinctive methods 
have been developed, such as instantaneous power [12], 
particle swarm optimization [13] and Hilbert transform 
[14]. The main idea of these methods is to filter the fun-
damental component or convert it into a DC compo-
nent from current signal. Then DFT is implemented to 
highlight the fault characteristics. Although these meth-
ods based on DFT analysis can eliminate the influence 
of fundamental component, their performances are 
restricted by DFT own shortcomings. For example, the 
frequency resolution is limited by measurement time, 
namely, high frequency resolution needs to be ensured 
with a long enough measurement time. If the signal 
measurement period is too long, the probability of load 
fluctuations, noise and other interference factors will be 
increased, which will affect the accuracy of fault detec-
tion [15].

As one of the modern spectrum estimation meth-
ods, multiple signal classification (MUSIC) algorithm 
has a capability of original signal extrapolation and 
high frequency resolution. Therefore, MUSIC has been 
introduced into the BRB fault detection of induction 
motor. Garcia-Perez et al. [16] applied MUSIC to mul-
tiple faults detection of induction motor. On the basis 
of MUSIC, Fang et al. [17] moved the maximum eigen-
vector of fundamental component into noise subspace 
to constitute a new noise space. The results indicate 
that this method not only eliminates the influence of 
fundamental component, but also improves the fre-
quency resolution. ZMUSIC method based on the fre-
quency spectrum zooming technique and MUSIC was 
presented by Kia et  al. [18], to further improve the 
frequency resolution and computational efficiency. A 
hybrid scheme based on MUSIC and empirical mode 
decomposition was proposed by Camarena-Martinez 
et al. [19], to detect multiple faults of induction motor. 
Romero-Troncoso et  al. [20] detected rotor unbal-
ance fault using a hybrid MUSIC method combined 
with complete-ensemble-EMD. Another method that 

combined optimization algorithm with MUSIC was 
presented by Xu et  al. [21]. It solved the problem that 
MUSIC couldn’t compute the amplitudes and phases of 
components. However, when the MUSIC is used in BRB 
fault detection, its efficiency of spectrum peak search is 
low due to fixed-step and traversal search.

Particle swarm optimization (PSO) is an emerg-
ing global optimization technology proposed by Ken-
nedy et  al. [22], in 1995. Because of the advantages of 
simple concept, easy realization, effective solution to 
complex problems, PSO has been widely applied in 
practical engineering problems, such as structural opti-
mization [23], design optimization, PID controller tun-
ing, stretch force trajectory optimization and parameter 
optimization [24]. However, the standard PSO and most 
improved algorithms are designed to deal with the prob-
lem which includes only one global optimal solution in 
search space. They are not suitable for searching multiple 
extremes, such as searching spectrum peaks in MUSIC. 
To optimize multimodal problem, scholars have intro-
duced niche technology into evolutionary algorithm, 
and accordingly presented many strategies [25, 26], 
such as pre-selection technique, crowding strategy, fit-
ness sharing, species conservation, but several issues still 
remain. For instance, low convergence speed and preci-
sion, trapped in local optimum and error fluctuation may 
compromise the optimization results.

This paper tries to improve PSO and take the advan-
tages of PSO and MUSIC for BRB detection in induction 
motor. Organization of this paper is as follows. In Sec-
tion  2, the principles of MUSIC are introduced firstly. 
In Section  3, an improved bare-bones PSO (IBPSO) is 
proposed for multimodal optimization problem. In Sec-
tion  4, a new MUSIC method based on IBPSO is pro-
posed and its simulation analysis is also conducted. In 
Section  5, the IBPSO-based MUSIC is applied in BRB 
fault detection and its performance is compared with 
DFT and traditional MUSIC.

2 � Multiple Signal Classification
As a kind of frequency estimation technique based on 
matrix eigenvalue decomposition, multiple signal clas-
sification (MUSIC) was proposed by Schmid [27] in the 
1980s. Its main idea is described below. Firstly, through 
eigenvalue decomposition, the information space of 
observed signal is divided into two orthogonal subspaces, 
namely, signal subspace and noise subspace. Then the 
frequency components in observed signal can be esti-
mated by constructing spectrum according to subspaces’ 
orthogonality.

Assuming that observed signal y(n) consists of P com-
plex sinusoidal signals and white noise, it is expressed as
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Where n= 1, 2, …, N, N is the number of sampling points, 
Aq, fq, φq are amplitude, frequency and initial phase of the 
qth sinusoidal signal respectively, h(n) is a complex white 
noise with a zero mean and a variance τ2.

For the observed signal of Eq. (1), a M × N matrix is 
constructed as follows (M>>P)

Its autocorrelation matrix is

where superscript T represents the conjugate transpose 
of matrix, E is digital expectation.

Then, all eigenvalues decomposed from Ryy are sorted 
in the descending order. The subspace spanned by 
eigenvectors corresponding to the P largest eigenvalues 
is the signal subspace S. The subspace spanned by the 
rest of eigenvectors is the noise subspace G.

Since subspaces S and G are orthogonal, signal fre-
quency vectors and noise subspace are also orthogonal, 
that is

where D(fq)= [1, exp(j2πfq), exp(j4πfq), …, exp(j2πMfq)].
For frequency fq included in signal y(n), since 

D(fq)T·G= 0, then PM(fq)= 1/|D(fq)T·G|2 will take a peak 
at fq. Therefore, signal frequency estimation can be 
obtained by searching peaks of PM(fq) with step Δf.

3 � Improved Bare‑Bones Particle Swarm 
Optimization

3.1 � Particle Swarm Optimization
Particle swarm optimization (PSO) is a global optimi-
zation technique. It was developed by Kennedy and 
Eberhart, according to the simulation of social behavior 
of natural biological groups. In PSO algorithm, there 
are many particles flying around in a multi-dimension 
search space. Each particle represents a candidate solu-
tion of the problem and adjusts its position based on 
two optima. One is its personal best position pi, namely, 
its own flying experiences, while the other is the global 
best position pg, namely, flying experiences of com-
panions. Meanwhile, each particle also corresponds to 
a fitness value determined by optimization function. 
Since PSO is a iterative optimization algorithm, in each 

(1)y(n) =

P
∑

q=1

Aq exp[j(2πqn + φq)] + h(n).

(2)Y (n) = [y(n), y(n + 1), . . . , y(n + M − 1)].

(3)Ryy = E
{

Y (n)Y T(n)
}

,

(4)D(fq)⊥G,

generation, the velocity vi= [vi1, vi2, …, viβ] and position 
xi= [xi1, xi2, …, xiβ] of each particle are updated by the 
following formulas [22],

where w is an inertia weight to control exploration in the 
search space, c1 and c2 are two learning factors, r1 and r2 
are two random numbers within (0, 1), – vmax ≤ vij≤ vmax, 
and vmax is the maximum velocity set by the user, i= 1, 2, 
…, α, α is the population size of particle swarm, j= 1, 2, 
…, β, β is the dimension of search space.

3.2 � Bare‑Bones Particle Swarm Optimization
Clerc and Kennedy [28] analyzed the trajectory of par-
ticles, and proved that each particle xi converges to Bi 
which is a weighted average of its personal best and 
global best in the standard PSO algorithm, that is

where c1j and c2j are two random numbers within (0, 1). 
When iteration number tends to infinity, all the particles 
will converge to the same point.

Based on above, Kennedy [29] proposed the bare-bones 
particle swarm optimization (BPSO) in 2003. In BPSO, a 
Gaussian distribution based on the pi and pg is used to 
update particle’s position. The update formula is

where µij(m) = (pij(m) + pgj(m))
/

2 is the mean of 
Gaussian distribution, and η2ij(m) =

∣

∣pij(m) − pgj(m)
∣

∣ is 
the standard deviation.

Compared with the standard PSO, BPSO needs less 
control parameters, and that is more suitable for practical 
application.

3.3 � Improved BPSO
In MUSIC, the spectrum peak search is a multimodal 
optimization problem that needs to search for all global 
optimum solutions and as many local optimum solu-
tions as possible. For this problem, a novel strategy of 
subpopulation determination based on the excellent 
work of Refs. [25, 26] is proposed in this section, and 
then is introduced into BPSO to realize multimodal 
search. Compared with Refs. [25, 26], the improved 
BPSO (IBPSO) has three differences: (1) Personal best 

(5)
vij(m+ 1) =wvij(m) + c1r1(pij(m) − xij(m))

+ c2r2(pgj(m) − xij(m)),

(6)xij(m+ 1) = xij(m)+ vij(m+ 1),

(7)Bij =
c1jpij + c2jpgj

c1j + c2j
.

(8)xij(m + 1) = χ(µij(m), η2ij(m)),
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position is selected as a candidate of seeds to prevent 
oscillation; (2) A similarity of species σ is defined for 
maintaining the diversity of seeds, where σ is a Euclidean 
distance between any two particles; (3) Each seed parti-
cle is the core of subpopulation, and non-seed particles 
are distributed to the subpopulation of the nearest seed. 
The pseudo code of improved seed selection strategy is 
shown as follows:

As described above, seed selection strategy is exe-
cuted in each generation of the evolutionary process. 
First of all, according to the fitness value, personal best 
positions of all particles are arranged in descending 
order to form a set Spbest. Then, the similarity between 
each individual in Spbest and each existing seed of Xs 
(called seed set) is compared. If the Euclidean distance 
between them is larger than threshold value σ*, this 
personal best position will be added to Xs.

The basic steps of IBPSO are as follows:

Step 1:	� Initialize particles’ positions, personal best 
positions and seed set Xs. Set algorithm 
parameters, including population size α, maxi-
mum generation mmax and species similarity 
threshold σ*

Step 2:	� Calculate the fitness of each particle
Step 3:	� Update personal best position pi
Step 4:	� According to the fitness, arrange all pi in 

descending order
Step 5:	� Update seed set Xs

Step 6:	� Assign each particle to the nearest seed by cal-
culating the distance between them

Step 7:	� According to Eq. (8), update particle positions, 
where pg is the seed found in Step 5;

Step 8:	� If the condition of termination is satisfied (i.e., 
the fitness error is less than the threshold or 
the iterative number exceeds the maximum), 
stop iterative procedure and output all the 
seed positions and fitness values. Otherwise, 
return to Step 2

3.4 � IBPSO Performance Analysis
A benchmark function, Rastrigin, is used to verify the 
effectiveness of IBPSO. And the performance of IBPSO 
is compared with species conserving genetic algorithm 
(SCGA) [25] and species-based PSO (SPSO) [26].

In mathematical optimization, Rastrigin function is a 
typical example of non-linear multimodal function and 
often used as a performance test problem for optimi-
zation algorithms. For two independent variables, it is 
defined as

where x1, x2 ∈ [− 5, 5] . Three-dimensional diagram of 
Eq. (9) is shown in Figure  1. As the plot shows, Rastri-
gin function has large search space and large number of 
local minima. So solving this multimodal optimization is 
a fairly difficult task.

In this test, the target of three algorithms is to find one 
global optimum and eight local optima with best fitness. 
Their parameter configurations are shown in Table  1. 
With the same initial population, three algorithms are 
performed on above benchmark function. The results are 
shown in Figures 2 and 3.

(9)

minF(x1, x2) =

2
∑

j=1

[x2j − 10 cos(2πxj) + 10],
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Figure 1  Rastrigin benchmark function
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As shown in Figure  2, the performance of IBPSO is 
the best, SCGA second, whereas SPSO worst. There is 
an error fluctuation on the convergence curve of SPSO, 
because its seeds are selected from the particles in each 
generation. Conversely, SCGA and IBPSO respectively 
adopt the species conservation strategy and improved 
seed selection strategy to effectively avoid this problem. 
We also can see that IBPSO is better than the other two 
algorithms both in convergence speed and precision. In 
Figure 2, the convergence precision AES is defined as

where SN is the number of known global optima, F(·) is 
the fitness function. A pair of kgoi and sdi represents that 
for each real optimum kgoi, there is correspondingly a 
closest species seed sdi to kgoi.

As shown in Figure  3(a) and (b), for the given nine 
optimal solutions, SCGA finds eight, and SPSO finds 
only five. Unfortunately, the SPSO also fail to find the 
global optimal solution (0, 0) with best fitness. The rea-
son is that they adopt fixed niche radius to determine 

(10)AES =
1

SN

SN
∑

i=1

∣

∣F(kgoi) − F(sdi)
∣

∣,

subpopulations, which limits the global search ability of 
algorithm. On the contrary, IBPSO has an improvement. 
It can adaptively adjust subpopulations according to the 
distance between each particle and seed. This behavior 
makes particles have a larger flight range at the beginning 
of iteration, which can improve the global search ability. 
And with the increasing generations, search radius can 
be reduced automatically to improve the local search 
ability. Figure 3(c) verifies that IBPSO finds all the opti-
mal solutions with high location accuracy.

In addition, only species similarity threshold σ* needs 
to be set in IBPSO so that the effect of parameters will be 
reduced. So the IBPSO is more suitable for application in 
engineering.

4 � IBPSO‑Based MUSIC and Simulation Analysis
4.1 � IBPSO‑Based MUSIC
In traditional MUSIC algorithm, we need to pre-set the 
calculation step ∆f of peak search. And then a traversal 
search with step ∆f is performed in the whole frequency 
domain or within an empirical frequency range. How-
ever, this search strategy has two shortages. (1) Since 
search step ∆f is fixed, frequency resolution is limited; 
(2) With decreasing search step, computational time will 
make a sharp increase, which influences the real-time 
performance of algorithm. In this section, a new MUISC 
algorithm combining the traditional MUSIC and IBPSO 
is proposed, which can fast find multiple spectrum peaks 
with high precision. To achieve multiple peaks search by 
IBPSO, an objective function (fitness function) must be 
established first. According to the principles of MUSIC, 
fitness function is defined as

And then the fixed-step traversal search is replaced by 
IBPSO to improve the performances of MUSIC. The spe-
cific steps of IBPSO-based MUSIC are as follows.

Step 1:	� Measure a set of signal data, and construct its 
autocorrelation matrix Ryy

Step 2:	� Generate the signal subspace S and noise 
subspace G by handling Ryy with eigenvalue 
decomposition.

Step 3:	� Encode the fq of Eq. (1) to form population 
particles, and select the Eq. (11) as the fitness 
function.

Step 4:	� Search multiple spectrum peaks in the fre-
quency domain by using IBPSO.

(11)Fitness(fq) =

∣

∣

∣
D(fq)

T
· G · GT

·D(fq)
∣

∣

∣
.

Table 1  Parameter configurations for  the  selected 
optimization algorithms

Parameter SCGA​ SPSO IBPSO

Population size α 150 150 150

Maximum generation mmax 50 50 50

Species similarity threshold σ* − − 0.9

Niche radius rn 1.5 1.25 −
Crossover probability γc 0.6 − −
Mutation probability γm 0.05 − −
Constriction factor λ − 0.729844 −
Learning factor c1, c2 − 2.05 −
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Figure 2  Convergence curves of three algorithms
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4.2 � Simulation Analysis
When the BRB fault occurs in induction motor, side-
band components will be generated in the stator current. 
Among these fault-related components, amplitudes of 
fbr1 = (1 ± 2s)f1 are maximum. Thus, to analyze the perfor-
mance of the IBPSO-based MUSIC in BRB fault detec-
tion, the simulated current signal is designed as

where Ι1, f1, φ1 are amplitude, frequency and ini-
tial phase of fundamental current, and their values 
are 10, 50 and π/4, respectively. Set Ibp1 = Ibn1 = 0.2 A, 
(1 – 2s)f1 = 49.5438 Hz, (1 + 2s)f1 = 50.4562 Hz, φbp1 = π/2 
rad, φbn1 = π rad. h(t) is uniformly distributed random 
noise signal within (– 0.2, 0.2). The sampling frequency 
of simulated current is 250 Hz, and sampling length is 
500. Then traditional MUSIC and the proposed algo-
rithm are applied to this signal. In traditional MUSIC, 
search step ∆f is set to 0.1 Hz, 0.01 Hz, 0.001 Hz, respec-
tively, and the simulation results are shown in Table  2. 
In the IBPSO-based MUSIC, its related parameters are 
set as follows: population size is 60, maximum iterative 
number is 30, species similarity threshold σ* = 0.3. Since 
IBPSO is a stochastic optimization algorithm, the pro-
posed method runs 50 times independently. Its statistical 
results are shown in Table 3.

Table 2 shows that traditional MUSIC has a very high 
frequency resolution even with a short-time data win-
dow. Therefore, it has superiority in the stator current 
spectrum analysis, especially in BRB fault detection 
of induction motor. However, its estimation accu-
racy of frequency is limited by search step, that is, the 
highest accuracy will not exceed ∆f. And the increas-
ing search step results in increasing error of the fault-
related frequencies. Fortunately, it is an exception for 
fundamental frequency, because 50  Hz is an integer 
multiple of the search steps like 0.1, 0.01, and 0.001. 
For the IBPSO-based MUSIC, the estimation accuracy 
of fault-related frequencies reaches 10−5, even 10−7 
for fundamental frequency, as Table 3 shown. And the 
maximum error in 50 times of operation doesn’t exceed 
10−4. Therefore, in terms of precision, the proposed 
algorithm has far exceeded the traditional MUSIC with 
Δf= 0.001 Hz.

Table 4 compares the two algorithms’ computational 
costs. For the MUSIC, the calculation time will increase 
sharply with the decrease of search step. Namely, the 
improvement of accuracy is at the expense of compu-
tation. For the proposed algorithm, not only the fre-
quency precision reaches 10−5 (as shown in Table  3), 

(12)

ibr(t) = I1 cos(2πf1t + φ1) + Ibp1 cos[2π(1 − 2s)f1t + φbp1]

+ Ibn1 cos[2π(1 + 2s)f1t + φbp1] + h(t).
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Figure 3  Optimizing results of three algorithms

Table 2  MUSIC estimation results with  different search 
step

Frequency parameter True value Estimation value 
with different search step

∆f= 0.1 ∆f= 0.01 ∆f= 0.001

Fundamental frequency 
f1 (Hz)

50.0000 50.0 50.00 50.000

Fault-related frequency 
(1 – 2s)f1 (Hz)

49.5438 49.6 49.54 49.544

Fault-related frequency 
(1 + 2s)f1 (Hz)

50.4562 50.5 50.46 50.456
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and the calculation cost is only 0.339 s that is equiva-
lent to the traditional MUSIC with Δf= 0.1 Hz.

Therefore, IBPSO-based MUSIC obtains a prominent 
improvement on solution accuracy and search effi-
ciency contrasting with traditional MUSIC.

5 � Application in BRB Fault Detection of Induction 
Motors

In this section, IBPSO-based MUSIC is applied in BRB 
fault detection of an actual induction motor. The gen-
eral view of the experimental setup is shown in Figure 4. 
The motor drives an 8 kW generator to supply 20 sets of 
incandescent bulbs. The incandescent bulb groups can be 
switched to adjust the motor load as required. With three 
Hall current sensors, current signals are acquired into the 
computer for detection and analysis by the analog signal 
acquisition card PCI8622.

The type of test induction motor is Y132M-4, and its 
main technical parameters are shown in Table 5. Besides 
a healthy rotor, the motor is equipped with a fault rotor 
to simulate the BRB fault. This fault rotor has one bro-
ken bar with a drilling hole (diameter: 8 mm and depth: 
10 mm), as shown in Figure 5.

There are two experimental conditions, namely, one 
broken bar under half load (s= 0.02200) and one bro-
ken bar under full load (s= 0.04133). A phase current 
ia is used to detect BRB fault, and its waveforms under 
two conditions are shown in Figure 6. Sampling interval 
of current signal is 7 ms, and sampling length is 200. The 
parameters of IBPSO are the same as that in Section 4.2. 
In order to compare the results, the traditional MUSIC 
and DFT algorithm are also used to analyze the measured 
current signals.

In Figure 7, the results of three algorithms (i.e., MUSIC 
with search step ∆f= 0.001  Hz, DFT, and IBPSO-based 
MUSIC) under full load are compared. As is known, the 
components of (1 ± 2s)f1 are the characteristics of BRB 
fault. Generally, it’s relatively easy to find out the fault 
features under full load, because fault components have 
highest amplitudes and are furthest away from funda-
mental component. Thus, three algorithms can all dis-
tinguish fault-related components, as shown in Figure 7. 
However, the distinction effects of MUSIC and IBPSO-
based MUSIC are more obvious, this is because their 
calculation principles can avoid the spectrum leakage 
effectively. Moreover, the algorithms based on MUSIC 
have better frequency resolution. Although DFT has 
bigger errors on both fundamental frequency and fault-
related frequencies, it has an absolute advantage on com-
putation time.

Table 3  Estimation results of IBPSO-based MUSIC

Frequency parameter True value Statistical indices

Average estimation 
value

Average estimation 
error

Maximum 
estimation 
error

Fundamental frequency f1 (Hz) 50.0000 50.0000 4.7 × 10−7 4.8 × 10−5

Fault-related frequency (1 – 2s)f1 (Hz) 49.5438 49.5438 1.1 × 10−5 7.8 × 10−4

Fault-related frequency (1 + 2s)f1 (Hz) 50.4562 50.4562 6.9 × 10−6 8.4 × 10−4

Table 4  Computation cost comparison for the algorithms

Index MUSIC with different search 
step

IBPSO-based 
MUSIC (average 
time in 50 runs)

∆f= 0.1 ∆f= 0.01 ∆f= 0.001

Computation time 
t (s)

0.101 0.814 7.732 0.339

Figure 4  Experimental test bench

Table 5  Specifications of the test motor

Rated 
power PN 
(kW)

Rated 
voltage UN 
(V)

Rated 
current IN 
(A)

Rated 
speed nN (r/
min)

Number 
of rotor bars

7.5 380 15.4 1440 32
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Figure 7(a) and (b) show that both two algorithms have 
a high frequency resolution. However, for traditional 
MUSIC, spectrum peaks can only appear at the integer 
multiples of ∆f (0.001 Hz) due to usage of fixed step size. 
As shown in Figure 7(b), three spectrum peaks are only 
located at 45.861  Hz, 50.023  Hz and 54.224  Hz. There-
fore, traditional MUSIC cannot attain a finer frequency 
resolution. Contrastively, it is obvious that IBPSO-based 
MUSIC can find higher spectrum peaks no matter for 
fundamental frequency or for fault feature frequencies 
(under the same signal subspace and noise subspace). 
Figure  7(a) and (b) prove that the frequency resolution 
and accuracy of IBPSO-based MUSIC are higher than 

MUSIC. Meanwhile, IBPSO-based MUSIC also takes a 
less computation time. In this experiment, its time cost 
is only 0.106 s comparing with 4.054 s of MUSIC, which 
greatly improves the search efficiency. Accordingly, 
IBPSO-based MUSIC is more suitable and reliable for 
BRB fault detection.

Figure 8 shows the experimental results under half load. 
On this occasion, fault components are more weak and 
closer to fundamental component. So it’s more difficult 
to extract and highlight fault components. Comparing 

Figure 5  Fault rotor with one broken bar
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Figure 6  Fault motor currents under different load
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Figure 7  Spectrum analysis results of three algorithms at full-load 
condition
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the results of three algorithms in Figure 8, IBPSO-based 
MUSIC has the best performance and low computation 
cost.

6 � Conclusions
(1)	 An improved BPSO (IBPSO) is proposed to make 

it more suitable for multimodal optimization prob-
lem. Compared with SCGA and SPSO, the solu-
tion quality and convergence speed are improved 
greatly.

(2)	 Based on multimodal intelligence search of the 
IBPSO, a new MUSIC algorithm is proposed for 
BRB fault detection. Contrasting with traditional 
MUSIC, the IBPSO-based MUSIC obtains a promi-
nent improvement on frequency accuracy and 
search efficiency.

(3)	 Finally, DFT, MUSIC and IBPSO-based MUSIC are 
compared in BRB fault detection of an actual induc-
tion motor. Experimental results show that the pro-
posed algorithm has the best frequency resolution 
and accuracy, which make it more reliable to detect 
the BRB fault.
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