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Novel Accelerating Life Test Method 
and Its Application by Combining Constant 
Stress and Progressive Stress
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Abstract 

Constant stress accelerated life tests (ALTs) can be applied to obtain a high estimation accuracy of reliability measure‑
ments, but these are time-consuming tests. Progressive stress ALTs can yield failures more quickly but cannot guaran‑
tee the estimation accuracy of reliability measurements. In this paper, a progressive-constant combination stress ALT 
is proposed to combine the merits of both tests. The optimal plan, in which the design variables are the initial pro‑
gressive stress level, the progressive stress ramp rate, the sample allocation proportion of the progressive stress and 
the constant stress level, is determined using the principle of minimizing the asymptotic variance of the maximum 
likelihood estimator of the natural log reliable life for the connectors. A comparison between the optimal PCCSALT 
plan and the CSALT plan with the same sample size and estimation accuracy shows that the test time is reduced by 
13.59% by applying the PCCSALT.
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1  Introduction
Accelerated life tests (ALTs) can yield life information of 
a product in a short time [1–3]. Constant stress acceler-
ated life tests (CSALTs) have the advantages of theory 
maturity and high statistical precision, but they require 
many samples and a long test time. Progressive stress 
accelerated life tests (PSALTs) [4] can generate results 
in a shorter test time and require a smaller sample size, 
but they are not widely used in practice because of the 
immature statistical method and the poor estimation 
accuracy [5, 6]. To yield accurate estimates of reliability 
measurements (e.g., reliable life, hazard rate), many stud-
ies have been performed on the design of an optimum 
PSALT plan have. Prot [7] proposed the PSALT opti-
mal design method for a Weibull distribution. Bai et  al. 
[8] optimized a time-censored simple ramp stress test 
plan for the power-Weibull model and then proposed an 
optimum single ramp stress test plan [9], which is more 

accurate and efficient than the plan in Ref. [8]. Liao and 
Elsayed [10] developed an optimum method for the log-
normal distribution. Ma and Meeker [11] presented a 
new approach for computing approximate variances and 
used it to convert and optimize the plan in a previous 
study [10]. Zhu and Elsayed [12] developed an optimal 
model for exponential distribution with time censored 
and progressive stress based on the cumulative exposure 
model. Srivastava and Mittal [13] developed the model of 
the optimum multi-objective PSALT with a stress upper 
bound for a Burr type-XII distribution under time cen-
soring. These studies have demonstrated that the design 
of the optimum test plan can contribute to improving the 
life estimation accuracy, but the improvement degree is 
not obvious.

To synthesize the characteristics of the CSALT and 
PSALT, a progressive-constant combination stress ALT 
(PCCSALT) is proposed. The example of the Y11X-1832 
electrical connector is used to demonstrate the new test 
method. In the test plan optimization, the minimum 
asymptotic variance of the maximum likelihood (ML) 
estimator of the reliable life at design stress is treated as 
the optimality principle. The initial stress level, the stress 
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ramp rate, the sample allocation proportion of progres-
sive stress and the constant stress level should be deter-
mined to improve the test efficiency and maintain the 
same estimation accuracy as that of the CSALT.

2 � Statistical Model of the Electrical Connectors
The life of electrical connectors t basically depends on 
the temperature and follows a two-parameter Weibull 
distribution under storage and working conditions [14]. 
The cumulative distribution function (CDF) of t is

where m is the shape parameter, η is the characteristic life.
Generally, the reliability of the electrical connector is 

represented with the Pth quartile life at a certain work-
ing temperature. If failure mechanisms that expose at 
different temperature stresses are the same as those that 
expose in field use, then the statistical model of the elec-
trical connector can be expressed as follows [14].

(1)	 The product lifetime is statistically independent and 
follows a two-parameter Weibull distribution.

(2)	 The parameter m is a constant at different tempera-
ture stresses.

(3)	 The relationship between η and the working tem-
perature, T, satisfies the Arrhenius model, namely, 

where A is the constant, ΔE is the activation energy 
for the reaction (eV), k is Boltzmann’s constant, 
k = 0.8617 × 10−4  eV/K, T is the thermodynamic 
temperature (K).

If y equals the logarithmic lifetimes, ln t, then Eq.  (1) 
can be transformed into an extreme value distribution 
from a Weibull distribution. The CDF is

where μ is the location parameter, μ = ln η, σ is the scale 
parameter, σ = 1/m.

Therefore, the Arrhenius-Weibull model described 
by Eq.  (1) and Eq.  (2) can be transformed into the lin-
ear extreme value model shown in Eq. (3), which can be 
described as follows:

(1)	 y is statistically independent and follows an extreme 
value distribution.

(2)	 σ is a constant and independent of the stress.
(3)	 μ is a function of the stress (generally, the trans-

formed stresses) x, that is, 

(1)F(t) = 1− exp[−(t/η)m],

(2)
η = A exp

(

�E
/

kT

)

,

(3)F(y) = 1− exp{− exp[(y− µ)/σ ]},

ln η = µ(x) = γ0 + γ1x,

where γ0 = ln A, γ1 = ΔE/103 k, x = 103/T.
To simplify the calculation and make the results more 
intuitive, the transformed stress should be standardized, 
as follows: 

where x0 is the normal working stress level, xm is the 
highest test stress level.

The normal working temperature, T0, corresponds to 
ξ0 = 0, whereas the highest test temperature, Tm, corre-
sponds to ξm = 0. The log scale parameter ln η is

where β0 = γ0 + γ1x0, β1 = (xm − x0)γ1, ξ is the standard-
ized stress.

The discussions below are based on Eq. (4).

3 � Design Principle for the PCCSALT Plan
3.1 � Stress Loading
To evaluate the life of the connector under normal stress, 
the temperature stress is used to conduct the ALT [14]. 
Figure  1 shows the PCCSALT stress loading profile, 
where the abscissa denotes t, and the ordinate denotes ξ.

The plan has two types of temperature stress loadings: 
a progressive one (ξp = αt) and a constant one (ξc). The 
temperature stresses range from 0 to 1. The 0 denotes the 
normal working stress and the 1 denotes the highest test 
stress. The parameter ξp is the initial value of the progres-
sive stress, and α is the stress ramp rate; ξc is a constant 
stress. The constant stress is always higher than the pro-
gressive stress. The parameter n denotes the number of 
samples, and πp denotes the allocation proportion of the 
samples at the progressive stress. The test continues until 
time τ.

ξ(x) =
x − x0

xm − x0
,

(4)ln η = µ(ξ) = β0 + β1ξ ,

Figure 1  Stress loading profile
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3.2 � Test Design Criterion
To optimize the test plan, suppose that

(1)	 The test is stopped at τ or when all the samples fail;
(2)	 Tm is determined based on the principle of not 

changing the failure mechanism; and
(3)	 To guarantee quick failures, the test stress should be 

higher than the normal working stress.

According to Ref. [15], a higher upper test temperature 
limit will provide a small asymptotic variance of the ML 
estimator of the Pth quantile of the natural logarithm life. 
Therefore, Tm should be as high as possible.

3.3 � Test Plan Optimization Criterion
To improve the life estimation accuracy and balance the 
test efficiency, the PCCSALT plan could be optimized by 
using the criteria of minimizing the asymptotic variance 
of the ML estimator of the Pth quantile of the natural 
logarithm life.

At stress ξ0, the Pth quantile of the linear extreme value 
model is

where zP is the Pth quantile of the standard extreme value 
distribution.

Here P = 0.01 [16], the corresponding quantile of the 
product is the log reliable life with a reliability of 99%.

3.4 � Estimation Method
There are many methods for analyzing censored data 
such as ML methods, linear estimation methods based 
on order statistics and graphical estimation methods. The 
ML method is the most widely used because of the fol-
lowing reasons [16]:

(1)	 Analyzing the censored data by linear estimation 
methods causes a loss of test information, and these 
method are not statistically rigorous. However, ML 
methods are exactly correct.

(2)	 The optimal test plan obtained by ML methods is 
close to that obtained using the other estimation 
methods, and ML methods are easy to apply in plan 
optimization.

(3)	 The standard deviation of an ML estimator has the 
minimum value relative to the others.

Therefore, the ML method is used to compute the Pth 
quantile and its variance of the product when optimizing 
ALT plans.

Before optimizing the test plans for the PCCSALT, 
the model parameters β0, β1 and σ must be known. The 

(5)yP(ξ0) = µ(ξ0)+ zPσ = β0 + β1ξ0 + zPσ ,

values of the parameters are usually estimated by experi-
ence, similar product data or the results of an early test. 
In this manner, the optimal test plans may not be opti-
mum, but it is assured that a crude estimator is better 
than no estimator.

4 � Statistical Analysis Method for Designing 
the Plan

4.1 � Sample Likelihood Function from a Constant Stress
In the CSALT, suppose sample i fails at ti≤ τ. Then, for 
the linear extreme value model, its likelihood function is

where yci = ln ti.

Suppose sample i survives at τ. It is right censored, and 
its failure time is greater than τ. The likelihood function 
is

where Rc (yτ) is the reliability of the sample from constant 
stress at τ, yτ= ln τ.

Define an indicator function Ii such that Ii= 1 if 
ti≤ τ and Ii= 0 if ti > τ. Let zci = (yci − µ)/σ and 
zcτ = (yτ − µ)/σ . The log likelihood function for sample 
i could be expressed as

For nc samples tested under constant stress, the sample 
log likelihood function is

4.2 � PSALT Theory and Statistical Analysis Method
4.2.1 � PSALT Theory
The detailed form of the life distribution for the electrical 
connectors under progressive stress is derived based on 
the cumulative exposure model [16]. This model can be 
expressed as follows [17]: the remaining life of the sample 
only subject to the current stress and the current cumu-
lative portion failed, regardless of how the portion accu-
mulated. The model ignores the effect of the change in 
stress. For the samples under varying stress (e.g., the step 
stress, the progressive stress), at a given time, the fail-
ure probability of a survivor is according to the cumula-
tive distribution for the stress at that time, but beginning 
when the previously accumulated portion failed [18]. The 
determination of starting time follows the equivalence 

L′ci = ln f (yi) = − ln σ + (yci − µ)/σ − exp[(yci − µ)/σ ],

L′′ci = ln Rc(yτ ) = −exp[(yτ − µ)/σ ],

Lci = IiL
′
ci + (1− Ii)L

′′
ci

= Ii[− ln σ + zci − exp(zci)] + (1− Ii)[− exp(zcτ )].

(6)Lc =

nc
∑

i=1

Lci.
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principle in which the same cumulative exposure means 
the same failure probability.

In the PSALT, the stress ξ has a relationship with t.

The progressive stress is considered a limit of the step 
stress. The progressive stress above can be approximated 
to a step stress that has K equally spaced test stresses 
with equal time shifts [19], as shown in Figure 2.

Step 1 runs at stress ξ1, starting at time 0, and stops at 
Δt. According to Eq. (1), the CDF of the samples could be 
written as

Step 2 runs at stress ξ2, and its equivalent start time is 
determined by the cumulative exposure at stress ξ1. On 
the basis of the equivalence principle, the equivalent start 
time t1 is just the solution of

Therefore, t1 equals to η(ξ2) Δt/η(ξ1) at stress ξ2. Then, 
the CDF of the samples at stress ξ2 by total time t is 

In general, the equivalent start time for step i is given 

by ti−1 = η(ξi)
i−1
∑

j=1

�t/η(ξj) at stress ξi. The CDF of the 

samples at stress ξi by total time t is

where ε(t) is the cumulative exposure,

(7)ξ(t) = ξp + αt.

ξi = ξp + (i − 0.5) · α · τ/K , i = 1, 2, . . . ,K .

F(t) = 1− exp{−[t/η(ξ1)]
m}, 0 ≤ t < �t.

1− exp{−[t1/η(ξ2)]
m} = 1− exp{−[�t/η(ξ1)]

m}.

F(t) = 1− exp{−[(t −�t + t1)/η(ξ2)]
m}, �t ≤ t < 2�t.

(8)
F(t) = 1− exp{−[ε(t)]m}, (i − 1)�t ≤ t < i�t.

As K → ∞, i → ∞. For an infinitesimal time dt, 
t − (i − 1)Δt → dt, Δt → dt. At t, the stress can be 
described as ξ(t). Then,

Thus, the cumulative exposure as a sum (formed under 
the step stress) transforms into an integral (formed under 
the progressive stress). At the progressive stress, the 
cumulative exposure is

If a sample fails at t, then Eq. (9) is its cumulative expo-
sure. Based on the equivalence principle, the equivalent 
time at initial stress ξp is

where η(ξp) is the characteristic life at initial stress ξp,

The corresponding failure probability is

The equation above has proven that after being trans-
formed, the life of the products from the progressive 
stress still follows the Weibull distribution at the constant 
stress.

Combining Eqs. (7)–(9), the CDF of the products under 
progressive stress is

The probability density function (PDF) is the partial 
derivative of the CDF with respect to t, that is,

ε(t) =
t − (i − 1)�t

η(ξi)
+

i−1
∑

j=1

�t

η(ξj)

lim
i→∞

ε(t) = lim
i→∞





t − (i − 1)�t

η(ξi)
+

i−1
�

j=1

�t

η(ξj)





=

� t

(i−1)�t

dt

η[ξ(t)]
+

� (i−1)�t

0

dt

η[ξ(t)]

=

� t

0

dt

η[ξ(t)]

(9)
ε(t) =

∫ t

0

dt

η[ξ(u)]
=

∫ t

0

1

exp[β0 + β1ξ(t)]
du

=
1− exp(−β1αt)

β1α exp(β0 + β1ξp)
.

tp = ε(t) · η(ξp) = [1− exp(−β1αt)]/β1α,

η(ξp) = exp(β0 + β1ξp).

F(tp) = 1− exp{−[tp/η(ξp)]
m}.

(10)
F(t) = 1− exp{−[ε(t)]m}

= 1− exp

{

−

[

1− exp(−β1αt)

β1α exp(β0 + β1ξp)

]m}

.

Figure 2  Approximation of a progressive stress by a step stress
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4.2.2 � Sample Likelihood Function from the Progressive Stress
Under progressive stress, suppose sample j fails at tj≤ τ. 
Based on Eq. (11), its likelihood function is

where 

Suppose sample j survives at τ. It is right censored, and 
its failure time is greater than τ. The likelihood function 
is

where Rp(τ) is the reliability of the sample from progres-
sive stress at τ, zpτ= [ln c(τ) − β0]/σ.

Define an indicator function Ij such that Ij= 1 if tj≤ τ 
and Ij= 0 if tj > τ. The log likelihood function for sample 
j is

(11)

f (t) =
m

exp(β0 + β1ξp + β1αt)

[

1− exp(−β1αt)

β1α exp(β0 + β1ξp)

]m−1

× exp

{

−

[

1− exp(−β1αt)

β1α exp(β0 + β1ξp)

]m}

.

L′pj = ln f (tj)

= −β1(ξp + αtj)− ypj − ln σ + zpj − exp(zpj),

ypj = ln c(tj),

zpj = (ypj − β0)/σ ,

c(tj) = [1− exp(−β1αtj)]/[β1α exp(β1ξp)].

L′′pj = ln Rp(τ ) = − exp(zpτ ),

For np samples tested at the progressive stress, the sam-
ple log likelihood function is

4.3 � Sample Likelihood Function
The PCCSALT has n samples that are divided into two 
groups, and the number of samples allocated to the pro-
gressive stress is πpn. The sample likelihood function 
Eq.  (13) can be obtained by adding Eq.  (6) and Eq.  (12) 
which are both used to estimate the ŷP(ξ0):

4.4 � Information and Covariance Matrix
Based on the ML theory, the covariance matrix Σ for the 
model parameters β̂0 , β̂1 and σ̂ is

where F is the information matrix, and it is the mathe-
matical expectation of the negative second partial deriva-
tives for L, that is

According to Eq. (13),

Lpj = IjL
′
pj + (1− Ij)L

′′
pj

= Ij[−β1(ξp + αtj)− ypj − ln σ + zpj − exp(zpj)]+

(1− Ij)[− exp(zpτ )].

(12)Lp =

np
∑

j=1

Lpj .

(13)L = Lc + Lp =

(1−πp)n
∑

i=1

Lci +

nπp
∑

j=1

Lpj ,

(14)

Σ =





Var(β̂0) Cov(β̂0, β̂1) Cov(β̂0, σ̂ )

Cov(β̂1, β̂0) Var(β̂1) Cov(β̂1, σ̂ )

Cov(σ̂ , β̂0) Cov(σ̂ , β̂1) Var(σ̂ )



 = F
−1,

(15)F =





E(−∂2L
�

∂β2
0 ) E(−∂2L

�

∂β0∂β1) E(−∂2L
�

∂β0∂σ)

E(−∂2L
�

∂β0∂β1) E(−∂2L
�

∂β2
1 ) E(−∂2L

�

∂β1∂σ)

E(−∂2L
�

∂β0∂σ) E(−∂2L
�

∂β1∂σ) E(−∂2L
�

∂σ 2)



.

F =
1

σ 2





(1−πp)n
�

i=1





A1i ξcA1i A2i

ξcA1i ξ
2
cA1i ξcA2i

A2i ξcA2i A3i



+

πpn
�

i=1





B1 B2 B3

B2 B4 B5

B3 B5 B6









=
n

σ 2





(1− πp)A1 + πpB1 (1− πp)ξcA1 + πpB2 (1− πp)A2 + πpB3

(1− πp)ξcA1 + πpB2 (1− πp)ξ
2
cA1 + πpB4 (1− πp)ξcA2 + πpB5

(1− πp)A2 + πpB3 (1− πp)ξcA2 + πpB5 (1− πp)A3 + πpB6



.



Page 6 of 8Chen et al. Chin. J. Mech. Eng.  (2018) 31:82 

where A1 = 1− exp[− exp(zcτ )], A2 =
∫

zcτ

−∞ z exp(2z)

exp[− exp(z)]dz+zcτ exp[zcτ − exp(zcτ )],

A3 =

∫

zcτ

−∞

z exp(z) exp[− exp(z)][z exp(z)+

exp(z)− 1]dz + zcτ (zcτ + 1) exp[zcτ − exp(zcτ )],

B1 = 1− exp[− exp(zpτ )],

B2 = −
∫ τ

0 exp(z)y′f (t)dt − y′τ exp[zpτ − exp(zpτ )],

B3 =
∫ zpτ

0
z exp(z) exp[z − exp(z)]dz + zpτ exp[zpτ − exp(zpτ )],

B4 =

∫ τ

0
{σy′′[exp(z)+ σ − 1] + y′

2
exp(z)}f (t)dt+

(y′
2
τ + σy′′τ ) exp[zpτ − exp(zpτ )],

B5 =

∫ τ

0
y′[1− exp(z)− z exp(z)]f (t)dt−

y′τ (1+ zpτ ) exp[zpτ − exp(zpτ )],

B6 =

∫ zpτ

0
z2 exp(z) exp[z − exp(z)]dz + B1+

z2pτ exp[zpτ − exp(zpτ )],

zcτ = (lnτ − µ)/σ ,µ = ln η(ξc), z = (y− β0)/σ , y = c(t),

c(t) = [1− exp(−β1αt)]
/[

β1α exp(β1ξp)
]

,

zpτ = [ln c(τ )− β0]/σ ,

c(τ ) = [1− exp(−β1ατ)]
/[

β1α exp(β1ξp)
]

,

f (t) =
m

exp(β0 + β1ξp + β1αt)

[

1− exp(−β1αt)

β1α exp(β0 + β1ξp)

]m−1

×

exp

{

−

[

1− exp(−β1αt)

β1α exp(β0 + β1ξp)

]m}

,

y′ = αt/[exp(β1αt)− 1] − 1/β1 − ξp,

y′τ = ατ/[exp(β1ατ)− 1] − 1/β1 − ξp,

y′′ = 1/β2
1 − α2t2 exp(αβ1t)/[exp(αβ1t)− 1]2,

y′′τ = 1/β2
1 − α2τ 2 exp(αβ1τ)/[exp(αβ1τ )− 1]2.

4.5 � Estimate of the Function Variance
Based on Eq. (5), for the linear extreme value model, the 
ML estimate of the Pth quantile ŷP(ξ0) at the normal 
working stress is a function of β̂0 , β̂1 and σ̂ , that is,

Since ŷP(ξ0) is close to a normal distribution [16], the 
asymptotic variance for ŷP(ξ0) is

where V is the variance factor for the PCCSALT plan.

ŷP(ξ0) = β̂0 + β̂1 ξ0 + zP σ̂ .

(16)
Avar

[

ŷP(ξ0)
]

= (1, 0, zP)F
−1(1, 0, zP)

T = σ 2V /n,

5 � Model for Designing the Optimal Plan
5.1 � Objective Function
The values of T0, Tm, and τ are given before planning the 
optimal PCCSALT. The initial estimators of the model 
parameters β̂0 , β̂1 and σ̂ are determined by experience, 
similar product data or the results of an early test. The 
value of n is determined by V and σ̂ . Thus, the ML esti-
mator V is treated as the objective function according to 
Eq. (16) and the criteria of minimizing Avar

[

ŷP(ξ0)
]

.

5.2 � Design Variables
Since T0, Tm, β̂0 , β̂1 and σ̂ are given, V depends on ξp, α, 
πp, and ξc. Therefore, the design variables are

5.3 � Constraints

(1)	 The value of ξc should range from 0 to 1, namely, 

(2)	 Considering the test design principle the progres-
sive stress should always be less than the constant 
stress to ensure quick failures for the constant 
stress. That is, 

(3)	 ξp and α are chosen to guarantee that the progres-
sive stress values range from 0 to 1. Moreover, to 
ensure enough failures for the progressive stress, 
the progressive initial stress should be set 20% 
higher than the normal working stress, that is, 

(4)	 The value of πp should also be set to range from 0 to 
1. To make the plan feasible, two stresses should be 
allocated to a certain amount of samples. Set the πp 
values to range between 0.3 and 0.7,

5.4 � Sample Size
Based on the ML theory, the MLE of the Pth quantile of 
ŷP(ξ0) under normal working stress is close to the nor-
mal distribution, with a mean of ŷP(ξ0) and a variance of 
Var[yP(ξ0)] . If ŷP(ξ0) replaces yP(ξ0) , then the confidence 
bounds of ŷP(ξ0) for confident values γ are

ξp,α,πp, ξc.

0 ≤ ξc ≤ 1.

ξp + αt ≤ ξc.

0.2 ≤ ξp + αt ≤ 1.

0.3 ≤ πp ≤ 0.7.

[yP(ξ0)]U = ŷP(ξ0)+ Kγ

√

σ 2V /n,

[yP(ξ0)]L = ŷP(ξ0)− Kγ

√

σ 2V /n.
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where Kγ is the (100(1 + γ)/2)th standard normal 
quantile.

If ŷP(ξ0) is within yP(ξ0)±W  with probability γ, then

Thus, the sample size n is

6 � Optimal Design of the Electrical Connectors 
PCCSALT Plan

6.1 � Test Parameters
6.1.1 � Temperature Stress
The working temperature of the Y11X series electrical 
connectors is 218.15–401.15  K according to a previous 
study [18]. In accordance with the usage conditions of the 
connectors, T0 = 298.15 K is selected as the normal work-
ing temperature.

The electrical contact failure caused by the accumula-
tion of the oxide film is the main mode [14] for the Y11X 
series electrical connectors. Since the highest test tem-
perature should be close to the upper working tempera-
ture limit (431.15  K) with the requirement of avoiding 
introducing failure modes that will not be encountered in 
normal use, Tm = 431.15 K is chosen as the highest tem-
perature stress in the test.

6.1.2 � Censored Time
As the connectors fail fast at the progressive stress, con-
sidering the censored time for the CSALT [20] and the 
step stress ALT (SSALT) [21], this paper takes τ = 1000 h 
as the censored time.

6.1.3 � Parameter Estimators for the Statistical Model
By using the statistical analysis results [14] of the data 
from the previous CSALT, the crude estimate values of 
the model parameters for the Y11X-1832 electrical con-
nector are γ̂0 = −21.2813 , γ̂1 = 9.7579 , and σ̂ = 0.9867 . 
Using the transforms in Section  2, the standardized 
parameters are

W = Kγ

√

σ 2V /n.

(17)n = V
(

Kγ σ/W
)2
.

6.2 � Optimal Results
MATLAB’s fmincon solver is used to address the opti-
mization problem. The objective function converges to 
Vm = 23.6837, and the corresponding test plan is given in 
Table 1.

Given the confidence γ = 40%, Kγ= 0.6745 and con-
fidence interval width 2  W = 0.8, substitute them into 
Eq. (17), and the sample size is n = 40.

A comparison between the PCCSALT plan (see 
Table 1) and the CSALT plan (see Table 2) is applied to 
verify that the proposed plan is better, as it has a higher 
estimation accuracy for yp. The compared simple CSALT 
plan is defined in the following manner: the mid value of 
the progressive stress, namely, ξ1 = ξp + α·tm/2, is used as 
the low stress, while the sample allocation proportion, 
the high stress and the censored time are the same as 
those in the proposed plan.

In general, the estimation accuracy depends on the 
sample size and test time. To improve the estimation 
accuracy, more test time is required if the sample size is 
fixed. To compare the efficiency of the two plans quanti-
tatively, the test time for the CSALT is elongated to when 
its variance factor equals that of the proposed plan. Here, 
1157  h are obtained. Therefore, the test time could be 
shortened by 13.59% if using the PCCSALT plan under 
the same requirements of estimation accuracy and sam-
ple size.

β̂0 = 11.4467, β̂1 = −8.0340, σ̂ = 0.9867.

Table 1  Optimal PCCSALT plan

Stress type Stress ξ , Temperature 
T (K)

Stress change rate
α (h−1)

Sample allocation 
proportion π

Censored time
t (h)

Variance factor V

Progressive 0.3048, 322.26 2.5298 × 10−4 0.7000 1000 23.6837

Constant 1, 436.15 – 0.3000

Table 2  Optimal CSALT plan

No. Stress ξ , 
Temperature 
T (K)

Sample 
allocation 
proportion 
π

Censored 
time
t (h)

Sample 
size n

Variance 
factor V

1 0.4313, 338.45 0.7 1000 40 24.1501

2 1, 436.15 0.3
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7 � Conclusions

(1)	 An PCCSALT method combining progressive stress 
and constant stress is proposed.

(2)	 With the same estimation accuracy and sample size, 
the time of the optimal PCCSALT plan is 13.59% 
less than that of the optimal CSALT plan.
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