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Natural Characteristic of Thin‑Wall Pipe 
under Uniformly Distributed Pressure
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Abstract 

Natural characteristics of thin-wall pipe of the compressor under uniformly distributed pressure were presented in this 
paper based on a cylindrical shell model. In the traditional method, the beam model was usually used to analyze the 
pipe system. In actual fact, the pipe segment of the compressor was always broken in the form of a long crack or a 
partial hole and the phenomenon was hardly explained by beam model. According to the structure characteristic of 
compressor pipe segment, whose radius is large and thickness is little, shell model shows the advantage in this kind 
of pipe problem. Based on Sanders’ shell theory, the vibration differential equation of pipe was established by apply‑
ing the energy method. The influences of length to radius ratio (L/R), thickness to radius ratio (h/R), circumferential 
wave number (n) and pressure (q) on the natural frequencies of pipe were analyzed. The study shows: Pressure and 
structural parameters have a great effect on the natural characteristics of the pipe. Natural frequency increases as the 
pressure increases, especially for the higher mode. The sensitivity of natural frequency on pressure becomes stronger 
with h/R ratio increases; when L/R ratio is greater than a certain critical value, the influence of the pressure on natural 
frequency will no longer be obvious. The value of n corresponding to the minimum natural frequency also depends 
on the value of pressure. In the end, analysis of the forced vibration of a specific pipeline model was given and the 
modal shapes were illustrated to understand the break of the pipe. The research here will provide the theory support 
for the dynamic design of related pressure pipe and further experiment study should be employed.
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1  Introduction
Pipe is widely used in many engineering applications, in 
which the centrifugal compressor is a kind of large equip-
ment, which is widely used in the field of oil, chemical, 
and so on. Due to the characteristics of compressing 
work, pulse pressures with high frequency are loaded to 
the inlet/outlet and the distal bending, causing the high-
frequency vibration of the pipe, whose main character-
istic is the partial vibration of the wall of the pipe. The 
high-frequency vibration has a great threat to the pro-
duction safety. Strong vibration may cause pipe broken, 
chemical gas leak and even an explosion. So the study of 
pipe vibration has an important signification.

For the pipe vibration, beam model and shell model are 
usually used to get numerical or analytical solutions [1]. 

In open literature, beam model was usually applied to the 
pipe system, especially fluid-conveying pipe. For exam-
ple, Kheiri et al. [2, 3] modeled long pipes towed under-
water as a uniform, neutrally buoyant Euler-Bernoulli 
beam. External force and boundary conditions were also 
simply modeled to obtain the partial differential equa-
tions of the motion. A finite difference technique was 
used to get the results which showed that a long pipe may 
lose stability due to higher flow velocities by flutter and 
divergence and the deformation may happen close to the 
downstream end. Ghayesh et al. [4] studied the vibration 
of cantilevered pipe conveying fluid and the nonlinear 
planar dynamic response was investigated by bifurcation 
diagrams of the system vis flow velocity and other kinet-
ics characteristics. Yamashita et al. [5] used theoretically 
analysis and experimental verification to study the self-
excited nonplanar motion of the vertical cantilevered 
pipe subjected the horizontal external excitation. Zhang 
et  al. [6, 7] studied the internal resonance and external 
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resonance of pipe conveying fluid in the supercritical 
flow speed through the analytical results and the numeri-
cal integrations.

Beam model is often applied when both length to radius 
ratio and thickness are large. However, the structural fea-
tures of the compressor pipe are the little length to radius 
ratio and the little thickness. It is a thin-wall structure 
and if it suffers a high-frequency cyclic loading, the high-
frequency vibration will be aroused. Vibration damage of 
the pipe outlet such as a long crack or a partial hole may 
happen which was mainly caused by fatigue fracture due 
to resonance. And the broken form of pipe may not be 
fully explained based on beam model. Therefore, due to 
the particularity of the research object, the shell model 
was introduced. For the shell vibration, many works for 
the shell model have been done [8]. Lessia et al. [9] devel-
oped a series of solution techniques for the complicated 
shell structures with various boundary conditions based 
on various shell theories, among which Donnell theory, 
Flugge’s theory, Love’s theory, and Sanders’ theory are 
most widely used. In recent decades, many accurate and 
efficient methods have been developed to determine the 
vibration characteristics which include natural frequen-
cies, modes, and so on. Refs. [10, 11] used the method of 
the generalized differential quadrature (GDQ) to solve the 
vibration of cylindrical shells. After then, they analyzed the 
vibration of functionally graded cylindrical shells with Ritz 
method [12–14]. Xie et al. [15] presented a novel and effi-
cient solution for free vibrations of thin cylindrical shells 
subjected to various boundary conditions by using the 
Haar wavelet discretization method based on the Gold-
enveizer–Novozhilov shell theory. Xie et  al. [16] applied 
Transfer matrix method to analyze free vibration of cir-
cular cylindrical shells based on the Flugge’s shell theory 
and analyzed the natural frequencies and natural modes. 
In calculation, they used the integral method instead of the 
Runge–Kutta method to obtain more accurate numerical 
results. Dai et al. [17] used the elastic equations to obtain 
an exact series solution for the vibration analysis of circu-
lar cylindrical shells with arbitrary boundary conditions in 
which a Fourier series and auxiliary functions were used 
to represent the three displacements, and it is easy to deal 
with complicated boundary conditions using this method. 
Based on Sanders’ theory, Sun et al. [18] studied the vibra-
tion studies of rotating cylindrical shells with arbitrary 
edges using characteristic orthogonal polynomials in the 
Rayleigh-Ritz method. Isvandzibaei et al. [19, 20] studied 
the vibration of multiple layered cylindrical shells under 
lateral pressure with asymmetric boundary conditions.

To sum up, numerous studies on pipe and shell have 
been published. However, those studies based on the 
engineering background of the pressure pipe of the 
centrifugal compressor are relatively fewer. So for the 

pressure pipe of the centrifugal compressor, free and 
forced vibration problems should be further discussed. 
This paper presented the study on the natural charac-
teristics of pressure pipe with SS-SS boundary condition 
using cylindrical shell model. Based on Sanders’ shell 
theory, the vibration differential equation was obtained 
by using the energy method. The displacement shape 
functions were assumed by beam functions in the axial 
direction and the trigonometric functions in the circum-
ferential direction. The influences of length to radius 
ratio, thickness to radius ratio, circumferential wave 
number and pressure on natural characteristics were 
analyzed. In the end, the steady responses of the forced 
vibration for a specific pipe model were obtained and the 
modal shapes were illustrated to understand the break of 
the pipe. And the results would be signification for the 
design of the pressure pipe in the centrifugal compressor.

2 � Theoretical Formulations
2.1 � Kinetic Energy and Potential Energy of Pressure Pipe
Pressure pipe which is regarded as a cylindrical shell is 
shown in Figure 1. In the figure, the thickness, the length 
and the mean radius of the cylinder are denoted by h, L 
and R, respectively. As the movement of each point on the 
pipe can be expressed in the movement of the points on the 
middle surface of the pipe segment, the middle surface is 
only considered. Assuming that the pipe ends are governed 
by simply-supported boundary conditions, the cylindri-
cal coordinate is established, where x, θ, and z represent 
the axial direction, circumferential direction and the radial 
direction, respectively. The components of the deformation 
of the cylindrical shell with references to this coordinate 
system are denoted by u, v and w in the x, y and z direc-
tions. The pipe is under uniform distributed pressure q. 
The material of the pipe is assumed to be isotropic with the 
mass density ρ, Poisson’s ratio μ, and Young’s modulus E.

Setting ξ = x/L, the kinetic energy for vibration of a 
pipe can be written as:
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Figure 1  Cylindrical shell model of a pressure pipe
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Based on Sanders’ shell theory, the strains are given by:

where the middle surface strain and the middle surface 
curvature are defined as:

The stress–strain relationship of pipe can be written as:

where

The strain energy of pipe Uε is:

Considering a pipe under uniform distributed pressure, 
the potential energy of the pipe due to this initial distrib-
uted pressure can be derived [20], that is

The total potential energy for vibration of a pipe under 
uniform distributed pressure is:

(2)
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(9)U = Uε + Uq .

2.2 � Galerkin Discretization of the Energy Equation
In order to use the Rayleigh-Ritz method, the displace-
ments u, v and w should be expressed in terms of general-
ized coordinates:

where qU, qV, and qW are the generalized coordinates or 
modal coordinates, and U, V, and W are the displacement 
shape functions or the principal vibration modes which 
must satisfy the geometric boundary conditions. They are 
written by

Then the kinetic energy and potential energy are 
expressed in terms of the generalized coordinates and 
displacement shape functions. Substituting Eq. (10) and 
Eq. (11) into Eq. (1), we can obtain

where M1, M2, and M3 are the modal mass matrices and 
they are listed in Appendix.

Substituting Eqs. (3)‒(8) and (10), (11) into Eq. (9), we 
can obtain

where K1, K2, K3, K4, K5, K6 and H are the modal stiffness 
matrices, which are also presented in Appendix.
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2.3 � Differential Equation of Forced Vibration
Considering the case of damping, the form of Lagrange 
equations is expressed as

where F is forcing matrix and Fc is damping force matrix.
According to the type as Eq. (14), the Lagrange equations 
can also be written by:

Substituting Eqs. (12) and (13) into Eq. (15), the equa-
tion of motion of the pipe can be obtained as

Then the generalized mass matrix, the generalized 
damping matrix, stiffness matrix, forcing matrix, and the 
generalized coordinates can be written by
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2.4 � Differential Equation of Forced Vibration with SS‑SS 
Boundary Conditions

The principal mode shapes of a cylindrical shell with 
SS-SS boundaries U, V, W, and the items about time qU, 
qV, qW can be expressed as

where m = 1,2,3,…, i, n = 1,2,3,…, j. m is the half wave in 
the axial direction and n is the wave in the circumferen-
tial direction. ωmn is the circular frequency of cylindri-
cal pipe. Under the modal (m, n), pipe vibration Eq. (16) 
is three degrees of freedom, and M, C, K is three order 
matrix. Substituting Eqs. (19), (20) into Eq. (16), then Eq. 
(16) can be changed as:

Ignoring the system damping and generalized force, the 
general solution of Eq. (21) can be written as

where q0 is the eigenvector and f is the eigenvalue. Sub-
stituting Eq. (22) into the homogeneous differential equa-
tion of Eq. (21), the eigenvalue problem is gotten:

from which the eigenvectors and eigenvalues can be 
obtained. The imaginary parts of the eigenvalues are the 
natural frequencies of the pipe. The smallest of the roots 
is the natural frequency of interest in this paper. The fre-
quency parameter can be obtained by:
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3 � Model Validation
In order to validate the accuracy of the model devel-
oped, the results of the cylindrical shell without pres-
sure (q = 0) are compared with those in the open 
literature, which are shown in Table  1. The frequency 
parameters in Refs. [2, 3] were obtained by different 
methods based on Love’s shell theory. What can be 
found is that the differences between the frequency 
parameters presented in this paper and those from the 
references are very small. Except the first maximum 
percentage difference 0.05%, the errors are less than 
0.02%, including the major zero error. Therefore, the 
model and method used in this paper have high accu-
racy and credibility and provide the theoretical basis 
for the following calculation.

4 � Results and Discussion
In this section, the pipe is subjected to uniformly dis-
tributed pressure with SS-SS boundary conditions. 
E = 2.06 × 1011 Pa, ρ = 7850 kg/m3 and μ = 0.3. The influ-
ences of thickness to radius ratio (h/R), length to radius 
ratio (L/R), circumferential wave number (n) and uni-
formly distributed pressure (q) on natural frequencies of 
pipe were studied.

4.1 � Influence of Pressure and h/R on Natural Frequencies
The natural frequencies are shown in Figures  2 and 3 
were calculated for m = 1, n = 6, and L/R = 4.

Figure  2 shows the variation of the natural frequency 
of the pipe for different h/R ratios with uniformly dis-
tributed pressure (q). As demonstrated, when q = 0, the 
natural frequency increases as the value of h/R increases. 
When q > 0, the natural frequency initially decreases and 
then increases, the trend of growth is more obvious when 

q becomes larger. All of these graphs show that the point 
of the minimum value of natural frequency moves to 
the right when q increases. When q = 5 MPa, it appears 
beside h/R = 0.01. When q = 10 MPa, it appears beside 
h/R = 0.015. And when q = 20 MPa, it appears beside 
h/R = 0.02. All express that the lowest point of the curve 
moves to the right when q increases (shown by the con-
nection line of the lowest point in the figure). And when 
h/R ratio increases to a certain extent, the curve of 
growth of natural frequency almost becomes a straight 
line.

Figure  3 shows the variation of the natural frequency 
of the pipe against different q with several special values 
of h/R radio. As demonstrated, the natural frequencies 
increase as the value of q increases, and the effect is more 
obvious when h/R is 0.01 and 0.02. The curve of variation 
of the natural frequency at h/R = 0.01 intersects the one 
with h/R = 0.02 due to the larger effect of q on the natural 
frequency at h/R = 0.01. Therefore, the sensitivity of q on 
natural frequency for thin wall pipe is stronger than the 
sensitivity of q for thick wall pipe. In addition, what can 
be seen is that the curve of variation of natural frequency 
flattens out when h/R  ≥ 0.04. At the same time, the effect 
of q on natural frequency becomes insensitive.

4.2 � Influence of Pressure and L/R Radio on Natural 
Frequencies

The natural frequencies are shown in Figures  4 and 5 
were calculated for m = 1, n = 6, and h/R = 0.02.

Figure  4 shows the variation of the natural frequency 
of the pipe for different L/R (1 < L/R < 20) with uni-
formly distributed pressure (q). If q is a constant value, 
the natural frequency decreases as the value of L/R 

Table 1  Comparison of  frequency parameters for  the   
cylindrical shell without  pressure with  SS-SS boundary 
condition (m = 1, L/R = 20, h/R = 0.02, μ = 0.3)

n Eq. (24) Ref. [9]/[10] Error [9]/[10] (%)

1 0.016101 0.016101/0.016102 0.00/0.01

2 0.009377 0.009382/0.009387 0.05/0.00

3 0.022103 0.022105/0.022108 0.01/0.02

4 0.042094 0.042095/0.042096 0.00/0.00

5 0.068007 0.068008/0.068008 0.00/0.00

6 0.099729 0.099730/0.099730 0.00/0.00

7 0.137238 0.137239/0.137239 0.00/0.00

8 0.180527 0.180527/0.180527 0.00/0.00

9 0.229593 0.229594/0.229594 0.00/0.00

10 0.284435 0.284435/0.284435 0.00/0.00 Figure 2  Variation of the natural frequency against h/R ratio for 
several uniformly distributed pressures
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increases. The downtrend of natural frequency is much 
obvious when L/R ratio is less than a certain extent and 
when L/R increases to the value, the curve of natural fre-
quency gradually flattens out. As demonstrated, if q = 0, 
when L/R ≤ 5, the natural frequency sharply decreases as 
L/R ratio increases, and when L/R > 5, the trend gradu-
ally flattens out. If q = 5MPa, when L/R ≤ 4, the natu-
ral frequency sharply decreases as L/R ratio increases, 
and when L/R > 4, the trend gradually flattens out. If 
q = 10 MPa, when L/R ≤ 3, the natural frequency sharply 
decreases as L/R ratio increases, and when L/R > 3, 
the trend gradually flattens out. If q = 20 MPa, when 
L/R ≤ 2.5, the natural frequency sharply decreases as L/R 
ratio increases, and when L/R > 2.5, the trend gradually 
flattens out. These all express that, for the curve of vari-
ation of natural frequency, there is a critical value before 
it slows down and the point of the critical value moves 
to the left as q increases, and the moving amplitude also 
slowly becomes smaller as q increases.

Figure  5 shows the variation of the natural frequency 
of the pipe against q for several special h/R ratio. As 
shown, for a certain L/R ratio, the natural frequency 
always increases as the value of q increases, which is 
mainly determined by h/R ratio. However, for differ-
ent values of L/R, the curve of natural frequency will 
integrally move up and down in the picture. And when 
L/R ≥ 5, the curves tend to overlap. Therefore, L/R ratio 
also determines the range of natural frequencies, and the 
critical value has an important reference significance for 
the design of the pipe.

4.3 � Influence of Pressure and Circumferential Wave 
Number on Natural Frequencies

The natural frequencies shown in Figures  6 and 7 were 
calculated for m = 1, L/R = 4, and h/R = 0.02.

Figure  6 shows the variation of the natural frequency 
of the pipe against the circumferential wave number (n) 
with uniformly distributed pressure (q). As shown, the 
natural frequency initially decreases and then increases 
as the value of n increases. When q = 0, the lowest point 
of the curve appears at n = 3. When q increases to a cer-
tain extent, the point will be at n = 2. However, the mini-
mum value of natural frequency always increases as q 
increases.

Figure 7 shows the variation of the natural frequency of 
the pipe against q for several special n. When n = 1, the 
curve of natural frequency is a horizontal straight line, so 
q has no effect on the natural frequency. When n > 1, the 
natural frequency increases as the value of q increases. 
And the trend of increasing is more and more obvious 
as n increases. Therefore, for a short thin wall pipe, when 
the pressure is increasing the value of the circumferential 

Figure 3  Variation of the natural frequency against q for several 
special values of h/R 

Figure 4  Variation of the natural frequency against L/R ratio for 
several uniformly distributed pressures

Figure 5  Variation of the natural frequency against q for several 
special values of L/R 
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wave number directly determines the value of corre-
sponding natural frequency. In addition, Figure 7 shows 
that when q < 14 MPa, the minimum natural frequency is 
at n = 3 and when q > 14  MPa, the minimum value is at 

n = 2. It accurately points out the critical value of n cor-
responding to the minimum natural frequency. In the fig-
ure, a1, b1, c1, d1, e1 and f1 are the points of the value of 
natural frequencies when q = 20 MPa, which provide the 
reference for the next work.

5 � Validation, Analysis and Application Examples
5.1 � Validation and Analysis
To verify the results of the last part, the forced vibration 
of a pressure pipe with SS–SS boundary conditions was 
presented. The parameters: L = 2000  mm, h = 10  mm, 
R = 500  mm and q = 20  MPa, Pulse amplitude is 5%, 
E = 2.06 × 1011 Pa, ρ = 7850 kg/m3, and μ = 0.3. The natu-
ral frequencies for i = 2, j = 6 are listed in Table 2.

The amplitudes of displacements in the x, θ, and z 
directions at position (x/L = 0.25, θ = π/4) of the neu-
tral surface varying with the frequency ω (Hz) of inter-
nal pulsating loads are shown in Figure 8. It is seen from 
Figure 8 that some peak values exist at the points as a1, 
b1, c1, d1, e1, f1, a2, b2, c2, d2, e2 and f2 in the amplitude-
frequency curves. These values correspond to the reso-
nant responses of the pipe under internal pulsating loads. 
The frequencies are also corresponding to the natural fre-
quencies listed in Table 2 and shown in Figure 7. So these 
all verify  the validity of the former work. What’s more, 
the large amplitude of the displacement at resonance 
points will be the main origin causing pipe broken.

5.2 � Application Examples
Figure 9 shows two aspects of the common failure modes, 
for example, the long crack and the partial hole. Some 
selected mode shapes and frequencies of the pressure 
pipe with simply supported are computed and plotted in 
Figure 10. Though the deformation of the pressure pipe, 
it is helpful to understand certain features in the vibra-
tion characteristics of the pipe. From these mode shapes, 
it can be deduced that the long crack may be caused by 
the low-frequency vibration, which has a low axial wave 
number and a high circumferential wave number, and the 
partial hole may be caused by high-frequency vibration, 

Figure 6  Variation of the natural frequency against n for several 
uniformly distributed pressures

Figure 7  Variation of the natural frequency against q for several 
special values of n 

Table 2  Natural frequencies for i = 2 and j = 6 (Hz)

m n

1 2 3 4 5 6

1 439.4 (a1) 230.5 (b1) 249.4 (c1) 341.2 (d1) 454.7 (e1) 583.4 (f1)

2 979.3 (a2) 574.9 (b2) 406.0 (c2) 402.9 (d2) 483.6 (e2) 601.8 (f2)
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which has a high axial wave number and a high circum-
ferential wave number.

6 � Conclusions
Based on Sanders’ shell theory, the vibration differential 
equation of the pipe with SS-SS boundary conditions was 
established by using the energy method, and the natu-
ral frequencies were obtained by solving the eigenvalue 
problem. The effects of pressure and geometric parame-
ters on natural frequencies were analyzed. Some selected 
mode shapes and frequencies of the pressure pipe with 
simply supported were computed. Conclusions are as 
follows:

(1)	 For the compressor pipe, the value of distributed 
pressure impacts natural characteristics. Natural 
frequency increases as the pressure increases and 
the increasing value for higher mode is larger than 
that for lower modes. But the effect of distributed 
initial pressure on natural frequency for different 
circumferential wave numbers also abides by a cer-
tain rule of n. For a pipe with a constant L/R and 
h/R and m = 1, the circumferential wave number 
according to the minimum natural frequency is 
determined by pressure. When q is less than a cer-
tain threshold, n = 2; otherwise, n = 3. The rule also 
has a signification on the pipe dynamic design in 
the early design stage.

(2)	 L/R and h/R affect the sensitivity of pressures on 
the natural frequency of pipe. Generally, the thin-
ner the pipe is, the stronger the sensitivity is. And 
when L/R is greater than a certain threshold, the 
effect of pressure on natural frequency would not 
be obvious. So, more attention should be paid to 
these critical values of L/R and h/R when design-
ing pipe.

(3)	 Pulse frequency close to the natural frequency of 
pipe may cause resonance, which may lead to pipe 

Figure 8  Amplitudes of displacements in the x, θ, and z directions

Figure 9  The common crack of pressure pipe
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broken. From the failure modes of pressure pipe, 
the long crack may be caused by the low-frequency 
vibration, which has a low axial half-wave number 
and a high circumferential wave number, and the 
partial hole may be caused by high-frequency vibra-
tion, which has a high axial half-wave number and a 
high circumferential wave number. Knowing these 
facts is important for pipe dynamic design and 
avoiding resonance points.
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Figure 10  The modal shapes of pressure pipe with simply supported
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