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Abstract 

The beer game model is a typical paradigm used to study complex dynamics behaviours in production–distribution 
systems. The model, however, does not accord with current practical supply chain system models in discrete-type 
manufacturing industry, which are generally composed of retailers, distributors, manufacturers with internal sup‑
ply chain, and suppliers. To describe how ordering policies influence the complex dynamics behaviour modes and 
operating cost in a general discrete-type manufacturing industry supply chain system, a high dimension piecewise-
linear dynamics model is built for the supply chain system. Five kinds of ordering policy combination are considered. 
The distribution of both the largest Lyapunov exponent of effective inventory and average operating cost per cycle 
is obtained by simulation in a policy space. The simulation shows that for the general discrete-type manufacturing 
industry supply chain system, the upper chaotic corners emerge besides the lower chaotic corners in the policy space 
expressing the distribution of system behaviour mode, and that the ordering policies at each supply chain node as 
well as their combination have very significant effect on the topology of the distribution of both system behaviour 
mode and operating cost in the policy space. We find that chaos is not always corresponding to high cost, and the 
“chaos amplification” is not completely relevant to the “cost amplification”.
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1  Introduction
The beer game model is the earliest, the most simple and 
complete model used to study complex nonlinear dynam-
ics behaviours in supply chains. The beer game was 
derived from the product distribution game developed by 
Forrester [1] in the process of studying factory dynamics, 
which simulates the decision-making process of order-
ing or stocking in a chain-type production–distribution 
system consisting of such 4 sectors (nodes) as a retailer, 
a wholesaler, a distributor and a factory in total. The beer 
game model was early taken only as a universal case in 
investigating the bullwhip effect in supply chains, how-
ever, it has been considered as a classical model with non-
linear dynamics in supply chain systems since Mosekilde 
et  al. [2] and Sterman [3] found chaos phenomenon in 

the game. The previous researches [2–11] have shown 
that complex nonlinear dynamics behaviours, e.g., chaos/
hyperchaos, can occur in the production–distribution 
system represented by the beer game model. The non-
linear factors come mainly from the nonlinear coupling 
of several oscillating feedback produced by the feedback 
structures among different decision-making entities, 
multiple inventory levels, time lag, etc., as well as the 
non-negativity [10, 12, 13] and piecewise-linearity [14] in 
ordering/dispatching decision-making. The chaos com-
plex dynamics behaviours have been observed in multi-
level series supply chain inventory systems [15–17], 
production-recycling system [18] and customer–supplier 
systems [19–22] more simple than the beer game model.

There are many factors influencing complex dynam-
ics behaviours of supply chain systems [7, 10, 11, 19, 20, 
23–28], including operating policies for ordering, pro-
duction and sales, etc., as well as demand pattern, lead 
time, demand-information sharing, supply chain levels, 

Open Access

Chinese Journal of Mechanical 
Engineering

*Correspondence:  wangwen@xaut.edu.cn 
Faculty of Mechanical and Precision Instrument Engineering, Xi’an 
University of Technology, Xi’an 710048, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-018-0309-3&domain=pdf


Page 2 of 12Wang and Fu ﻿Chin. J. Mech. Eng.          (2018) 31:102 

etc. of which ordering policy is the most basic affecting 
factor. The most important effect of nonlinearity on the 
ordering or inventory policy of production–distribution 
systems is that the chaos solutions exist in significant 
policy parameter space to management, i.e., the chaotic 
corner [4, 7]. The more practical significance is that there 
are direct relations between the nonlinear dynamics 
behaviours of the system and the operating cost [7, 16]. 
Inside the chaotic corner area, the chaotic and hypercha-
otic behaviours might intuitively be expected to gener-
ate the highest operating cost as these types of behaviour 
are associated with large oscillations [7]. In addition, the 
complex behaviour mode distribution in policy param-
eter space of the supply chain system is different as the 
managers use various ordering policies, for example, the 
fixed expected inventory [5, 6, 8, 12] and the variable 
expected inventory [7, 10].

In the above studies, the original beer game model [2, 3] 
was usually adopted, and the single heuristic ordering pol-
icy [12] was basically used by each node in most models of 
them. In this paper, based on the original beer game model, 
a more general supply chain system model in discrete-type 
manufacturing industry is considered, which consists of 
retailers, distributors, manufacturers and suppliers. Both 
the largest Lyapunov exponent of effective inventory and 
average operating cost at each node are obtained by simu-
lation. The effect of different ordering policy combination 
is studied on the distribution of the dynamics behaviour 
mode (expressed by the largest Lyapunov exponent) and 
the corresponding average operating cost.

The rest parts of this paper are organized as follows: 
Section 2 describes the structure model and the operat-
ing mechanism of the supply chain system, and builds 
the dynamics model of the system; Section  3 describes 
the ordering policy and operating cost at each node; 
Section 4 simulates the supply chain system benchmark 
model; Section 5 analyses the effect of different ordering 
policies and their combination on the distribution of the 
dynamics behaviour mode and the corresponding aver-
age operating cost; Section 6 concludes.

2 � Supply Chain System Model
2.1 � Structure Model and Operating Mechanism 

of the Supply Chain System
Being different from the original beer game model, the 
supply chain system in this paper consists of 4 nodes, i.e., 
retailer, distributor, manufacturer and supplier, as shown 
in Figure  1, of which there exist sectors for purchasing, 
production and marketing in the manufacturer.

For the convenience of analysis, it is assumed that the 
supply chain only supplies one type of product, and cus-
tomer demand is exogenous [7, 10]. Each node of the 
supply chain is governed by the following rules in each 

period (to be referred to as a week): (1) receiving orders 
from downstream node, filling orders as possible accord-
ing to current inventory and shipping goods, last round 
stock out being filled at this round; (2) checking inven-
tory, determining next round order quantity and sending 
purchase orders to upstream node, and placed orders not 
being cancelled; (3) receiving goods from upstream node, 
or producing and replenishing stocks, and shipments 
made not being returned.

In terms of the above rules, each node of the supply 
chain uses the same mechanism for orders’ receiving and 
sending, as well as goods’ receiving and shipping. In addi-
tion, the manufacturer will make a production decision 
(i.e., production orders of product) based on the distribu-
tor’s order, demand prediction and inventory informa-
tion, organize production and purchase raw material and 
parts for products from the supplier. These tasks will be 
respectively finished by every sector in the inner supply 
chain of the manufacturer, i.e., sales department, produc-
tion department and purchasing department. The sup-
plier will determine production of the raw material and 
parts based on the manufacturer’s orders and other rela-
tive information, and carry out production and supply.

In order to compare with the simulation of the origi-
nal beer game model, in despite of differences from the 
structure of most beer game models, we suppose in the 
model of this paper that the production and shipment of 
goods and the transmission of orders involve time delays; 
and the production capacity of the manufacturer and the 
supplier is unlimited. The production time is two time 
periods, and both the transmission delay of orders and 
the shipment delay of the product between two succes-
sive levels of the outer supply chain are one time period, 
while there is no time delay in the transmission of orders 
and goods between two successive sectors of the inner 
supply chain of the manufacturer.

2.2 � Heuristic Ordering Policy
In the process implementing orders, the only decision 
variable for all supply chain nodes is the order quantity 
to the upstream node in each period. The basic order-
ing behaviour policy used in this study is a heuristic 
order mechanism [7, 10, 12]. To facilitate the mechanism 
description, the following notations are introduced in 
Table 1.

Figure 1  Simplified structural model of supply chain in discrete-type 
manufacturing industry
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Assuming that the decision makers have adaptive 
expectations, the expected demand at time t can be 
defined as follows:

To regulate the inventory and supply line, a negative 
feedback mechanism is used, that is

Usually 0 ≤ αSL ≤ αI , and 0 ≤ β ≤ 1 [12].
There are two approaches to determination of the 

desired inventory level I∗t  and the desired supply line SL∗t  . 
The first one is that I∗t  and SL∗t  are assumed to be propor-
tional to the expected demand and lead time [7, 10], i.e.,

Hence, the decision rule of each supply chain node for 
the order quantity at time t is defined as below

where AIt and ASLt are calculated using Eqs. (2) and (3), 
respectively.

The second one is to combine I∗t  and SL∗t  into a new 
variable Q , i.e., Q = I∗t + βSL∗t  , β = αSL/αI , and set Q as 
a constant [5, 6, 8, 12]. Therefore, the decision rule for 
each supply chain node for the order quantity at time t is 
defined as below [5, 6, 8]:

(1)D̂t = θDt−1 + (1− θ)D̂t−1, 0 ≤ θ ≤ 1.

(2)AIt = αI (I
∗
t − It),

(3)ASLt = αSL(SL
∗
t − SLt).

(4)I∗t = δD̂t ,

(5)SL∗t = γ D̂t .

(6)Ot = max(0, D̂t + AIt + ASLt),

2.3 � Dynamics Model of the Supply Chain System
Based on the above structure model, the operating mecha-
nism and ordering policy of the supply chain system, the 
dynamics model is built by synthesizing several kinds of 
mathematics model for the beer game [5–8, 10–12, 25].

Figure 1 can be expressed by node state variables as the 
structure model of the supply chain system shown in Fig-
ure  2. To facilitate the model description, the following 
notations are introduced in Table 2.

Every variables are prescribed by a letter indicating the 
respective sector, i.e., using the first letter of the state vari-
able denoting the node or sector in the supply chain, C 
stands for customer, R for retailer, D for distributor, M, W, 
P for sale department, production department and pur-
chasing department of manufacturer, respectively, and S for 
supplier.

The dynamics behaviours of the supply chain system 
shown in Figure 2 can be described by a set of high-dimen-
sional piecewise-linear and nonlinear difference equations.

Only variable expressions of each sector in the manufac-
turer are listed as Eqs. (8)–(31), other variable expressions 
may be referred to Refs. [8, 23].

1.	 For the sale department of the manufacturer

	 The actual inventory of products

	 The order backlog of products

	 The incoming shipments of products (i.e., the pro-
duction of products)

	 The outgoing shipments of products

	 The incoming orders of products

	 The expected demand of products

	 The actual supply line of products

(7)Ot = max(0, D̂t + αI (Q − It + Bt − βSLt)).

(8)
MIt = max{0, MIt−1 +MISt−1 −MBt−1 −MIOt−1}.

(9)
MBt = max{0, MBt−1 +MIOt−1 −MIt−1 −MISt−1}.

(10)
MISt = WOSt = WPD2,t ,

WPD2,t = WPD1,t−1,

WPD1,t = WPRt−1.

(11)
MOSt = min{MIt−1 +MISt−1, MBt−1 +MIOt−1}.

(12)MIOt = DOPt−1.

(13)MEDt = θ ·MIOt−1 + (1− θ)MEDt−1.

(14)MSLt = WPD1,t +WPD2,t .

Table 1  Notations

Symbol Description

t Time or period

D̂t
The expected demand

Dt The actual demand i.e. the incoming orders

It The actual inventory level

I
∗
t The desired inventory level

AIt The adjustment for the inventory level

SLt The actual supply line (orders placed but not yet received)

SL
∗
t The desired supply line

ASLt Adjustment for the supply line

Ot Order quantity

δ The desired coverage

γ The expected (or perceived) lag between ordering and acqui‑
sition of goods

θ A constant which determines how fast expectations are 
updated, 0 ≤ θ ≤ 1

αI Rate at which the discrepancy between actual and desired 
inventory levels is corrected, 0 ≤ αI ≤ 1

αSL The rate at which the discrepancy between actual and desired 
supply line is corrected, 0 ≤ αSL ≤ 1
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	 The orders of products placed

2.	 For the production department of the manufacturer
	 The actual inventory of work in process (WIP, i.e., 

unfinished products)

	 The order backlog of WIP

	 The volume of WIP put into production (outgoing 
shipments of raw material and parts)

	 The quantity of finished WIP (i.e., the production of 
products)

	 The incoming orders of WIP (i.e., the orders of prod-
ucts)

(15a)

MOPt = max{0,MEDt + αI (δMEDt −MIt)

+ αSL(γMEDt −MSLt)},

(15b)
MOPt = max{0,MEDt + αI (Q −MIt +MBt − βMSLt)}.

(16)WIt = MSLt .

(17)
WBt = max{0, WBt−1 +WIOt−1 −WIt−1 −WISt−1}.

(18)WISt = POSt = WPRt .

(19)
WOSt = min{WIt−1 +WISt−1, WBt−1 +WIOt−1}.

	 The expected demand of WIP (i.e., the expected 
demand of products)

	 The actual supply line of WIP

	 The orders of WIP placed (i.e., the orders of prod-
ucts)

3.	 For the purchasing department of manufacturer
	 The actual inventory of raw material and parts

	 The order backlog of raw material and parts

	 The incoming shipments of raw material and parts

	 The outgoing shipments of raw material and parts

	 The incoming orders of raw material and parts (i.e., 
the orders of products)

	 The expected demand of raw material and parts (i.e., 
the expected demand of products)

	 The actual supply line of raw material and parts

	 The orders of raw material and parts placed (i.e., the 
orders of products)

where subscript t denotes the time period.

(20)WIOt = MOPt .

(21)WEDt = MEDt .

(22)WSLt = WISt + PIOt + PBt + POSt .

(23)WOPt = MOPt .

(24)
PIt = max{0, PIt−1 + PISt−1 − PBt−1 − PIOt−1}.

(25)
PBt = max{0, PBt−1 + PIOt−1 − PIt−1 − PISt−1}.

(26)PISt = SOSt−1.

(27)
POSt = min{PIt−1 + PISt−1, PBt−1 + PIOt−1}.

(28)PIOt = WOPt .

(29)PEDt = MEDt .

(30)PSLt = PISt + SIOt + SBt + SOSt .

(31)POPt = MOPt ,

Figure 2  Structural model of the supply chain system denoted by state variables at nodes

Table 2  Notations

Symbol Description

I The actual inventory level of goods

B Backlog of orders

IS Incoming shipments

OS Outgoing shipments

SL The actual supply line

IO Incoming orders

OP Orders placed

ED The expected demand

PR Production rate

PD1, PD2 Production delay of one period and two periods

COR The exogenous customer order rate
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3 � Ordering Policy and Operating Cost of Each 
Node

3.1 � Ordering Policy of Each Node and Their Combination
Ordering behaviour is basic one of each node in supply 
chain. Different ordering policies and combination will 
influence not only operating state of each node, but also 
dynamics behaviour of the whole supply chain system. 
In this paper, the following nodes’ ordering policies and 
their combinations are taken into consideration.

Order policy 1, i.e., all supply chain nodes use the same 
heuristic ordering policy as presented in Section  2.2, 
keep the ordering adjusting coefficients αI and αSL of 
these nodes consistent with each other, and determine 
the order quantity Ot by Eq. (7), e.g., Eq. (15b).

Order policy 2, i.e., all supply chain nodes use the same 
heuristic ordering policy, keep the ordering adjusting 
coefficients αI , αSL , the desired coverage time δ and γ of 
these nodes consistent with each other ( δ = 3, γ = 2), and 
determine the order quantity Ot by Eq. (6), e.g., Eq. (15a).

Order policy 3 allows different ordering policies for dif-
ferent supply chain nodes, assuming that the manufac-
turer uses order policy 1, and the other nodes adopt an 
improved ( t, R, S ) ordering policy or replenishing policy. 
Similar to the heuristic ordering policy, ( t, R, S ) replen-
ishing policy is also a sort of feedback based ordering 
policy, i.e., checking inventory level at each period, plac-
ing order if the stock level is lower than ordering point 
RP (in this study RP = 20), otherwise, no ordering. Let S 
be the maximum stock capacity (in this study S = 500), 
if the stock level It < RP , the order quantity Ot = S − It . 
The improved ( t, R, S ) replenishing policy considers 
the supply line SLt , in which the actual order quantity 
Ot = S − It − SLt.

Order policy 4 allows different ordering policies for dif-
ferent supply chain nodes, assuming that the supplier and 
the manufacturer use order policy 1 and order policy 2, 
respectively, the other nodes adopt the improved ( t, R, S ) 
replenishing policy.

Order policy 5 allows different ordering policies for dif-
ferent supply chain nodes, assuming that the manufac-
turer uses the improved ( t, R, S ) replenishing policy, and 
the other nodes adopt order policy 1.

There would be quite a few ordering policies and their 
combination in actual supply chains. In this paper, we 
focus on the effect of the above ordering policies and 
combination on the dynamics behaviour modes and 
operation cost.

3.2 � Operation Cost of Nodes
There is a relation between the dynamics behaviour 
modes of order or inventory and the operating cost of 
a supply chain, where chaotic/hyperchaotic behaviour 

modes would bring intuitively high cost, since this kind 
of behaviour modes usually result in large oscillation 
amplitude [7]. Therefore, it is very meaningful to study 
the relation between behaviour modes and operating 
cost in the parameter space (αI ,αSL) for the ordering and 
inventory management decision of a supply chain.

Provided that the average cost of actual inventory and 
out-of-stock for each node in normal operation time 
length Tr are calculated by Eqs. (32) and (33), respectively,

where CH and CB are holding cost per unit inventory and 
out-of-stock cost per unit order backlog in each period, 
respectively, while the total average cost of each node 
during Tr is

4 � Simulation Analysis for the Supply Chain 
Benchmark Model

4.1 � Benchmark Model
To reveal the effect of different ordering policies and 
combination on the dynamics behaviour and operation 
cost of the supply chain system model shown as Figure 2, 
we consider the model with the following reference sce-
nario [5–8, 10–12] as benchmark model:

	 i.	 The customer demand mode is a step-function pat-
tern, i.e., the demand is four units per period in the 
first four periods, and is increased to eight units 
per period from the fifth period till the end of the 
simulation;

	 ii.	 Ordering policy 1 is used;
	iii.	 Order and shipments in each node equal to 4 units 

per week. All inventories are initialized at 12 units 
and all initial order backlog are zero. Moreover, 
for each node, θ = 0.25, Q = 17 units of goods, 
CH = 0.5 and CB = 1.0 units of money.

4.2 � Simulation Design
Provided that the simulation run length T is 2000 time 
periods, Tr = 500, ordering parameters (αI ,αSL) for 
each node are the same and constant. In the range of 
0 ≤ αI ≤ 1 and 0 ≤ αSL ≤ 1 (increment 0.02), the actual 

(32)C
It
Tr

=
CH

Tr

Tr∑

t=1

It(αI ,αSL),

(33)C
Bt
Tr

=
CB

Tr

Tr∑

t=1

Bt(αI ,αSL),

(34)Ci(αI ,αSL) = C
It
iTr

+ C
Bt
iTr

.



Page 6 of 12Wang and Fu ﻿Chin. J. Mech. Eng.          (2018) 31:102 

inventory Ii,t and the order backlog Bi,t , as well as the 
corresponding stock holding cost CHiIi,t and out-of-stock 
cost CHiBi,t are obtained by simulation, thus the effec-
tive inventory of each node EIi,t is calculated, where 
EIi,t is defined as the difference value of Ii,t and Bi,t , i.e., 
EIi,t = Ii,t − Bi,t [4–8]. According to the largest Lyapunov 
exponent LLE corresponding to EIi,t , we can depict quan-
titatively the nonlinear behaviour modes of the supply 
chain system [7, 10, 11], i.e., if the LLE is positive, the sys-
tem is chaotic; otherwise the system is stable, periodic or 
quasi-periodic, where the LLE is calculated by a method 
of small data sets [29].

4.3 � Distribution of Behaviour Modes and Operating Cost 
at Each Node in the Benchmark Model

According to Sections 2 and 3, as well as Sections 4.1 and 
4.2, we can obtain the LLE distribution �imax(αI ,αSL) and 
the corresponding operating cost distribution Ci(αI ,αSL) 
( i = R, D, M, S ) of each node in the benchmark model, 
shown as Figures 3 and 4, where the values of the right 
color scale marked at the figure denote the LLE and the 
total average cost, respectively.

It can be seen from Figure 3 that,

	 i.	 From the downstream node (retailer) successively 
to the upstream node (supplier), the blue area 
( �imax ≤ 0, corresponding to stable or periodic 
behaviour mode) is gradually reduced, while the 
non blue area ( �imax > 0, corresponding to cha-
otic/hyperchaotic behaviour mode) is inchmeal 
increased, and the color of the area is in a gradual 
transition from mainly green (smaller LLE value 
means weaker chaotic degree) to dominated yel-
low with saffron yellow (bigger LLE value means 
stronger chaotic degree), which indicates that along 
the supply chain from the downstream node to the 
upper-stream node, more and more complex the 
behaviours of the system appear, more and more 
prominent the chaotic range and degree become, 
i.e., there exists so-called “chaos amplification” phe-
nomenon [10, 11];

	 ii.	 There exists so-called “chaotic corner” [7, 10] in the 
distributions of behaviour mode at each node, i.e., 
the region at the lower right corner of these figures 

Figure 3  �imax distribution of effective inventory for each node in the parameter space (αI ,αSL)
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(hereinafter referred to as “lower chaotic corner”), 
where the solutions with different properties are 
complicatedly mixed, and from the downstream 
node to the upperstream node, the “chaotic corner” 
region gradually diffuses into the upper right cor-
ner of these figures, which means that there exists 
so-called “upper chaotic corner”, and is not men-
tioned in Refs. [7, 10, 11];

	iii.	 Although each node belongs to a part of the sup-
ply chain system, and there exists a relation of 
information and goods flow between the adjacent 
nodes, the states and behaviours at each node seem 
to have relative independence, which means that 
for the same (αI ,αSL) values, not only is the mag-
nitude of the LLE values of each node different, but 
also there may exist difference between the proper-
ties of the corresponding behaviour modes, i.e., it 
is stable for some node, but periodic or chaotic for 
other nodes, which can be proved by the effective 

inventory time series of each node and the research 
result of Hwarng et al. [10, 11].

It can be seen from Figure 4 that,

	 i.	 Corresponding to the “lower chaotic corner” in the 
distribution �imax(αI ,αSL) , there exist high cost 
areas at the lower right corner of the distribution 
Ci(αI ,αSL) of each node (hereinafter referred to as 
“lower loss corner”), where the operation cost and 
loss risk of node is higher.

	 ii.	 The distribution Ci(αI ,αSL) in the “lower loss cor-
ner” of each node shows more obvious hierarchical 
structure, where along the direction of the diago-
nal line αI = αSL in the parameter space (αI ,αSL), 
an approximately parallel banded region appears, 
and the corresponding cost value decreases suc-
cessively from the vertex at the lower right corner 
in the distribution Ci(αI ,αSL) along the direction 

Figure 4  Total cost per period Ci(αI ,αSL) distribution for each node in the parameter space (αI ,αSL)
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approximately perpendicular to the diagonal line 
αI = αSL.

	iii.	 From the downstream node (retailer) successively 
to the upstream node (supplier), the dark blue 
area (lower cost region) is gradually diminishing, 
while the non dark blue area (higher cost region) 
is inchmeal expanding, or the cost value in the 
“lower loss corner” is gently increasing, i.e., there 
exists so-called bullwhip effect or “cost amplifica-
tion” phenomenon, which is similar to the “chaos 
amplification” phenomenon in the distribution 
�imax(αI ,αSL) [10].

	iv.	 In the distribution �imax(αI ,αSL) and Ci(αI ,αSL) of 
each node, there exist all the corresponding “lower 
chaotic corner” and “lower loss corner”, respec-
tively, while only for the upstream manufacturer 
and supplier, there exists the “upper chaotic cor-
ner” besides the “lower chaotic corner”, but there 

does not exist the corresponding “upper loss cor-
ner” at the upper right corner in the distribution 
Ci(αI ,αSL) , which means that chaos is unnecessar-
ily corresponding to high cost, or rather, the “chaos 
amplification” does not completely respond to the 
bullwhip effect or “cost amplification”, and it is not 
mentioned in Refs. [7, 10, 11].

We can see that from the relation between Ci(αI ,αSL) 
and �imax(αI ,αSL) shown as Figure 5, the cost values of 
the downstream nodes (retailer and distributor) are 
not high despite �imax > 0 in some areas, however, 
these of the upstream nodes (manufacturer and sup-
plier, especially supplier) may remarkably increase for 
the same �imax.

Figure 5  Relation between Ci(αI ,αSL) and �imax(αI ,αSL) for each node



Page 9 of 12Wang and Fu ﻿Chin. J. Mech. Eng.          (2018) 31:102 

5 � Effect of Ordering Policies on the Distribution 
of Behaviour Mode and Operation Cost

Since the manufacturer is a core enterprise of the supply 
chain, and its cost CM(αI ,αSL) is main part of the sup-
ply chain cost, thereinafter we take the manufacturer 
as a typical object of investigation to mainly study the 
effect of different ordering policies on its distribution 
�Mmax(αI ,αSL) and CM(αI ,αSL), especially on the “chaotic 
corner” and “loss corner”, as shown in Figures 6, 7. 

We can see that from the comparison between Fig-
ures 6, 7 and Figure 3(c), as well as Figure 4(c), the order-
ing policies have significant effect on the distribution 
�Mmax(αI ,αSL) and CM(αI ,αSL).

	 i.	 Not only does ordering policy 2 make the non 
chaotic connected region embedded in the “lower 
chaotic corner” obviously increasing, but also the 
“upper chaotic corner” and the dark blue lowest 

cost area in the banded region approximately paral-
lel to αI = αSL almost disappear;

	 ii.	 Ordering policy 3 causes the distribution 
�Mmax(αI ,αSL) and CM(αI ,αSL) to fundamentally 
change, in the distribution �Mmax(αI ,αSL) , the 
“lower chaotic corner” connects with the “upper 
chaotic corner” into a piece of region approxi-
mately parallel to αSL axis, while the change of 
topological structure similar with the distribution 
�Mmax(αI ,αSL) also occurs in the corresponding 
distribution CM(αI ,αSL) , where the cost values in 
the entire region become distinctly bigger, and the 
degressive direction of cost turns from the direc-
tion approximately vertical to the diagonal line 
αI = αSL into αSL axis;

	iii.	 Not only does ordering policy 4 make the “lower 
chaotic corner” clearly minish, but also the “upper 
chaotic corner” vanishes, it is different from other 
cases that the “loss corner” usually with the larg-

Figure 6  Distribution of �Mmax and CM for the manufacturer in the case of different ordering policies
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est cost does not appear at the lower right corner 
of the distribution CM(αI ,αSL) , but transfers to the 
upper right corner corresponding to the “upper 
chaotic corner”, which results in the corresponding 
relation between the “chaotic corner” and the “loss 
corner” into disappearance;

	iv.	 Not only does ordering policy 5 make the area of 
the “lower chaotic corner” extend slightly, but also 
the “upper chaotic corner” vanishes, though the 
distribution CM(αI ,αSL) still has a normal topolog-
ical structure, the cost values in the entire region 
become remarkably bigger.

Figure 8 describes the relation between CM(αI ,αSL) and 
�Mmax(αI ,αSL) for the manufacturer in the case of differ-
ent ordering policies. It can be seen from the compari-
son between Figure 8 and Figure 5(c), that the ordering 
policies have remarkable effect on the relation between 
CM(αI ,αSL) and �Mmax(αI ,αSL) , where the cost values all 
shift evidently upward except ordering policy 2.

6 � Discussions and Conclusions
Ordering is the most basic behaviour in the operation of 
a supply chain system, while ordering policy is one of the 
most primary factors influencing the operating states of 
the system. In this paper, we have emphatically studied 
the effect of several ordering policies on the dynamics 
behaviour modes and operating cost of the supply chain 
system in discrete-type manufacturing industry.

The study shows that when the same ordering policy 
(i.e., ordering policy 1 in Section  3.1) with the original 
beer game model is adopted, the supply chain system 
model (i.e., the benchmark model in Section  4.1) in 
this paper has the similar distribution characteris-
tics of dynamics behaviour modes and operating cost 
in the ordering parameter space with the original beer 
game model, i.e., in the behaviour mode distribution 
�imax(αI ,αSL) so that there exist the “lower chaotic cor-
ner” [7, 10] and the “chaos amplification” phenomenon 
[10], while in the operating cost distribution Ci(αI ,αSL) 
there exist the “lower loss corner” corresponding to the 

Figure 7  Distribution of �Mmax and CM for the manufacturer in the case of different ordering policies
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“lower chaotic corner” and the “cost amplification” phe-
nomenon similar to the “chaos amplification”. The differ-
ence, however, is that there exists still the “upper chaotic 
corner” in the behaviour mode distribution �imax(αI ,αSL) 
of the upper stream nodes, while there does not exist 
the relevant “upper loss corner” in the cost distribution 
Ci(αI ,αSL) , which means that chaos is not always corre-
sponding to high cost, or say, the “chaos amplification” is 
not completely relevant to the “cost amplification”.

The research also indicates that using different order-
ing policies in the benchmark model of the supply chain 
system may lead to distinct variation in the topological 
structure of the distribution �imax(αI ,αSL) and Ci(αI ,αSL) , 
which may make not only the relevant relation between 
the “lower chaotic corner” and the “lower loss corner” no 

longer exist, but also the “upper chaotic corner” disap-
pear, and the “upper loss corner” appear, i.e., the relevant 
relation between the “chaotic corner” and the “loss cor-
ner” does not always exist.

In the view of reducing the cost of nodes or supply 
chain, we can select proper decision parameters in the 
policy space (αI ,αSL) to avoid the “chaotic corner” and 
the “loss corner”. Since the one-to-one corresponding 
relation between the “chaotic corner” and the “loss cor-
ner” does not always exist, thus each node can not select 
the ordering parameters simply according to the relevant 
relation between the “chaotic corner” and the “loss cor-
ner”. Adopting learning policy [24] or optimizing pol-
icy [30] is more effective method to select the ordering 
parameters.

Figure 8  Relation between CM and �Mmax for the manufacturer in the case of different ordering policies
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