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Abstract 

There are many achievements in the field of analytical mechanics, such as Lagrange Equation, Hamilton’s Principle, 
Kane’s Equation. Compared to Newton–Euler mechanics, analytical mechanics have a wider range of applications 
and the formulation procedures are more mathematical. However, all existing methods of analytical mechanics were 
proposed based on some auxiliary variables. In this review, a novel analytical mechanics approach without the aid of 
Lagrange’s multiplier, projection, or any quasi or auxiliary variables is introduced for the central problem of mechanical 
systems. Since this approach was firstly proposed by Udwadia and Kalaba, it was called Udwadia–Kalaba Equation. It 
is a representation for the explicit expression of the equations of motion for constrained mechanical systems. It can 
be derived via the Gauss’s principle, d’Alembert’s principle or extended d’Alembert’s principle. It is applicable to both 
holonomic and nonholonomic equality constraints, as long as they are linear with respect to the accelerations or 
reducible to be that form. As a result, the Udwadia–Kalaba Equation can be applied to a very broad class of mechani‑
cal systems. This review starts with introducing the background by a brief review of the history of mechanics. After 
that, the formulation procedure of Udwadia–Kalaba Equation is given. Furthermore, the comparisons of Udwadia–
Kalaba Equation with Newton–Euler Equation, Lagrange Equation and Kane’s Equation are made, respectively. At last, 
three different types of examples are given for demonstrations.
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1  Introduction
Classical mechanics is divided into Newton–Euler 
mechanics [1] and analytical mechanics (i.e., Lagrangian 
mechanics) [2, 3]. In 1687, Sir Isaac Newton proposed 
three fundamental laws of motion for a hypothetical 
object called particle, which is the physical foundation of 
classical mechanics. In the 18th century, Euler extended 
Newton’s laws to rigid bodies. In Newton–Euler mechan-
ics, forces are divided into internal forces (originating 
wholly from within the system) and external forces (origi-
nating from outside the system).

Lagrange divided the forces into constraint forces 
(depending exclusively on the constraints) and given (or 

impressed) forces (depending on physical coefficients). 
Generalizing the d’Alembert’s principle  [4, 5] for stat-
ics, Lagrange formulated the analytical mechanics via 
the notions of “virtual displacement” and “virtual work” 
in 1788. Lagrange introduced “generalized coordinates” 
(also called Lagrange coordinates) to reduce the num-
ber of equations of both motion and constraints. In 
Lagrange’s equation of motion, the Lagrange multiplier 
part is added to describe the motion of the constrained 
system [6, 7]. However, Lagrange multipliers are not 
explicitly represented as functions of the generalized 
coordinates and generalized velocities.

Subsequent to Lagrange, Hamilton developed ana-
lytical mechanics with his well-known Hamilton’s 
Principle [8] in 1834, which provides an alternative 
derivation of Lagrange’s equations. Hamilton’s equa-
tion of motion [9] is founded on a relation between 
momentum and kinetic energy. In the 1840’s, Jacobi 
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proposed an integration theory of dynamics to describe 
the motion of the system, which we call Jacobi’s inte-
gral [10]. In the 1870’s, Routh’s method for ignorable 
coordinates was presented as an alternative elimination 
procedure to obtain the equation of motion [10]. Gauss 
Principle  [11] for inequality constraints and Appell’s 
equations for unconstrained systems were founded in 
1879. Soon afterwards Appell explored the dynamics of 
nonholonomic systems under linear (or Pfaffian) veloc-
ity constraints [12]. Between 1910’s and 1930’s, Appell 
and Hamel explored the dynamics of nonholonomic 
systems under nonlinear velocity constraints [10, 13]. 
Hamel’s method of formulating the constrained equa-
tion of motion embedded the constraint into the kinetic 
energy of the unconstrained motion directly [14]. Quasi 
variables in Hamel’s method are not physically measur-
able [15]. This method seemed to be simple, intuitive, 
but not always available [16, 17]. In the 1960’s, Kane 
developed an equation based on the use of quasi-veloc-
ities [18, 19].

Despite all these great developments in classical 
mechanics and principles of mechanics [5, 20–23], 
there had been one missing piece. For systems subject 
to nonholonomic constraints, the analytical expressions 
of the equations of motion were still either not avail-
able or practical. All existing methods only provided the 
equation of motion in terms of some auxiliary variables 
(such as the Lagrange multiplier or other quasi variables 
[24–26]), in addition to the generalized coordinates. This 
had hindered certain fundamental explorations, such as 
stability, chaos, bifurcation, which are mostly performed 
based on the analytic expressions. Hence, the research of 
this ultimate analytical form of the equations of motion 
of constrained systems continued.

A major breakthrough was made in the 1990’s. Udwa-
dia and Kalaba proposed a novel approach to this cen-
tral problem in classical mechanics [27–31]. It can be 
proved via the Gauss principle, d’Alembert’s principle, 
or extended d’Alembert’s principle [32–35]. This creative 
approach provides the analytical expression of the equa-
tion of motion of a constrained mechanical system, where 
the constraints can be holonomic and/or nonholonomic. 
The constraint force is represented in closed form: only 
based on the generalized coordinates/velocities. No other 
auxiliary variables are needed. This is by far the simplest 
form and completed the quest which lasted for more than 
200 years (since 1788).

In this review paper, we present the Udwadia–Kalaba 
Equation in a straightforward and approachable manner. 
We utilize examples to further illustrate the Udwadia–
Kalaba Equation. These will demonstrate the applicabil-
ity of the equation to a very broad range of engineering 
problems.

2 � Equation of Motion of Unconstrained System
Consider an unconstrained mechanical system described 
by an n dimensional coordinate q ∈ Rn, velocity q̇ ∈ Rn, 
and acceleration q̈ ∈ Rn . The dynamic model of the uncon-
strained mechanical system can be represented by

where M(q, t) ∈ Rn×n is the inertia matrix, 
F(q, q̇, t) ∈ Rn includes the given force (also called the 
impressed force), Coriolis/centrifugal force, and gravi-
tational force [7]. The functions M(·) : Rn × R → Rn×n 
and F(·) : Rn × Rn × R → Rn are continuous.

Remark 1.  Equation  (1) can be obtained through the 
use of Newton–Euler mechanics or analytical mechanics. 
We omit the details since this is often discussed in stand-
ard mechanics books (for example, Refs. [1, 7]).

We now demonstrate this via examples.

Example 1.  Consider a particle m that makes a hori-
zontal projectile motion under the influence of gravity.

With respect to a Cartesian coordinate system which is 
rigidly attached to an inertial reference frame, let x denote 
the horizontal coordinate and y denote the vertical coordi-
nate. The equation of motion is given by

where g is the gravitational constant. This is in the form 
of Eq.  (1) with q = [x y]T, the inertia matrix 

M =

[

m 0
0 m

]

 , and the given force F =

[

0
−mg

]

.

With respect to polar coordinate, we let r denote the 
radial coordinate or radius, θ denote the angular coordi-
nate. The relation between Cartesian coordinate and polar 
coordinate is followed by

Differentiating Eq. (3) with respect to t yields

After continue differentiating Eq. (4), we obtain 

Combining Eqs. (2) and (5) leads to

(1)M(q, t)q̈ = F(q, q̇, t),

(2)
[

m 0
0 m

][

ẍ
ÿ

]

=

[

0
−mg

]

,

(3)
{

x = r cos θ

y = r sin θ .

(4)

{

ẋ = ṙ cos θ − rθ̇ sin θ ,

ẏ = ṙsinθ + rθ̇ cos θ .

(5)

{

ẍ = (r̈ − r θ̇
2
) cos θ − (rθ̈ + 2ṙθ̇ ) sin θ ,

ÿ = (r̈ − r θ̇
2
) sin θ + (rθ̈ + 2ṙθ̇ ) cos θ .
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After multiplying by cos θ on the first equation of Eq. (6) 
and by sin θ on the second equation of Eq. (6) and adding 
them, we have 

After multiplying by sin θ on the first equation in Eq. (6) 
and by cos θ on the second equation in Eq. (6) and subtract-
ing them, we have

Therefore, the equation of motion in polar coordinate 
is given by

where q = [r θ ]T, the inertia matrix M =

[

m 0
0 m

]

 , the 

given force F =

[

mr θ̇
2
−mg sin θ

−2mṙθ̇−mg cos θ
r

]

.

3 � Constraints
In practice, the motions of mechanical systems are always 
constrained in some way [36–39].

Definition 1.  A constraint of the form f (q, t) = 0 , or 
reducible to that form, is called a holonomic constraint. 
Every constraint not of this form, or not reducible to it, is 
called nonholonomic [1].

According to whether the holonomic constraints 
depend explicitly on time or not, they can be classified 
into scleronomic or rheonomic.

Definition 2.  A holonomic constraint of the form 
f (q) = 0 , or reducible to it, is called scleronomic. Every 
holonomic constraint not of this form (hence in the form 
of f (q, t) = 0 ), or not reducible to it, is called rheonomic 
[1].

In analytical mechanics, it is traditionally crucial to 
identify the holonomicity of constraints. The following 
lemma is introduced firstly, which will be used latter.

Lemma 1.  Consider the following Pfaffian form of con-
straint (in which q = [x y z]T ) [1] 

(6)

{

(r̈ − r θ̇
2
) cos θ − (rθ̈ + 2ṙθ̇ ) sin θ = 0,

(r̈ − r θ̇
2
) sin θ + (rθ̈ + 2ṙθ̇ ) cos θ = −g .

(7)r̈ = r θ̇
2
−g sin θ .

(8)θ̈ =
−2ṙθ̇ − g cos θ

r
.

(9)
[

m 0
0 m

][

r̈

θ̈

]

=

[

mr θ̇
2
−mg sin θ

−2mṙθ̇−mg cos θ
r

]

,

The constraint is holonomic if and only if

where α, β, and γ are functions of x, y, and z.
This is a necessary and sufficient condition. If the con-

straint is not holonomic, then it is nonholonomic. Differ-
ent types of constraints can be seen in the following three 
examples. Here, we assume x, y, z are the coordinates.

Example 2: (Scleronomic constraint)  Consider a 
constraint

It shows that Eq. (12) is scleronomic. Take the integral 
of Eq. (12) with respect to the time t, then we reformulate 
the equation as

where L is a constant. According to Definitions 1 and 2, 
we know that constraint Eq.  (12) is not only holonomic 
but also scleronomic.

Example 3: (Rheonomic constraint)  Consider a 
constraint

It shows that Eq. (14) is rheonomic. Take the integral of 
Eq.  (14) with respect to the time t, then we reformulate 
the equation as

where L is a constant. According to Definitions 1 and 2, 
we know that constraint Eq.  (14) is not only holonomic 
but also rheonomic.

Example 4: (Nonholonomic constraint)  Consider a 
constraint

with α = 1 , β = 2z , γ = 1 , we have

According to Lemma 1, we conclude that the constraint 
Eq. (16) is nonholonomic.

(10)αdx + βdy+ γdz = 0.

(11)

α

(

∂β

∂z
−

∂γ

∂y

)

+ β

(

∂γ

∂x
−

∂α

∂z

)

+ γ

(

∂α

∂y
−

∂β

∂x

)

= 0,

(12)ẋ + 2yẏ+ ż = 0.

(13)x + y2 + z + L = 0,

(14)ẋ + 2yẏ+ ż = 1.

(15)x + y2 + z − t + L = 0,

(16)ẋ + 2zẏ+ ż = 0,

(17)

α

(

∂β

∂z
−

∂γ

∂y

)

+ β

(

∂γ

∂x
−

∂α

∂z

)

+ γ

(

∂α

∂y
−

∂β

∂x

)

= 1 �= 0.
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The standard second order form of constraints in 
Udwadia and Kalaba’s setting [27] is given by

where A(q, q̇, t) ∈ Rm×n , b(q, q̇, t) ∈ Rn.

Assumption 1.  (i) Rank A(q, q̇, t) ≥ 1 . (ii) The second 
order constraint Eq.  (18) is consistent. That is, for given 
A(q, q̇, t) and b(q, q̇, t) , there exists at least one solution q̈ 
to Eq. (18).

The constraint Eq. (18) encompasses a very broad vari-
ety of constraints [40]. It includes both holonomic and 
nonholonomic constraints. For example, the holonomic 
constraints of the form f (q, t) = 0 can be taken the sec-
ond-order derivative with respect to time t while non-
holonomic constraints of the form f (q, q̇, t) = 0 can be 
taken once with respect to time t to obtain the form of 
Eq. (18).

The standard form of the constraint in Example 2 can 
be reformulated as

where A = [1 2y 1], q = [x y z]T,b = −2 ẏ2 . The stand-
ard form of the constraint in Example 3 is the same as 
Eq. (19). The standard form of the constraint in Example 
4 can be reformulated as

where A = [1 2z 1], q = [x y z]T, b = −2ẏż. We now 
generalize our results in the following two cases.

Case I.  Suppose the system is restricted by m con-
straints in the first order form (Pfaffian representation) of

or equivalently in the form of

Taking the derivative of Eq. (22) yields

(18)A(q, q̇, t)q̈ = b(q, q̇, t),

(19)
�

1 2y 1
�





ẍ
ÿ
z̈



 = −2 ẏ2,

(20)
�

1 2z 1
�





ẍ
ÿ
z̈



 = −2ẏż,

(21)

n
∑

j=1

Aij(q, t)dqj + ci(q, t)dt = 0, i = 1, 2, . . . ,m,

(22)
n

∑

j=1

Aij(q, t) q̇j +ci(q, t) = 0, i = 1, 2, . . . ,m.

(23)

n
∑

j=1

Aij(q, t) q̈j +

n
∑

j=1

d

dt
Aij(q, t) q̇j +

d

dt
ci(q, t) = 0,

where

and

Let

we can reformulate Eq. (23) in the form of

Expressing Eq.  (26) in matrix form with A = [Aij]m×n 
and b = [b1 b2 · · · bm]

T , leads to the standard sec-
ond order form Eq. (18).

Case II.  Suppose the system is restricted by m con-
straints in the form of

Taking the derivative of Eq. (27) leads to

or equivalently in the Pfaffian form

Notice that Eq. (28) is in the form of Eq. (22) with

Then we take the same procedure as in Case I to obtain 
the standard form Eq. (18).

Remark 2.  In Udwadia–Kalaba’s setting, it considers 
only those constraints which can be expressed as linear 
equality relations with respect to the accelerations of the 
particles of the system. That is, the constraint of the form 
Eq.  (18), or that can be differentiated to it, is applied to 
Udwadia–Kalaba Equation.

(24)
d

dt
Aij(q, t) =

n
∑

k=1

∂Aij(q, t)

∂qk
q̇k +

∂Aij(q, t)

∂t
,

(25)
d

dt
ci(q, t) =

n
∑

k=1

∂ci(q, t)

∂qk
q̇k +

∂ci(q, t)

∂t
.

bi(q, q̇, t) := −

n
∑

j=1

d
dt
Aij(q, t) q̇j −

d
dt
ci(q, t),

(26)
n

∑

j=1

Aij(q, t) q̈j = bi(q, q̇, t), i = 1, 2, . . . ,m.

(27)fi(q, t) = 0, i = 1, 2, . . . ,m.

(28)
n

∑

j=1

∂fi(q, t)

∂qj
q̇j +

∂fi(q, t)

∂t
= 0,

(29)
n

∑

j=1

∂fi(q, t)

∂qj
dqj +

∂fi(q, t)

∂t
dt = 0.

Aij(q, t) =
∂fi(q,t)
∂qj

, ci(q, t) =
∂fi(q,t)

∂t .



Page 5 of 14Zhao et al. Chin. J. Mech. Eng.          (2018) 31:106 

4 � Moore–Penrose (MP) Inverse
We start with introducing the mathematical preliminaries.

Definition 3.  Consider a matrix W ∈ Rp×q with  
rank r ≥ 1 . Its singular values are given by δ1 ≥ δ2 ≥ · · ·

≥ δr > 0 . Suppose that its singular-value decomposition 
is given by U�VT, where both U = {u1, · · · ,ur} ∈ Rp×r 
and V = {v1, · · · , vr} ∈ Rq×r are unitary matrices [10]:

with � = [diag(δi)]r×r . . Here, {u1, · · · ,ur} and 
{v1, · · · , vr} are orthonormal sets of vectors in Rp and Rq , 
respectively. The Moore–Penrose inverse W+ ∈ Rq×p of 
W is given by

Lemma 2.  The q × p matrix W 0 is the MP inverse W+ 
of W if and only if the following conditions hold [41]:

Moreover, W+ is unique. Conditions (34) and (35) imply 
that the matrices WW 0 and W 0W  are symmetric.

Some propositions of MP inverse are provided as follows 
to help with finding the MP inverse [27, 42, 43].

Proposition 1.  (�A)+ = A+/� , where � is a nonzero 
scalar.

Proposition 2.  If a is a nonzero 1 by n row vector, then 
a+ = aT/(aaT).

Proposition 3.  If a is a nonzero n by 1 column vector, 
then a+ = aT/(aTa).

Proposition 4.  If a is a nonzero 1 by n vector, then 
(aTa)+ = (aTa)/(aaT)2.

Proposition 5.  If A =

[

B 0
0 C

]

 , then A+ =

[

B+ 0
0 C+

]

 , 

where B and C are modules of matrix A.

(30)W = U�VT =

r
∑

i=1

diuiv
T
i ,

(31)W+ = V�
−1UT.

(32)WW 0W = W ,

(33)W 0WW 0 = W 0,

(34)WW 0 = (WW 0)
T,

(35)W 0W = (W 0W )T.

5 � Udawadia–Kalaba Equation
We consider the mechanical system (1) is subject to 
the constraint (18).

Assumption 2.  The inertia matrix M(q, t) is positive 
definite: For each (q, t) ∈ Rn × R , M(q, t) > 0.

Subject to Assumptions 1 and 2, the Udawadia–
Kalaba Equation of the corresponding constrained 
mechanical system is given by [27] 

Here FC(q, q̇, t) ∈ Rn is the constrained force.
Subject to Assumptions 1 and 2, the constraint force 

FC always exists. The constrained mechanical system 
Eq.  (36) meets the constraint Eq.  (18). The constraint 
force is obtained in closed form (i.e., analytical form).

This Udawadia–Kalaba Equation can be derived via 
the Gauss principle [44], d’Alembert’s principle [45], or 
extended d’Alembert’s principle [46, 47].

So far, the Udawadia–Kalaba Equation is the only 
equation that is without the use of Lagrange multi-
plier, projection, or any quasi or auxiliary variables. It 
does not increase the dimension of the original uncon-
strained system. All it takes is to find the MP inverse of 
the designated matrix. Therefore, it is simple, straight-
forward, and practical. The equation can be applied to 
a very broad range of problems. Its applications can be 
found in, e.g., Refs. [48–53].

6 � Comparison with Other Methods
The Udwadia–Kalaba Equation provides a novel approach 
of describing the motion of discrete mechanical systems, 
which is different from other methods such as Newton–
Euler Equation, Lagrange Equation [54], Maggi approach 
[55] or Kane’s Equation [19]. Next, we will compare Udwa-
dia–Kalaba Equation with some of these approaches.

6.1 � Comparison with Newton–Euler Equation
Consider a rigid body B . With respect to a coordinate 
system, rigidly attached to B , whose origin is a point P 
and not necessarily coincident with the center of mass of 
B , the Newton–Euler Equation is in the form of

(36)















M(q, t)q̈ = F (q, q̇, t)+ FC(q, q̇, t)

FC(q, q̇, t) = M
1
2 (q, t)[A(q, t)M−

1
2 (q, t)]+

× [b(q, q̇, t)− A(q, t)M−1(q, t)F (q, q̇, t)].

(37)

[

mIz −m[c]×

−m[c]× Icm −m[c]×[c]×

][

aP
α

]

+

[

m[c]×[c]×c
[ω]×(Icm −m[c]×[c]×)ω

]

=

[

F
τP

]

.
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Here

and

denote skew-symmetric cross product matrices, c is the 
location of the center of mass, m is the mass, aP is the 
acceleration, Icm is the moment of inertia, ω is the angular 
velocity, α is the angular acceleration, F is the total force 
(including internal and external), τP is the total moment.

There are two major differences with the Udwadia–
Kalaba Equation.

First, the Newton–Euler Equation is typically repre-
sented in terms of physical coordinates (such as Carte-
sian, cylindrical, or spherical), while Udwadia–Kalaba 
Equation can be formulated, in addition to physical coor-
dinates, generalized coordinates.

Second, forces in Newton–Euler Equation are divided 
into internal forces (originating wholly from within the 
system) and external forces (originating from outside the 
system). Forces in Udwadia–Kalaba Equation are divided 
into given (or impressed) forces (depending on physical 
coefficients) and constraint forces (depending exclusively 
on the constraints). It is emphasized that internal/exter-
nal distinction of forces is different from given/constraint 
distinction. That is to say, in general, the constraint force 
is not the same as internal force and the given force is not 
the same as external force. The number of internal forces, 
despite of the characterization of the Newton’s third 
law, is often greater than the constraints, hence cannot 
be uniquely determined. That makes the Newton–Euler 
Equation hard to formulate when the system is subject to 
constraints. The constraint force, on the other hand, can 
be solved analytically in Udwadia–Kalaba Equation.

6.2 � Comparison with Lagrange Equation
Although the Udwadia–Kalaba Equation is similar to 
Lagrange Equation in the classification of forces and the 
use of constraints, their representations of constraint 
forces are totally different. There is no Lagrange’s mul-
tiplier, projection, or any quasi or auxiliary variables in 
the Udwadia–Kalaba Equation. Comparing to Lagrange 
Equation, Udwadia–Kalaba Equation is simpler. It pro-
vides the closed-form constraint force for a large classes 
of constrained mechanical systems, which is subject to 
the d’Alembert’s principle (i.e., the totality of the virtual 

(38)[c]× =





0 −cz cy
cz 0 −cx
−cy cx 0





(39)[ω]× =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0





work done by the constraint force is zero [1]) and drives 
the mechanical systems to follow the constraints.

Consider the same mechanical system Eq.  (1) in Sec-
tion 2. Notice that, in Lagrange Equation, the coordinate 
q ∈ Rn is a generalized coordinate, which can be denoted 
as q = [q1 q2 · · · qn]

T . Suppose that the system is 
under m(< n) constraints Eq. (22), or equivalently in the 
matrix form of

where A = [Aij]m×n,c = [c1 c2 · · · cm]
T. Let Q(q, q̇, t)

= [Q1 Q2 · · · Qn]
T denote the generalized force, 

Qc = [Qc
1 Q

c
2 · · · Qc

n]
T denote the constraint force, 

δq = [δq1 δq2 · · · δqn]
T denote the virtual displacement. 

The virtual displacement δq is governed by

According to Ref. [13], for each j = 1, 2, . . . , n , we have

Adopting the Lagrange’s form of d’Alembert’s principle 
(also called the fundamental equation) yields

or in the matrix form

After the use of the Principle of Relaxation of the 
constraints [14], for each j = 1, 2, · · · , n, the resulting 
Lagrange Equation is given in the form of

where �i denote the Lagrange’s multiplier. The con-
straint force component Qc

j =
∑m

i=1 Aij(q, t)�i . Rewriting 
Eq. (45) in the matrix form yields

where � = [�1 �2 · · · �m]
T, AT(q, t)� denotes the con-

straint force Qc.

(40)A(q, t)q̇ = c(q, t),

(41)
n

∑

j=1

Aij(q, t)δqj = 0, i = 1, . . . ,m.

(42)
d

dt

∂T (q, q̇, t)

∂ q̇j
−

∂T (q, q̇, t)

∂qj
= Qj(q, q̇, t)+ Qc

j .

(43)

n
∑

j=1

[

d

dt

∂T (q, q̇, t)

∂ q̇j
−

∂T (q, q̇, t)

∂qj
− Qj(q, q̇, t)

]

δqj = 0,

(44)

[

d

dt

∂T (q, q̇, t)

∂ q̇
−

∂T (q, q̇, t)

∂q
− Q(q, q̇, t)

]T

δq = 0.

(45)

d

dt

∂T (q, q̇, t)

∂ q̇j
−

∂T (q, q̇, t)

∂qj
= Qj(q, q̇, t)+

m
∑

i=1

Aij(q, t)�i,

(46)

d

dt

∂T (q, q̇, t)

∂ q̇
−

∂T (q, q̇, t)

∂q
= Q(q, q̇, t)+ AT(q, t)�,
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According to Ref. [1], the kinetic energy of the system 
in the terms of generalized coordinates is given by

where M(q, t) = MT(q, t),N (q, t) is an 1 by n vector, 
P(q, t) is a scalar. Substituting Eq. (47) into Eq. (46), then 
we have

Here the Lagrange multiplier � is in general solved 
numerically (with the exception of highly simplified 
examples) based on given initial condition q(t0) and 
q̇(t0) together with the constraint Eq.  (40). The term 
AT(q, t)� corresponds to the constraint force F c(q, q̇, t) 
in the Udwadia–Kalaba Equation. Since Eq.  (40) can 
be obtained the form of Eq.  (18) after taking derivative 
with respect to time t, the Udwadia–Kalaba Equation of 
the mechanical system Eq. (1) constrained by Eq. (40) is 
given by Eq. (36).

Comparing Udwadia–Kalaba Equation with Lagrange 
Equation, there are three major distinctions. First, the 
Lagrange multiplier λ should be solved numerically in 
general for each initial condition and constraint. The 
constraint force F c(q, q̇, t) in Udwadia–Kalaba Equation 
can always be represented in analytic form (i.e., closed 
form). Second, for a given constraint force F c(q, q̇, t) , the 
Lagrange multiplier is in fact non-unique (unless with 
more provision on the matrix AT(q, t) ). It is just that 
AT(q, t)� is unique. Third, the Udwadia–Kalaba Equa-
tion is represented by q and q̇ , no new variables are intro-
duced and used. The Lagrange Equation, in addition to 
q and q̇ , requires the extra Lagrange multiplier � ∈ Rm , 
hence raising the dimension of the system from n to 
n + m.

6.3 � Comparison with Kane’s Equation
The Kane’s equation was proposed by Thomas R. Kane 
[18]. It has been widely applied to many engineering sys-
tems for modeling, analysis, and control. If S is a simple 
nonholonomic system possessing c degrees of freedom in 
reference frames N, then the Kane’s equation

govern all motions of S in any reference frame. Here 
the generalized forces F̃ r and F̃⋆

r are obtained by using 
generalized speeds, inertia force, characteristics of the 
constraints, other kinematic quantities, etc. [18]. The 

(47)

T (q, q̇, t) =
1

2
q̇TM(q, t)q̇ + N (q, t)q̇ + P(q, t),

(48)M(q, t)q̈ = F (q, q̇, t)+ AT(q, t)�,

(49)
F (q, q̇, t) = Q(q, q̇, t)+

∂T (q, q̇, t)

∂q

−
dM(q, t)

dt
q̇ −

dNT(q, t)

dt
.

(50)F̃ r + F̃
⋆

r = 0, r = 1, 2, · · · , c,

generalized speeds (this is not to be confused with gen-
eralized velocities) are not necessarily physical quanti-
ties. Comparing Udwadia–Kalaba Equation with Kane’s 
Equation, one notable difference is that the former is 
always based on q and q̇ . No pseudo variables are needed. 
Furthermore, the Udwadia–Kalaba Equation does not 
distinguish holonomic constraints from nonholonomic 
constraints.

7 � Formulation Procedure
We show the procedure of formulating the Udwadia–
Kalaba Equation by the following flow chart. As shown 
in Figure 1, the procedure can be summarized as follows.

(1)	 Abstract and simplify the practical problem to 
mechanical system.

(2)	 Determine the proper coordinate and system 
parameters.

(3)	 Establish the unconstrained equation of motion 
based on the knowledge of Newton–Euler or 
Lagrange mechanics.

(4)	 Establish the constraint equation.
(5)	 Transform the constraint equation into standard 

form (second order form).
(6)	 Obtain the closed-form constraint force.
(7)	 Establish the constrained equation of motion.

8 � Illustrative Examples
In previous sections, the procedure of establishing 
the equation of constrained motion through Udwa-
dia–Kalaba Equation has been shown in details. In 
Sections  8.1 and 8.2, we will give examples to fur-
ther illustrate this approach. The advantages of Udwa-
dia–Kalaba Equation are not only in the modeling of 
constrained system, but also in the control design for 
constrained mechanical system [56–61]. For this point, 
we give an example in Section 8.3.

8.1 � Motion of Constrained Particle
Consider a particle of unit mass moving along a logarith-
mic spiral orbit. The unconstrained motion is described 
by Eq. (9). Since the particle is of unit mass, the equation 
of unconstrained motion can be simplified to be

Let

(51)
[

r̈

θ̈

]

=

[

r θ̇
2
−g sin θ

−2ṙθ̇−g cos θ
r

]

,

(52)a0 =

[

r θ̇
2
−g sin θ

−2ṙθ̇−g cos θ
r

]

.
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The constraint is described by

where r is the radius, θ is the angle, e is the Euler’s num-
ber ( e = limn→∞(1+ 1/n)n , e ≈ 2.71828 ). The first order 
derivative of Eq. (53) is given by

Taking the second order derivative of Eq. (53), we have 
the second order constraint

(53)

{

r = e0.1θ

θ = −t + 30,

(54)

{

ṙ = 0.1e0.1θ θ̇

θ̇ = −1.

(55)
[

1 −0.1e0.1θ

0 1

][

r̈

θ̈

]

=

[

0.01e0.1θ θ̇
2

0

]

,

where A =

[

1 −0.1e0.1θ

0 1

]

 , b =

[

0.01e0.1θ θ̇
2

0

]

 . Substitut-

ing m = 1 to Eq. (36), the constraint force yields

Hence, the Udwadia–Kalaba Equation is given by

For simulations, we choose the initial condition 
r(0) = e3 , θ(0) = 30 , ṙ(0) = −0.1e3 , θ̇ (0) = −1 . Then we 
simulate the equation of motion Eq.  (57) via MATLAB. 
Define the errors as

(56)

FC(q, q̇, t) = M
1
2 (q, t)[A(q, t)M−

1
2 (q, t)]+

× [b(q, q̇, t)− A(q, t)M−1(q, t)F (q, q̇, t)]

= A+(b− Aa0).

(57)
[

r̈

θ̈

]

=

[

r θ̇
2
−g sin θ

−2ṙθ̇−g cos θ
r

]

+ A+(b− Aa0).

(58)ε1 :=
√

(r − e0.1θ )2 + (θ + t − 30)2,

Figure 1  Formulation procedure of Udwadia–Kalaba Equation
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Figure  2 depicts the relation between r and θ. The 
radius r decreases with the decreasing of θ. Figure  3 
shows the time histories of r and θ, respectively. We 
notice that r settles to a very small magnitude after 
t ≥ 20 , while θ can be described as a linear function with 
respect to t. By using the relationship Eq.  (3) between 
Cartesian and polar coordinates, we have Figure  4 to 
show the trajectories of the constrained particle. Point G 
in Figure 4 is the starting point. Starting at G, the particle 
moves inward along the spiral. Figure 5 depicts the errors 
ε1 and ε2.

8.2 � Motion of Swarm Robotic System
Consider a swarm system consisting of five mobile robots 
moving in a horizontal road as shown in Figure  6. The 
equation of motion of the robot i is given by

where Mi =

[

mi 0
0 mi

]

 , qi = [xi yi]
T . In such a system, 

each robot has an interaction with another. Through the 
agent–agent interaction, the robots swarm system mim-
ics a collective behavior. Each agent is constrained by

Subject to the swarm properties [51], we choose the 
function Gij in the form of

(59)ε2 :=

√

(ṙ − 0.1e0.1θ θ̇ )2 + (θ̇ + 1)2.

(60)Mi q̈
i = Fi + Fc

i ,

(61)q̇i(t) = −

N
∑

j=1,j �=i

∇qiGij(q
i(t), qj(t)),

(62)Gij = −0.5

√

∥

∥qi − qj
∥

∥

2
+

1

2

∥

∥

∥qi − qj
∥

∥

∥

2
+50.

−30 −20 −10 0 10 20 30
0

5

10

15

20

25

Figure 2  Relation between r and θ in constrained system Eq. (57)

Figure 3  Histories of the particle in constrained system Eq. (57)
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−20

−15
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0
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Figure 4  Trajectory of the particle in constrained system Eq. (57)

Figure 5  Error of the constrained system Eq. (57)
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Differentiating Eq. (61) with respect to time t yields

Adopting Udwadia–Kalaba’s Equation of Motion, the 
constraint force of agent i is given by

here Ai = Ii , bi = ϕi . Let

(63)

q̈i =−

N
�

j=1,j �=i







�

ẋi − ẋj
ẏi − ẏj

�



1−
0.5

�

(xi − xj)2 + (yi − yj)2





+ 0.5

�

xi − xj
yi − yj

�

�

(xi − xj)
2 + (yi − yj)

2
�−

3
2

×
�

�

xi − xj
��

ẋi − ẋj
�

+
�

yi − yj
�

�

ẏi − ẏj

��

=: ϕi.

(64)Fc
i = M

1
2
i [AiM

−
1
2

i ]+[bi − AiM
−1
i Fi],

(65)βi(t) = q̇i(t)+

N
∑

j=1,j �=i

∇qiGij(q
i(t), qj(t)),

here βi can represent the error of the agent i relative to the 
ideal performance Eq. (61). If βi = 0 , the agent i behaves 
exactly identical to the ideal performance Eq.  (61). If 
βi �= 0 , then the behavior of agent i deviates from the 
ideal performance. Let β = [β1 β2 β3 β4 β5]

T 
denote the swarm system performance error.

For simulations, we choose mi = 2 kg, Fi = [0 0]T . 
The initial conditions are listed in Table 1. Figure 7 shows 
the trajectories of five robots under the constraint (61). 
The marked dots denote the robots’ initial positions. 
From Figure  7, we can see that, the robots never col-
lide, which aggregate towards the swarm center when 
they are far away from the swarm center and they move 
apart when they are too close with each other. Figure  8 
depicts the error magnitude ‖β(t)‖ under the constraint 
force obtained by Udwadia–Kalaba Equation. It can be 
seen that ‖β(t)‖ rapidly descends from a large initial mag-
nitude to a very small magnitude (less than 0.01), which 
verifies the accuracy of the closed-form solution Eq. (64).

8.3 � Motion of Constrained Flexible Joint Manipulator
In Figure 9, we consider a two-link flexible joint manipu-
lator to verify the effectiveness of Udwadia–Kalaba Equa-
tion. The system is described by the following equation 
[62] 

where q1 = [q(2) q(4)]T is link position vector, 
q2 = [q(1) q(3)]T is joint position vector, q = [qT1 qT2 ]

T 
represents the generalized coordinate for the system. The 
joint and link flexibility can be treated as linear torsional 
spring whose elasticity coefficient is K. D(q1) is the link 

(66)
{

D(q1)q̈1+C(q1,q̇1)q̇1+G(q1)+K (q1−q2)=0,
J q̈2−K (q1−q2)=u,

Swarm Center

Figure 6  A swarm system consisting of five mobile robots

Table 1  Initial conditions

Parameter i = 1 i = 2 i = 3 i = 4 i = 5

xi0 (m) 0 2 5 6 5

yi0 (m) 0 9 8 4 0

ẋi0 (m/s) 0.1 0.2 0.3 0.3 0.3

ẏi0 (m/s) 0.1 0.2 0.3 0.3 0.3

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

Swarm Center

Figure 7  Trajectories of five robots under the constraint force Eq. (64)
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inertia matrix and J is a diagonal matrix representing the 
inertia of actuators, C(q1, q̇1)q̇1 represents the Coriolis 
and centrifugal force, G(q1) is the gravitation force, and u 
is the input force from motors. These matrices are given 
by

where m1(m2) is the mass of link, l1 is the length of the 
first link, lc1(lc2) is the center position of the link (sup-
pose that mass is uniform on the link), g is gravitational 
constant and

(67)

D =

[

d11 d12
d21 d22

]

, C =

[

c11 c12
c21 c22

]

,

G =

[

(m1lc1 +m2l1)g sin q
(2)

+m2lc2g sin(q
(2)

+ q(4))

m2lc2g sin(q
(2)

+ q(4))

]

,

J =

[

J11 0

0 J22

]

, K =

[

K1 0

0 K2

]

,

(68)

d11 = m2(l
2
1 + l2c2 + 2l1lc2 cos q

(4))+m1l
2
c1 + I1 + I2,

d12 = m2(l
2
c2 + l1lc2 cos q

(4))+ I2,

d21 = d12,

d22 = m2l
2
c2 + I2,

c11 = −m1l1lc2 sin q
(4) q̇4,

c12 = −m2l1lc2 sin q
(4)(q̇4 + q̇2),

c21 = m2l1lc2 sin q
(4) q̇2,

c22 = 0.

For simplicity, we require that the velocities of the link 
angles meet the following constraint:

which means

Let β(t) = A(q1, t) q̇1−c(q1, t) stand for the tracking 
error of the constraint, according to Udwadia–Kalaba 
Equation, the constraint force should be

This in turn means that if a control in form of Eq. (71) is 
applied to such system, then the system should meet the 
constraint. Without loss of generality, for any initial con-
dition which is not satisfied the constraint, the following 
control can drive the system to meet the constraint

where P is a positive definite matrix.
The simulation is performed with m1 = m2 = 1 , 

l1 = 1 , lc1 = lc2 = 0.5 , K1 = K2 = 1 , I1 = I2 = 1 , 
J11 = J22 = 1,  g = 9.81 . The initial condition is 
q̇(2)(0) = 1 m/s and q̇(4)(0) = −0.1 m/s. Then, in the 
very beginning, the constraint is not satisfied since 
β = q̇(2)(0)+ q̇(4)(0) = 0.9 m/s �= 0 . By using the pro-
posed control scheme, system performance meets the 
constraints after a certain time (no more than 2  s). 

(69)q̇(2)+ q̇(4) = 0,

(70)A = [1 1], c = 0, b = 0.

(71)
Fc = D1/2(AD−1/2)+[b+ AD−1(C q̇1+G + q1)].

(72)

u = F c −DAT(AAT)−1P−1β

= D1/2(AD−1/2)+[b + AD−1(C q̇1+G + q1)]

−DAT(AAT)−1P−1β,
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Figure 8  The ‖β‖ history under the constraint force Eq. (64)

Figure 9  Two-link flexible joint manipulator mechanism
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Figure  10 shows the constrained system performance 
(i.e., �β� =

∥

∥q̇(2)+ q̇(4)
∥

∥ ). This corresponds to the Udwa-
dia–Kalaba-like control for asymptotic convergence. Fig-
ure 11 gives the trajectories of the link angles velocities 
q̇(2) and q̇(4) , respectively. 

9 � Conclusions
Udwadia and Kalaba departed from the conventional 
wisdom in distinguishing constrains into holonomic 
and nonholonomic by addressing second order form of 
constrains. As a result, an integrated framework is con-
structed to treat constraints. They then formulated the 
simplest form of equation of motion for constrained 
systems since 1788. The constraint force is represented 
in analytical (i.e., closed) form without invoking the 
use of Lagrange multiplier, projection method, or any 

quasi variables. The procedure of the Udwadia–Kalaba 
approach is rather straightforward. So far, the Udwa-
dia–Kalaba Equation is the simplest and most compre-
hensive equation of motion for constrained mechanical 
systems. Due to its simplicity and closed form, the Udwa-
dia–Kalaba Equation encompasses a wide range of appli-
cability. It applies to a wide class of constraints, whether 
holonomic constraints or nonholonomic constraints, so 
long as they are linear with respect to the accelerations 
or reducible to be that form. Besides, it provides a new 
approach to the control design for constrained mechani-
cal systems. We present examples to illustrate how to 
build the model and how to deal with the constraint. 
Furthermore, we demonstrate the performance of the 
Udwadia–Kalaba Equation via simulations. The Udwa-
dia–Kalaba Equation has greatly contributed to address 
the complex constrained motion. Since the MP inverse 
exists in the closed-form constraint force, a high-per-
formance computer is required when the constraints are 
comprehensive.
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