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Abstract 

The flexible job shop scheduling problem (FJSP) is considered as an important problem in the modern manufacturing 
system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are categorized 
as metaheuristic methods. Some of these methods normally consume more CPU time and some other methods are 
more complicated which make them difficult to code and not easy to reproduce. This paper proposes a modified 
iterated greedy (IG) algorithm to deal with FJSP problem in order to provide a simpler metaheuristic, which is easier 
to code and to reproduce than some other much more complex methods. This is done by separating the classical 
IG into two phases. Each phase is used to solve a sub-problem of the FJSP: sequencing and routing sub-problems. A 
set of dispatching rules are employed in the proposed algorithm for the sequencing and machine selection in the 
construction phase of the solution. To evaluate the performance of proposed algorithm, some experiments including 
some famous FJSP benchmarks have been conducted. By compared with other algorithms, the experimental results 
show that the presented algorithm is competitive and able to find global optimum for most instances. The simplicity 
of the proposed IG provides an effective method that is also easy to apply and consumes less CPU time in solving the 
FJSP problem.
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1  Introduction
The optimization of production scheduling can bring in 
considerable improvements in the manufacturing effi-
ciency [1]. Job-shop scheduling problem (JSP) is basically 
an NP-complete challenge [2]. JSP considers no flexibil-
ity of any resources (such as machines and tools) for each 
operation [1].

Modern manufacturing systems contain many flexible 
machines to increase the production efficiency. These 
machines are capable of processing several types of the 
operations. This gives the permission to break the defi-
nition of JSP where an operation can be processed by a 
single machine [1].

As an extension of the JSP, Flexible Job-shop Sched-
uling Problem (FJSP), which is known to be NP-hard 
[3], considers the flexible machines for each operation. 

Furthermore, the FJSP is considered to be more compli-
cated in comparison to the traditional JSP, as it dictates 
an extra decision level for the same scale in addition to 
the sequencing one, such as the operations routes [2].

Many approaches have been proposed to solve FJSP 
since first presented in 1990 [4]. The current methods for 
solving FJSP can be mainly categorized into; exact algo-
rithm, dispatching rules (DR), evolutionary algorithm 
(EA), swarm intelligence (SI) based approaches, local 
search (LS) algorithms, and so on [5].

While exact algorithms tend to be inefficient with large 
scale FJSP, other methods, such as EA and SI, are much 
more expensive regarding the consumption of computa-
tion time. Many of these algorithms are also complicated 
and in many cases they are too difficult to reproduce. 
This makes it difficult to apply these methods in real-life 
problems.

In this research, we try to present a modified iterated 
greedy (IG) algorithm, a simpler metaheuristic that is 
easier to code and reproduce. The classical IG is sepa-
rated into two phases to deal with the two sub-problems 
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of FJSP and it’s combined with a set of dispatching rules 
(DRs) to solve the FJSP. The simplicity and the effi-
ciency of IG and DRs shall result in an effective method 
which consumes less computation time and is easy to 
implement.

The remainder of this paper is arranged as follows. Lit-
erature review and problem definition are presented in 
Section 2. IG approach and the modified iterated greedy 
(MIG) is proposed in Section 3. Experimental studies are 
discussed in Section  4. Section  5 provides the conclu-
sions and future work.

2 � Literature Review and Problem Definition
2.1 � Literature Review
Several methods have been used to deal with the FJSP. 
These techniques are classified into two groups; the exact 
methods and the approximation methods [1]. Exact 
algorithms include mathematical programming (MP), 
while the approximation algorithms include some dis-
patching rules (DRs) and artificial intelligence (AI) based 
approaches.

Brucker and Schlie [4] proposed a polynomial graphi-
cal algorithm when they first presented the FJSP with two 
jobs. Demir and İşleyen [6] evaluated some mathematical 
models of the FJSP. However, it’s been proved by Pezzella 
et al. [7] that exact algorithms are ineffective when deal-
ing with large scale problems of FJSP.

Baykasoğlu and Özbakır [8] analyzed the effects of 
several DRs on the scheduling performance of job shops 
with different levels of flexibility and with different sizes 
of the problem. They proved that the performances of 
these DRs were approximately similar when dealing with 
high machine flexibility. On the other hand, different 
performances were obtained for zero machine flexibility. 
Ingimundardottir and Runarsson [9] created an auto-
selection of combined DR by converting them into meas-
urable contribution factors in the optimizing process of 
scheduling problems. Huang and Süer [10] adopted GA 
to explore the best combination of DR and used a “Hold” 
strategy for multi-objective JSS.

Evolutionary algorithms, such as genetic algorithm 
(GA), are an effective type of meta-heuristic methods. 
Zhang et al. [11] proposed a bi-level GA in an attempt to 
keep the advantages of preceding generations and reduce 
the disturbance of genetic operators. Later, an improved 
GA were proposed by Zhang et  al. [12] targeting a bet-
ter initialization and faster convergence. Huang et  al. 
[13] developed an improved GA using opposition-based 
learning. The method used a multi-parent precedence 
operation crossover and a modified neighbor search 
mutation with opposite inverse mutation.

Swarm intelligence (SI) algorithms mainly include ant 
colony optimization (ACO), particle swarm optimization 

(PSO) algorithm, and artificial bee colony (ABC). Xu 
et al. [14] used bat algorithm to solve a dual flexible job 
shop problems (DFJSP). That algorithm used crossover 
and mutation as well as an adjusted value of the inertia 
weight with a linear decreasing strategy to enforce the 
search ability of the algorithm. Wu et al. [15] proposed a 
hybrid algorithm based on ACO while providing a mod-
eling method based on 3D disjunctive graph.

Local search (LS) methods have been employed widely 
in solving the FJSP as well. The design of the neighbor-
hood structure contributes directly to the efficiency of 
the method [1]. Sobeyko and Mönch [16] developed an 
iterative local search approach to deal with the objec-
tive of total weighted tardiness in large-scale FJSP. The 
algorithm used SA acceptance criterion to avoid getting 
trapped in local optimum.

Many researchers attempted to combine several algo-
rithms to create some effective hybrid algorithms (HA) 
for FJSP. Palacios et  al. [17] also combined GA with TS 
and added heuristic seeding. The hybrid algorithm was 
used to solve the fuzzy FJSP. Gaham et al. [18] presented 
an operations permutation-based discrete harmony 
search method. That method adopted an integration of 
the solution harmony with a dedicated improvisation 
operator. In addition to an integrated modified intelligent 
mutation operator.

In short, exact algorithm cost less CPU time, but most 
of these algorithms were not able to give competitive 
solution quality in comparison with other methods. On 
the other hand, metaheuristics, such as evolutionary 
algorithms (EA) and swarm intelligence based algorithms 
(SI) have given effective solutions and better quality. 
However, such metaheuristics algorithms cost much 
more computation time.

In this research, we propose a modified iterated greedy 
algorithm (MIG) to reduce the cost by consuming less 
CPU time. MIG provides a simple and easily applicable 
method that can compete with more complex meta-
heuristics. The proposed algorithm MIG consists of two 
phases, each phase is derived from the classical IG to 
solve the two sub-problems of FJSP. Both phases use a set 
of dispatching rules (DRs) to solve the FJSP.

2.2 � Flexible Job Shop Problem Definition
For processing n jobs on m machines, the problem is to 
find the best solution that achieves the minimum or max-
imum value for an objective function. In the FJSP, there 
are a set of machines A = M1,…, Mm, and a set of jobs, 
J = J1,…, Jn so that each job Ji consists of a given sequence 
of ni operations, Oi,1, Oi,2,…, Oi,ni. Each operation Oi,j can 
be processed on any machine of a subset Ai,j ⊆ A which 
represents the routing sub-problem. The other sub-prob-
lem is the sequencing sub-problem which is to sequence 
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the operations on the machines. In this paper, the objec-
tive function is to minimize the makespan (maximal 
completion time) of all jobs.

In this research the following assumptions are 
considered:

1)	 All machines are available at time 0;
2)	 All jobs are released at time 0;
3)	 Each machine can process only one operation at a 

time;
4)	 Each operation can be processed without interrup-

tion on one of a set of available machines;
5)	 Recirculation occurs when a job could visit a machine 

more than once;
6)	 The order of operations for each job is predefined 

and cannot be modified.

The FJSP has been classified by Kacem et al. [19] into 
partial flexible job shop (P-FJSP) and total flexible job 
shop (T-FJSP). The flexibility of problems is partial 
when there exists a subset Ai,j of A (Ai,j ⊂ A) for at least 
one operation Oi,j, and it is total when Ai,j = A for all 
operations. For the same number of machines and jobs, 
although the T-FJSP has the larger solution space, the 
P-FJSP is more difficult to solve than the T-FJSP [19].

3 � Modified Iterated Greedy
3.1 � Classical Iterated Greedy
This algorithm was first proposed by Ruiz and Stützle 
[20] to solve traditional permutation flow shop schedul-
ing problems. The traditional IG consists of two distinct 
iterative phases; destructing some a part of the solution, 
and reconstructing this part by some greedy techniques 
including local search to improve the solution [20, 21]. 
The original IG has adopted NEH heuristics of Nawaz 
et al. [22] as its greedy constructive method.

Many works have been done later with IG; Ruiz and 
Stützle [23] used IG to solve FSP with sequence depend-
ent setup times, and it’s been used for node placement 
in street networks by Toyama et  al. [24], and for sin-
gle machine scheduling problems by Tasgetiren et  al. 
[25], and as a local search method for unrelated parallel 
machine scheduling by Fanjul-Peyro and Ruiz [21].

The simple IG has proved to be effective and able to 
obtain state-of-the-art outcomes for a variety of JSP with 
different objectives [26].

3.2 � Presented Algorithm (MIG)
The classical IG algorithm has been used in a wide range 
of scheduling problems according to Pan and Ruiz [26]. 
Although the algorithm was proposed to solve flow 
shop problems, some researchers used IG to deal with 
more complex problems like the hybrid flexible flow line 

problem as in Refs. [27, 28] and the blocking job shop 
scheduling problem by Pranzo and Pacciarelli [29].

Shop scheduling problems basically differs from each 
other by having different types or numbers of flexibility. 
By definition, operation flexibility is the possibility of per-
forming an operation on more than a machine, sequenc-
ing flexibility is the possibility of interchanging the 
sequence in which required manufacturing operations 
are performed and processing flexibility is possibility of 
producing the same manufacturing feature with alterna-
tive operations or sequence of operations.

According to this definition, we can consider that 
the main difference between flexible job shop schedul-
ing problem and job shop scheduling problem (JSP) is 
that flexible job shop problem dictates operation flex-
ibility. The FJSP could be separated into two sub-prob-
lems: routing (assigning operations to machines) and 
scheduling (sequencing the assigned operations on each 
machine) [30]. Hence, the modified iterated greedy must 
deal with both of the sub-problems. Basically, that is 
achieved by separating both of destruct and construct 
phases in the algorithm into two stages in which both 
sides of FJSP are resolved. Pan and Ruiz [31] stated that 
IG dictates an effective greedy reconstruction in order to 
outperform other algorithms. The NEH heuristics gives 
no contribution on decision making of machine selec-
tion, and it also has limited solution variety while study-
ing the FJSP. Therefore, NEH heuristics is replaced with a 
set of dispatching rules (DRs), to help with both decisions 
of sequencing and machine selection in reconstruction 
phase.

Figure 1 shows the flowchart of the MIG. The working 
of the algorithm is described below:

Step 1:	� Initialization, which is done randomly
Step 2:	� (Phase one) Destruct part of the solution 

machine selection
Step 3:	� (Phase one) Reconstruct machine selection
Step 4:	� (Phase two) Destruct sequence and machine 

selection for some operations
Step 5:	� (Phase two) Reconstruct the sequence and the 

machine selection for these operations
Step 6:	� Repeat the steps 2 through 5 until a stopping 

criterion is met.

3.3 � Destruct Phase
The first stage here is to destruct part of the schedule. 
This is done by dissociating some consecutive operations 
from their machines, without changing the sequence of 
these selected operations. On the other hand, the second 
stage is to destruct part of the sequence and the schedule. 
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This is done by removing some consecutive operations 
in from their sequence and dissociating them from their 
machines, later both sequence and machine selection will 
be reconstructed.

The destructed part is selected in one of either two 
ways:

1.	 The sequence is split into two parts and either one of 
these two part is destructed.

2.	 A number of consecutive operations are selected ran-
domly along the sequence to be destructed.

3.4 � Reconstruct Phase
In the first phase, reconstructing is to reassign the 
destructed operations from the existing sequence to 
machines using a set of dispatching rules as shown in 
Figure  2. This is done by comparing the quality of the 
sub-solution according to a randomly selected DR for 
all possible machines to process the operation. Then, the 
machine that achieves the sub-solution is selected.

Reconstructing in the second phase is to regenerate 
the destructed part of the sequence as in Figure  3. This 
is done by selecting two operations at a time. A DR is 
randomly selected and used to assess sequencing each of 
the two operations. The operation that results in a better 
sub-sequence is eventually selected.

3.5 � Dispatching Rules
As a special case of priority rules, dispatching rules (DRs) 
are a simple scheduling heuristic, which gradually con-
struct solutions by scheduling a single operation at a time 
[32, 33].

Due to their simplicity, sensitive nature, ease of use 
and the ability to fit a wide range of problem scale, DRs 
have been widely employed in solving scheduling prob-
lems [10, 33, 34]. DRs do not dictate high computational 
and information requirements [33]. Another important 
characteristic of DRs is their ability to adjust to dynamic 
changes [35]. These features encourage us to use DRs 
instead of NEH as the main heuristic to perform with IG 
for optimizing the FJSP.

It’s been proved that a random assigning of the oper-
ations to the machines gives no better convergence. 
Besides that there isn’t any dispatching rule that is alone 
capable to push forward the optimization process for 
any scheduling problem [36]. Thus, to make the selec-
tion procedure more intelligent, a set of dispatching 
rules (DRs) is used to assist machine selection procedure 
for each operation. Moreover, a favoring mechanism 
adopted by Ausaf et al. [37] is used to give more chance 
to more effective dispatching rules.

In general, researchers classified DRs into two main 
categories; online dispatching rules (dynamic DRs) and 
offline dispatching rules (static DRs) [38, 39].

3.5.1 � Offline Dispatching Rules
According to these dispatching rules, each operation will 
have a fitness value based on some analysis on the prob-
lem’s data. In this research, offline dispatching rules are 
used to optimize and construct the sequence of operation 
therefore the scheduling in FJSP. When two operations 
are selected, the fitness value is calculated according 
to an offline DP rule, and then the operation with the 
best value is placed in the sequence while these other 

Figure 1  Flowchart of the MIG

Figure 2  Construct phase–machine selection
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operation is kept with ready operations. The set of ready 
operations is updated and another two operations are 
selected after that and the procedure is repeated till the 
construction phase of the sequence is completed. The 
fitness value of an offline DP rule is calculated directly 
from the problem’s data before the optimization process. 
Hence, this fitness value remains constant for each pair 
of operation-DP rule. In this research, three offline dis-
patching rules are used as in Figure 4.

3.5.2 � Online Dispatching Rules
According to these dispatching rules, each pair machine-
operation will have a fitness value based on an analysis 
made on the current status of the machines in the sub-
solution. This fitness value can be calculated only right 
before assigning this operation to a machine. Hence, for 
the same pair machine-operation, it varies along itera-
tions due to the changes in the current sub-solution 
while constructing phase. In this research, 10 online dis-
patching rules are used (Figure 5).

The used dispatching rules can be categorized accord-
ing to the use in this research as below:

a)	 Dispatching rules used to select a machine for an 
operation: where all the available machines are 
considered for each operation, and then only one 
machine is selected according to the following.

1.	 Shortest processing time (SPT), selects the 
machine that does the operation within the 
shortest processing time.

2.	 Earliest start (ES), selects the machine that will 
start with this operation earlier.

3.	 Earliest finish (EF), selects the machine that is 
able to finish the operation earlier.

4.	 Least utilized machine (LUM), selects the 
machine that currently has the minimum work-
load.

5.	 Minimum idle time (MIT), selects the machine 
that achieves the least idle time.

6.	 Earliest machine interval (EMI), selects the 
machine with the minimum current interval.

7.	 Minimum gap per job (MGJ), selects the machine 
on which the gap between the operation and its 
preceding (the time that the job will be waiting 
for the machine) one is the smallest.

8.	 Combined rules (CR), in combined dispatching 
rules two or more rules are performed together. 
The function value of the first rule is calculated 
for both operations. In case both operations have 
the same function value for this rule, another rule 
is used to choose the best operations.

b)	 Dispatching rules used to select an operation in 
sequencing: Two operations are selected and com-
pared according to these rules, and then one of them 
is placed in the sequence. During this selection, the 
operations are already assigned to machines.

1.	 Shortest processing time (SPT), selects the opera-
tion with the shorter processing time.

Figure 3  Construct phase–sequencing

Figure 4  Using offline dispatching rules to build the sequence

Figure 5  Using online dispatching rules for machine selection
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2.	 Maximum processing time per job (MPJ), selects 
the operation which belongs to the job with the 
longer processing time.

3.	 Least utilized machine (LUM), selects the oper-
ation which is done by the machine with the 
greater workload.

4.	 Latest machine interval (LMI), selects the opera-
tion that is done by the machine with the greater 
processing time interval.

5.	 Combined rules (CR), two or more rules are 
combined as in (b).

The first four of these dispatching rules were adopted 
previously by Ausaf et  al. [37]. Only four dispatching 
rules of the mentioned above are offline rules; SPT, MPJ, 
LUM (b) and LMI.

3.6 � Techniques Used to Control the Algorithm

1.	 Adjusting the split point position
	 A special function is used to adjust the split point. In 

case of exploitation, the split point is shifted to the 
right side, while in case of exploration; the split point 
is shifted to the left side. As is shown in Figure 6.

2.	 Adjusting the size of destructed part:
	 Increasing the number of destructed operations will 

give the exploration that is needed in the algorithm, 
while decreasing this number will support exploita-
tion process. The minimum and maximum sizes of 

the destructed part are determined initially for the 
instance. During the run, the algorithm starts with 
the minimum size, and increases gradually if the 
solution is not improving, when it reaches the maxi-
mum limit, the size decreases again for local search 
as in the previous Technique.

4 � Experiments and Discussion
The algorithm MIG has been coded in C++, and per-
formed by a computer with 3.2 GHz processor and with 
4.0 GB RAM memory. Three experiments of in total 35 
benchmark problems are used to test the performance of 
the proposed algorithm. The objective considered in this 
paper is to minimize the makespan. The best solutions 
are shown in bold red font in each experiment.

4.1 � Experiment 1
The data in this experiment includes 5 problems adopted 
from [40]. The results are compared in Table  1 with 6 
other algorithms; HA, GATS, TABC, HHS, HDE-N2 and 
hGA proposed by Li and Gao [1], Nouri et al. [41], Gao 
et  al. [42], Yuan et  al. [43], Yuan and Xu [44], and Gao 
et al. [45] respectively. The proposed (MIG) obtained the 
global optimum for all instances.

Table 2 shows the CPU time compared with the same 
algorithms. It’s clear that MIG consumed the lowest CPU 
time among other algorithms.

4.2 � Experiment 2
The data includes 20 instances adopted from Fattahi et al. 
[46]. The first ten consecutive instances are considered 
as small-scale FJSP, while the remaining ten instances 
are categorized as medium- and large-scale FJSP. The 
results are compared in Table 3 with 6 algorithms; HA, 
EPSO, EM2, MILP and HHS proposed by Li and Gao [1], 
Teekeng et  al. [47], Demir and İşleyen [6], Birgin et  al. 
[48] and Yuan et  al. [43] respectively. The data of AIA 
results are also taken from Yuan et al. [43].

The proposed algorithm (MIG) performed well on both 
small- and medium-scale instances. It obtains all opti-
mum solutions for small-scale instances. For medium-
scales problems, MIG outperforms HA, EPSO and HHS 
in two instances, and outperforms EM2 and MILP in Figure 6  Adjusting the split point position

Table 1  Results of Kacem data (experiment 1)

n × m HA GATS TABC HHS HDE-N2 hGA MIG

4 × 5 ‒ 11 11 ‒ 11 ‒ 11

10 × 7 ‒ 11 11 ‒ 11 ‒ 11

10 × 10 7 7 7 7 7 7 7

8 × 8 14 14 14 14 14 14 14

15 × 10 11 11 11 11 11 11 11
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3 instances. And finally, MIG outperforms AIA in 5 
instances. In short, for medium-scale problems MIG 
outperforms all algorithms in literature in two instances 
(MFJS01 and MFJS03). The obtained solutions for large-
scale instances were less competitive. For Large-scale 
problems, results for MIG are dominated by HA, EPSO 
and HHS. The Gantt charts for instances (MFJS01 and 
MFJS03) are shown in Figure 7 and Figure 8, respectively.

Table  4 shows that MIG consumed the least CPU 
time for all instances among the above mentioned 
algorithms.

4.3 � Experiment 3
The data in this experiment is adopted from Brandimarte 
[49], it contains 10 instances with number of jobs ranges 
from 10 to 20, and the number of machines ranges from 6 
to 15. We compared the results with 11 algorithms from 
literature; HA, HTGA, GATS, TABC, Heuristic, AMMA, 

HHS, hGA, TS, and IACO. These algorithm were pro-
posed by Li and Gao [1], Chang et  al. [50], Nouri et  al. 
[41], Gao et al. [42], Ziaee [51], Zuo et al. [52] and Yuan 
et  al. [43]. Results of AIA and TS are taken from Yuan 
et al. [43].

Table 2  CPU time comparison for instances in experiment 1

n × m HA GATS TABC HHS HDE-N2 hGA MIG

4 × 5 ‒ 0.05 0.47 ‒ 0.09 ‒ 0.00

10 × 7 ‒ 0.72 1.2 ‒ 0.46 ‒ 0.00

10 × 10 0.01 1.51 1.4 0.01 0.37 43.1 0.00

8 × 8 0.00 0.36 1.19 0.00 0.31 22.4 0.00

15 × 10 0.33 29.71 2.97 0.42 2.19 112.2 0.07

Table 3  Results of experiment 2

Ins. HA EPSO EM2 MILP AIA HHS MIG

SFJS01 66 66 66 66 66 66 66

SFJS02 107 107 107 107 107 107 107

SFJS03 221 221 221 221 221 221 221

SFJS04 355 355 355 355 355 355 355

SFJS05 119 119 119 119 119 119 119

SFJS06 320 320 320 320 320 320 320

SFJS07 397 397 397 397 397 397 397

SFJS08 253 253 253 253 253 253 253

SFJS09 210 210 210 210 210 210 210

SFJS10 516 516 516 516 516 516 516

MFJS01 468 468 468 468 468 468 462

MFJS02 446 446 446 446 448 446 446

MFJS03 466 466 466 466 468 466 450

MFJS04 554 554 564 564 554 554 554

MFJS05 514 514 514 514 527 514 514

MFJS06 634 634 634 634 635 634 634

MFJS07 879 879 928 879 879 879 881

MFJS08 884 884 – – 884 884 889

MFJS09 1055 1059 – – 1088 1055 1059

MFJS10 1196 1205 – – 1267 1196 1214

Figure 7  Gantt chart of instance MFJS01 (experiment 2)
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We can see in Table  5 that the proposed MIG out-
performs each of; Heuristic in 9 instances, GATS in 
7 instances, HTGA and AIA in 3 instances, TS in 2 
instances, and finally TABC in one instance. On the 
other hand, HA, AMMA, and HHS dominates MIG in 
3 instances, while TS and TABC outperforms MIG in 
2 instances as HTGA and AIA in one instance. Table  6 
shows the CPU time for each instance compared with 
CPU consumed by the above mentioned algorithms. 
MIG consumed less CPU time than all other algorithms. 
Only heuristic method is competitive with MIG regard-
ing the CPU time. Heuristic method consumed less CPU 

Figure 8  Gantt chart of instance MFJS03 (experiment 2)

Table 4  CPU time comparison for instances in experiment 2

Ins. n × m HA EM2 MILP AIA HHS MIG

SFJS01 2 × 2 0.00 0.03 0.00 0.03 0.00 0.00

SFJS02 2 × 2 0.00 0.10 0.01 0.03 0.00 0.00

SFJS03 2 × 2 0.00 0.05 0.05 0.04 0.00 0.00

SFJS04 3 × 2 0.00 0.04 0.02 0.04 0.00 0.00

SFJS05 3 × 2 0.00 0.06 0.04 0.04 0.00 0.00

SFJS06 3 × 3 0.00 0.28 0.01 0.04 0.00 0.00

SFJS07 3 × 5 0.00 0.03 0.00 0.04 0.00 0.00

SFJS08 3 × 4 0.00 0.16 0.04 0.05 0.00 0.00

SFJS09 3 × 3 0.00 1.26 0.01 0.05 0.00 0.00

SFJS10 4 × 5 0.00 0.06 0.02 0.05 0.00 0.00

MFJS01 5 × 6 0.00 0.78 0.26 9.23 0.01 0.00

MFJS02 5 × 7 0.00 49 0.87 9.35 0.01 0.00

MFJS03 6 × 7 0.02 191 1.66 10.06 0.12 0.002

MFJS04 7 × 7 0.02 1051 27.43 10.54 0.06 0.00

MFJS05 7 × 7 0.02 225 4.55 10.61 0.02 0.00

MFJS06 8 × 7 0.01 231 52.48 22.18 0.01 0.00

MFJS07 8 × 7 0.08 3600 1890 24.82 0.11 0.00

MFJS08 9 × 8 0.06 ‒ ‒ 26.94 0.08 0.00

MFJS09 11 × 8 0.48 ‒ ‒ 30.76 0.94 0.005

MFJS10 12 × 8 0.59 ‒ ‒ 30.94 0.69 0.005

Table 5  Results of experiment 3

Ins. n × m HA HTGA​ GATS TABC Heuristic AMMA AIA HHS TS IACO MIG

MK01 10 × 6 40 40 40 40 42 40 40 40 40 40 40

MK02 10 × 6 26 26 27 26 28 26 26 26 26 26 26

MK03 15 × 8 204 204 204 204 204 204 204 204 204 204 204

MK04 15 × 8 60 60 64 60 75 60 60 60 60 60 60

MK05 15 × 4 172 173 173 173 179 172 173 172 173 173 172

MK06 10 × 10 57 61 65 60 69 57 63 58 58 60 60

MK07 20 × 5 139 141 144 139 149 139 140 139 144 140 140

MK08 20 × 10 523 523 523 523 555 523 523 523 523 523 523

MK09 20 × 10 307 307 311 307 342 307 312 307 307 307 307

MK10 20 × 15 197 213 222 202 242 198 214 205 198 208 221
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time than MIG in only three instances; MK5, MK6, and 
MK10. On the other hand, MIG obtained better solutions 
for these instances than heuristic methods.

4.4 � Analysis Summary
In this paper, a modified iterated greedy is proposed 
for solving the flexible job shop problem. In the experi-
ments, 35 instances in total have been used from 3 differ-
ent benchmarks to test MIG. We divide these instances 
into three categories; small-scale instances (10 instances), 
medium-scale instances (13 instances), and large-scales 
instances (12 instances).

The results for small-scale instances prove that MIG is 
able to obtain global optimum for all instances as many 
previous algorithms actually did before. Figure  9 shows 
the results of MIG in comparison with minimum and 
maximum value of makespan that are obtained by other 
algorithms.

For medium-scale instances, MIG has obtained the 
best results for all instances and has outperformed all 

algorithms in literature for 2 instances (MFJS01 and 
MFJS03) of experiment 2. Figure 10 illustrates the per-
formance of MIG in comparison with minimum and 
maximum makespan obtained by other algorithms.

While dealing with large-scale instances, MIG is able 
to obtain near-optimum solutions for many instances, 
but it has got trapped in local optimum for some oth-
ers. Figure  11 shows the performance of MIG for 12 
large-scales instances. It can be observed that the curve 
of MIG includes worse results for larger problems.

Experiments shows that MIG consumes less CPU 
time in comparison to all other algorithms included in 
this study. For only 3 instances of large-scale problems, 
only one algorithm (Heuristic) consumed less CPU 
time than MIG, but MIG on the other hand obtained 
much better solutions. This confirms that MIG is an 
effective method which costs the least CPU time.

The outstanding performance of MIG for small and 
medium-scale problems encourages us to make further 
development in the global search technique in future.

Table 6  CPU time comparison for instances in experiment 3

Ins. n × m HA GATS TABC Heuristic AIA HHS MIG

MK01 10 × 6 0.06 0.93 3.36 0.09 97.21 3.87 0.002

MK02 10 × 6 0.59 1.18 3.72 0.17 103.46 5.79 0.005

MK03 15 × 8 0.16 1.55 1.56 0.52 247.37 36.60 0.00

MK04 15 × 8 0.49 4.36 66.58 0.20 152.07 13.30 0.04

MK05 15 × 4 4.57 8.02 78.45 0.20 171.95 35.78 0.32

MK06 10 × 10 53.82 110.01 173.98 0.45 245.62 111.65 2.38

MK07 20 × 5 20.01 19.73 66.19 0.39 161.92 26.16 0.04

MK08 20 × 10 0.02 11.50 2.15 0.66 392.25 171.10 0.00

MK09 20 × 10 0.86 79.68 304.43 0.94 389.71 172.24 0.42

MK10 20 × 15 33.21 185.64 418.19 1.20 384.54 437.69 1.42

4×5 2×2 2×2 3×2 3×3 2×2 3×4 3×3 3×2 3×5
MIG 11 66 107 119 210 221 253 320 355 397
Min. 11 66 107 119 210 221 253 320 355 397
Max. 11 66 107 119 210 221 253 320 355 397

0
50

100
150
200
250
300
350
400
450

M
ak

es
pa

n

Results for small-scale problems

Figure 9  Results comparison for small-scale problems
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MIG 11 7 11 14 40 26 172 446 450 462 514 516 554
Min. 11 7 11 14 40 26 172 446 466 468 514 516 554
Max. 11 7 11 14 42 28 179 448 468 468 527 516 564
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Figure 10  Results comparison for medium-scale problems
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5 � Conclusions and Future Work
In this paper, a modified iterated greedy is proposed for 
solving the flexible job shop scheduling problem. The 
experimental results show that the algorithm can find 
the global optimum solution for small and medium scale 
instances. MIG outperforms all other algorithms for 4 
medium-scale instances. For large scale instances, the 
proposed algorithm has obtained optimum solutions 
for some instances and only near optimum solutions 
for some other instances. The main contribution of the 
proposed algorithm is to provide a simple and effective 
algorithm that can be easily employed in the real-life 
problems, and furthermore, it has insignificant CPU time 
cost in comparison with other metaheuristics that are 
widely used in this field.

In future, we will continue developing this algorithm 
to perform better on large-scale problems. The global 
search in the proposed algorithm will be developed for 
this purpose. Finally, multi-objective flexible job shop 
scheduling problem will be considered a good challenge 
for the developed version. Another option is to hybridize 
MIG with another algorithm.
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