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Abstract 

Shape rolling is widely employed in the production of long workpieces with appropriate cross-section profiles for 
other industrial applications. In the development of shape rolling systems, roll pass design (RPD) plays an essential role 
on the quality control of products, service life of rolls, productivity of rolling systems, as well as energy consumption 
of rolling operations. This study attempts to establish a generic strategy based on hybrid modeling and an improved 
genetic algorithm, to support the optimizations of RPD and shape rolling operations at a systematic perspective. 
Objectives include improving the quality and efficiency of RPD, reducing energy consumption of shape rolling, as well 
as releasing the demands on costly trails and expert knowledge in RPD. Hybrid modeling based on cross-disciplinary 
knowledge is developed to overcome the limitations of isolated single-disciplinary models. And conventional genetic 
algorithm is improved for the implementation of optimal design. Targeting to integrate empirical data and published 
reliable solutions into optimizations, a parameters estimation method is proposed to transfer the initially misaligned 
models into a uniform pattern. A tool based on the Matlab platform is developed to demonstrate the optimal design 
operations, with case studies involved to validate the proposed methodology.
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1  Introduction
Shape rolling is a continuous high productive metal- 
forming process, which enables the manufacturing of 
long workpieces with uniform cross-sections by apply-
ing plastic forces exerted through a set of grooved rolls 
[1, 2]. As both the rolling energy consumption and the 
quality of rolled work-piece are heavily dependent on the 
section geometries of roll grooves as well as the rolling 
operating procedures, roll pass design (RPD), which aims 
to schedule the deformation operations and design pro-
files grooves of rolls, plays a critical role in shape rolling 
practices [3]. Therefore, the rolling energy consumption, 
quality of rolled products, cost efficiency, productivity, 
and service-life of rolls are directly affected by the RPD 
[4]. Literature review indicates that a typical RPD prac-
tice can be summarized as Figure  1. In the RPD imple-
mentations, three types of models are usually involved: 

processing models considering parameters such as num-
ber of passes required by the entire system, rolling sched-
ule/sequences, rolling speed and temperature; physical 
models predicting the deformation of rolled materials 
and evaluating operational energy consumption; as well 
as the geometrical models defining the groove profiles for 
the dimension control of rolled workpieces [5, 6].

It is commonly accepted that the acceleration of indus-
trialization has been boosting the global demand on 
more economical and sustainable rolling operations, 
which consequently drives the innovation and improve-
ment of RPD [4, 7, 8]. However, due to the non-linear and 
highly uncertain deformation behaviors of rolled materi-
als, complex rolling contexts, as well as the complicated 
interactions between thermal and mechanical phenom-
ena, rolling practices are usually difficult to be numeri-
cally modelled, analyzed and predicted [9–11]. Thus, the 
exploration of efficient, accurate and flexible solutions for 
RPD becomes extremely attractive in the rolling system 
development and shape rolling operations.

Over the years, a great number of approaches have 
been developed to support RPD and optimization, which 
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can be basically classified into: 1) trial-and-error based 
empirical approaches; 2) finite element analysis (FEA) 
based simulation methods; and 3) artificial intelligence 
based expert systems. Since the rolling operations and 
RPD have been investigated for centuries, a large num-
ber of experimental models, approximate formulae and 
empirical rules were developed to guide the RPD. These 
approaches are popular for their ease of use [12]. How-
ever, due to the large number of approximation and 
assumptions applied in modeling and analysis, the scope 
and accuracy of these approaches are greatly limited 
[10]. In addition, empirical methods also suffer from the 
heavy dependence of expert knowledge, as well as costly 
and time-consuming trials, which thus affects the sus-
tainability and stability of RPD [13]. The current devel-
opment of computational science and FEA techniques 
has found a way to improve the modelling and analy-
sis for roll pass optimal design (RPOD) [14, 15]. These 
methods can simulate rolling temperature evolutions, 
stress–strain states, as well as the complicated deforma-
tion behaviors with higher accuracy [16]. Although these 
FEA-based approaches are powerful in simulations, their 
large-scale application in RPOD is not yet efficient, due 
to the lower computational efficiency, the difficulty in 
deformation conditions setting, and the drawbacks in 
flexibility [17]. Recently, the development of intelligent 
design technology and expert systems has found a wide 
application in the optimal design of manufacturing sys-
tems and operations. Lambiase and Langella developed 
an expert system for the automated procedure of RPD 
[18]. While in a study of hot strip rolling, Bagheripoor 
and Bisadi introduced an artificial neural network (ANN) 
for the prediction of rolling force and torque [19]. These 
approaches possess significant strength in computer-
aided design using empirical data and rules, as well as 
design and operational experience integrated as expert 
knowledge [20–22]. Moreover, the flexibility and effi-
ciency of RPD can also be enhanced with the engagement 

of those expert systems [9, 23]. However, most expert 
systems developed in current studies have been primarily 
focused on single-pass optimal design or isolated rolling 
schedule optimizations, leaving the RPOD for the whole 
multi-pass rolling systems often neglected. This might be 
attributed to the lack of: 1) a universal model to describe 
the divers groove profiles in a numerical way; 2) a cross-
disciplinary knowledge-based hybrid model to avoid 
benefiting one component at the cost of another one in 
optimization deliveries; and 3) an efficient and effective 
algorithm for the implementations of optimization.

This study endeavors to develop a generic strategy 
using cross-disciplinary knowledge-based hybrid mod-
eling and an improved genetic algorithm (IGA) to sup-
port the RPOD at a systematic perspective. In order to 
conduct a clear and logical description for the proposed 
RPOD strategy, the rest of this paper is organized as fol-
lows. Section 2 discusses the theoretical background and 
framework. The formulation of hybrid model and objec-
tive functions is introduced in Section 3, followed by the 
improvements of genetic algorithm in Section 4. A case 
study implemented to demonstrate how the developed 
strategy works in Section  5, and finally Section  6 draws 
the conclusions and future works.

2 � Theoretical Background and Framework
As mentioned in the previous section, to obtain a desired 
RPOD solution for the whole multi-pass rolling system, 
three distinct but inter-linked requirements need to be 
satisfied: pass amount determination, pass sequence 
identification and groove profiles definition. Therefore, 
the proposed RPOD is a three-dimensional optimiza-
tion problem, with three types of parameters (process-
ing, geometrical and physical/deformation) required 
to be processed simultaneously in the RPOD practices. 
The hybrid nature of this problem makes it difficult to 
obtain a desired solution using neither single-discipli-
nary knowledge nor isolated single-models. Therefore, a 

Figure 1  Schematic of a generic roll passes design procedure
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hybrid modelling strategy with cross-disciplinary knowl-
edge is developed in this research.

RPOD for multi-pass rolling systems is a typical multi- 
objective-multi-constraint problem with the consid-
erations of energy, design and cost efficiency, products 
quality and productivity, as well as the large number 
of design and process constraints imposed. Literature 
review indicates that GA is of great benefit to the han-
dling of hybrid multi- objective-multi-constraint prob-
lems, due to its evolutionary nature, efficient parallel 
processing, independent on Pareto front, flexibility and 
ease to be conducted [22, 24, 25]. Thus, conventional GA 
is improved for the RPOD operations in this research. 
In addition, to integrate empirical geometrical data and 
solutions into the RPOD practices, a GA-based param-
eters estimation method is developed to realize the con-
version of data format.

2.1 � A Universal Model for Geometrical Modelling
In traditional approaches, predefined groove profiles are 
described numerically with diverse geometrical models and 
variables, therefore variables will be increased significantly 
with the number of passes applied, which consequently 
affects the solution representation and optimization han-
dling. As shown in Eq. (1), suppose the cross-section pro-
files are located on the y-z plane, a universal model was 
developed to describe all the groove profiles [26]. There 
are six parameters (a, f, c, m, d and g) employed to modify 
the shape and curvature of the curve in this model. How-
ever, only five of them are independent variables, as c is a 
dependent variable determined by m. For m > 0, c equals 
to 0, otherwise the value of c will be set as 1. Figure 2 pre-
sents an example demonstrating the profile control with 
the five independent variables. Since the profiles are mirror 

symmetrical to both y and z axes, one quarter of these 
curves are presented.

In this equation, p = (1− c) · e−f  , q = c · e−a , 
u = 2 · e−m2 , and t ∈ [0, 2π ].

Since all the profiles employed in the multi-pass rolling 
system are constructed using the same model, both the 
rolling sequence and groove profiles can be determined 
by adjusting the values of independent variables. The geo-
metrical modelling and rolling schedule planning can then 
be simplified.

2.2 � GA‑Based Parameters Estimation
Like other expert systems, design and processing data 
from successful RPD applications collected for the estab-
lishment of an empirical database to support the RPOD 
operations. Since geometrical models with diverse formu-
lae were employed to define the groove profiles, data and 
solutions collected from other studies and applications 
cannot be used directly. Thus, a GA-based method is devel-
oped to convert data with different formats into the format 
required by the universal model.

According to the study conducted by Ref. [27], suppose 
two curves can be described by formulae g1(x) and g2(x) , 
their similarity then can be assessed with the accumulative 
error d

(

g1, g2
)

 as expressed in Eq. (2):

(1)







y(t) = {(1− c)c} ×
�

a·(cos(t))p

f ·(sinh(t))q

�

,

z(t) =
�

d − g
�

×

�

(sin(tu))p

f ·(cosh(tu))q

�

.

(2)d
(

g1, g2
)

=

c2
∫

c1

∣

∣g1(x)− g2(x)
∣

∣dx.

Figure 2  A demonstration of the universal modelling (adopted from Ref. [3])
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Hereby, [c1, c2] is the definitional domain for function 
g1(x) and function g2(x) . With a given constant ε (also 
defined as an acceptable error), if d

(

g1, g2
)

≤ ε , then the 
two curves are similar to each other, otherwise they are 
dissimilar. For some very complex scenarios, apprais-
ing the similarity of curves only through the accumula-
tive errors might fail to satisfy the accuracy requirement. 
However, in this study, as the curves employed for the 
constructions of groove profiles are highly symmetric, 
similarity evaluation of profile curves with the accumu-
lative error is acceptable. The objective function for the 
proposed GA-based parameters estimation then can be 
written as Eq. (3):

In this context, function g1(x) describes the profile 
curve based on the proposed universal model, while 
function g2(x) denotes the solution interpreted with the 
original model. A case study demonstrated in Ref. [26] 
indicates that this conversion method is effective. The 
accumulative error between original and rebuilt mod-
els is no more than 1.3%, which is less than the accept-
able 1.5% error in RPD.

2.3 � RPOD Framework
This research endeavors to develop a generic approach 
to support the RPOD for the whole system. As shown in 
Figure 3, there are four phases for the RPOD operation. 
Phase 1 is proposed for empirical database establish-
ment. Empirical data, rules and design models reflect-
ing dimensions of grooves, operational parameters 
such as rolling temperature, force and torque, as well 
as required pass amount are collected from successful 

(3)fest = min

c2
∫

c1

∣

∣g1(x)− g2(x)
∣

∣dx.

RPOD implementations. After conversion by parameters 
estimation, an empirical database is built to support the 
RPOD operations. Phase 2 comes the identification of 
required pass amount and the domains of independent 
variables. In this research, the required number of passes 
is set as a variable, which allows to select the optimal one 
from a serial of feasible RPD solutions. The range of pass 
amount is identified by Eq. (4) based on the dimensions 
of stock and final products:

where n1 − n5 are the required numbers of roll passes for 
the entire rolling system obtained from diverse formulae 
( n1 is based on the reductions in height and width from 
ingot to final products, n2 is calculated from the elon-
gation coefficient, n3 is identified by the height reduc-
tion ratio from ingot to final products, n4 is based on 
the cross-section reduction ratio of each pass, and n5 is 
obtained from empirical database) [6, 28]; ⌈·⌉ is a math-
ematical operator that finds the least integer which is 
greater than or equal to a real number within.

With the confirmation of pass amount, cross-section 
reduction ratios are then allocated followed by the deter-
mination of approximate area, height and width for each 
groove. Finally, domains of independent variables are 
determined by the rough dimensions, and the statistical 
analysis of empirical data.

Hybrid modeling and RPOD occur in Phase 3. Apart 
from the geometrical model, process and mechanical 
models are also integrated for hybrid modelling. Regres-
sion analysis and statistical techniques are employed 
to find out interactions among parameters, as well as to 
support the improvements of existing models [3]. Then 
the IGA-based RPOD is conducted to find out the opti-
mal solution from the feasible domain. The final stage 

(4)n = min
{

n1,n2,n3,n4,n5
}

, max
{

n1,n2,n3,n4,n5
}

,

Figure 3  Architecture of the RPOD framework
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is designed for validation. Simulations and small-scale 
experiments are conducted to modify the RPOD solution 
for industrial applications.

3 � Hybrid Modelling and Constraints Handling
3.1 � Hybrid Modelling
The hybrid model proposed in this research is an inte-
grated model which is based on cross-disciplinary knowl-
edge. Design variables, such as geometrical, physical and 
processing parameters, are integrated in a hybrid matrix 
and considered simultaneously in the implementation of 
RPOD. This hybrid model focuses on both groove pro-
files as well as the processing characteristics of the whole 
rolling system, rather than the performance of RPD for 
any isolated single-pass.

In the process of optimization, to guide the GA search-
ing and select the optimal solution from the feasible 
domain, objective functions have been established based 
on the RPD requirements. As this research is primar-
ily focused on flexible, independent and effective RPOD 
operations, objectives were established as reductions 
of rolling energy demand and manufacturing errors, 
improvement of filling efficiency of grooves, and exten-
sion of rolls’ service-life. The fitness function can then be 
described as

In this equation, ω1 , ω2 , and ω3 are weightings, which 
can be adjusted according to the design requirements. 
f1(x) , f2(x) and f3(x) are the objective functions estab-
lished to minimum energy consumption and manufac-
turing errors, maximum service-life and improve filling 
efficiency of grooves. gi(x) ≤ 0 and h(x) = 0 represent 
the inequality and equality constraints respectively, and 
X is the domain including the lower and upper bounds 
of variables. According to the studies conducted by Xu 
et al. [6], for the ith roll pass in the system, these objec-
tive functions can be described as:

Hereby, qi indicates the energy consumption. MZi refers 
to the rolling torque. Vi represents the rolling velocity. τi 
demotes the rolling time, while Dki is the working diame-
ter of rolls. Factor αindicates the constant coefficient, and 
n represents the number of passes used in the multi-pass 
rolling system.

(5)
f = [ω1ω2ω3]× [f1(x)f2(x)f3(x)]

T,

s.t. Constraints : gi(x) ≤ 0; h(x) = 0,

x ∈ X , i = 1, 2.

(6)f1(x) = min

n
∑

i=1

qi = min

(∑n
i=1 αMZiViτi

Dki

)

.

xi , yi , zi are the coordinates of a given point located on 
the profile curve of the final pass, while r denotes the 
ideal radius of final products.

The service-life of rolls can then be extended when 
a uniform wear of the roll groove is achieved, while the 
uniform wear of roll groove is subject to the uniform dis-
tribution of contact arc lengths and the value of contact 
area. In this research, n1 points, which are uniformly dis-
tributed on the roll groove surface, are employed to con-
trol the uniform wear of roll groove for the maximization 
of roll service-life. Thus, the objective function for can be 
presented by

f4(x) is the objective function for uniform distribution of 
contact arc lengths which can be presented as

In this equation, L̄ is the mean value of contact arc 
lengths for those given points located on the roll groove 
profile curve. Parameters yi and zi indicate the coordi-
nates of a given point on the profile curve respectively. R0 
is the minimum radius of rolls. hk refers to the height of 
the roll groove. β represents the angle formed by the pro-
ject plane and the vertical plane. f5(x) is another objec-
tive function for contact area optimisation which can be 
described as

where Ax and Ay are the project areas of contact in 
the horizontal x–y plane and the vertical y–z plane 
respectively.

3.2 � Constraints Handling
Constraint handling is a critical issue in optimizations. 
According to previous identification, there are four types 
of major constraints need to be satisfied: 1) permission 
angle of bite, which is an essential precondition for suc-
cessfully bite of work-piece and rolling; and 2) tolerance 
requirement related to the dimension of final products; 

(7)
f2(x) = min

i=n
∑

i=1

(

y2i + z2i − r2
)

.

(8)f3(x) = f4(x)+ f5(x),

(9)

f4(x) = min

n1
∑

i=1

(

y2i − L̄2
)

= min

n1
∑

i=1

[

β2(R0 + hk/2− zi)
2
− L̄2

]

.

(10)

f5(x) = min





1
�

A2
x + A2

y



 = max
��

A2
x + A2

y

�

,
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and 3) monotonicity requirement, sharp point avoidance 
and profile curve smoothness requirement, which ben-
efit to the material flow in roll grooves, and consequently 
contribute to the quality of rolled work-pieces and rolls’ 
service-life. The constraint from permissible bite angle α 
can be described as

In this equation, [α] is the bite angle used in a given 
pass, while �h indicates the height reduction of the bar. 
According to the study conducted by Beynon in Ref. [5], 
the working diameter Dkn can be determined by

Hereby, for square and diamond passes coefficient 
k4 = 1; for oval grooves k4 = 0.819; while for round and 
edging oval grooves k4 = 1.55. hn indicates the height of 
the nth roll groove.

It commonly accepted that broken lines are not suitable 
for the construction of groove profiles, since the inflec-
tion point (or sharp point) always results in stress con-
centration, which will affect rolling manufacturing as well 
as the wear and strength of rolls. In addition, outgoing 
bar with sharp edges (normally caused by sharp points 
on the groove-profiles) will lead to stress concentration 
and scratches of the following groove. Thus, the profile 
curve should be continuously derivable within the whole 
domain interval. In another word, for any point ( y0, z0 ) 
located on the profile curve, suppose z = h

(

y
)

 is the 
function employed to describe the relationship between 
the independent variable y and the dependent variable z , 
then Eq. (13) need to be satisfied.

In the manufacturing process, tolerance control for 
final product is another crucial aspect for quality assess-
ment. In multi-pass rolling operations, it is the final (or 
finishing) pass that plays the critical role for tolerance 
control. Thus, a model was established to guide the final 
pass optimal design. In rod rolling operations, for a given 
point ( x0 , y0 , z0 ) located on the profile curve of the final 
pass, its dimension tolerance can be calculated as

In this equation, r is the ideal radius of final products, 
while ε represents the acceptable tolerance.

4 � Improvements of Genetic Operations
As discussed in previous sections, the RPOD for the 
entire rolling system is a hybrid operation need to inte-
grate rolling sequence scheduling with grove profiles 

(11)[α] = arccos(1−�h/Dkn) ≤ α.

(12)Dkn = D − k4hn.

(13)lim
dy→0

h
(

y0 + dy
)

dy
− h0 = 0.

(14)�(x0,y0,z0) =

∣

∣

∣

∣

2

√

y20 + z20 − r

∣

∣

∣

∣

≤ ε.

design simultaneously. That makes conventional GA not 
suitable for the optimal design of a whole rolling system. 
Therefore, conventional GA is improved (hereafter IGA) 
by adding several application strategies for the RPOD 
operations developed in this research. A new solution 
representation is firstly developed for hybrid modelling, 
with the genetic operations improved in the following 
sections.

4.1 � A New Solution Representation for Optimization
As identified in previous section, there are three types 
of variables employed in RPOD: geometrical ( Gv ), 
physical ( Phv ) and processing ( Prv ). Thus, the generic 
form for a RPOD solution vector can be expressed 
as X = {Gv ,Phv ,Prv} . For an n-pass rolling system 
using the universal model for geometrical modelling, 
Gv =

{

mi, ai, di, fi, gi,R0i

}

 , Phv = {ωi, ti} , Prv = {Sni, n} 
(where ωi is the angular velocity of rolls, ti is the ini-
tial temperature of stock, Sni is the sequence number, 
with i = 1,2,3,…, n, and n is the total number of pass 
employed). To carry out the genetic operations, chro-
mosome representation should be developed to encode 
the solution vector (or phenotype) into its genotype.

In this research, for a flexible and easier interpreta-
tion between the solution and the coding domains, 
grey-coding is employed. An individual solution for a 
single pass can be encoded as Figure  4(a). As a result, 
a solution for the whole multi-pass system can be 
expressed using a matrix as shown in Figure 4(b).

Figure 4  Chromosome representations for (a) a single pass and (b) a 
whole multi-pass system
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Since all chromosomes in the matrix have the con-
sistent structure, they can share codes to simplify the 
encoding and decoding operations. However, different 
domains of variables are set for different roll passes 
according to the sequence number Sni . In another 
word, variables in different chromosomes have the 
same format but different values, since different defini-
tion domains are applied in decoding. These definition 
domains are determined by the sequence number Sni.

As shown in Figure 5(a), suppose there are four chro-
mosomes in the design matrix (or design space) for a 
double-pass rolling system. Each variable is represented 
using a four bits grey-code. For the first pass, the defini-
tion domains for variables m1, a1, d1, f1, g1,R01,ω1, t1 are 
[0.5, 1], [9, 10], [4, 6], [0, 0.5], [0, 1], [140, 150], [700, 800] 
and [900, 1000] respectively. For the second pass, the def-
inition domains for variables m2, a2, d2, f2, g2,R01,ω2, t2 
are [0.5, 0.8], [4, 5], [10, 12], [0.2, 0.8], [1, 1.5], [140, 150], 
[800, 850] and [800, 900]. After decoding, the chromo-
somes can then be presented with real numbers.

4.2 � Operation of the IGA
With the application of the proposed universal geometri-
cal model, rolling sequence can be determined by adjust-
ing the values of independent profile variables. Thus, the 
RPOD is shrunk into a two-dimensional optimisation 
problem. However, to obtain a global optimal solution 
from the feasible domain, fixed pass amount which is 
widely used in existing studies is replaced with a range. 
Consequently, one more computational circle is added to 
the normal GA operation flow (as shown in Figure 6).

4.3 � Fitness Evaluation and Calibration
In the conduction of RPOD for the whole system, the 
chromosome population contains solutions for all passes. 
These solutions have the same chromosome representa-
tion but different domains for encoding and decoding. 

Here, domain selection is determined by the sequence 
number (or identification number). A parallel decoding 
strategy, which can be expressed as Figure 7, is employed 
in this research to improve the operation efficiency.

To overcome the Hamming Cliff (which is a serious 
problem, appears in the crossover and mutation opera-
tions), grey-code is employed for coding operations. 
Therefore, the decoding procedure contains two steps: 
firstly, the grey-code string (which represents a chro-
mosome or solution) is converted into a binary string 
through applying an x- or operation bit-by-bit. The sec-
ond step is to convert the binary string into real numbers 
according to the domains of variables.

Suppose the domain of a variable is [U1U2] and the 
related binary string is bnbn−1 . . . b1 , then the value of 
this variable can be calculated from

Since in some circumstance fitness values of chromo-
somes from the same population group might approxi-
mate to the mean value of the population fitness, which is 
unfavourable for the evolution and global searching, fit-
ness calibration is required. In this study, a linear scaling 
calibration is developed, which can be expressed as

where Fit is the original fitness value of a given chromo-
some, Fit ′ is the new fitness value of this chromosome 
after calibration, Fitavg is the average fitness of the cur-
rent population, and Fitmin is the minimal fitness of the 
current population.

(15)rn = U1 +

(

n
∑

i=1

bi · 2
i−1

)

·
U2 −U1

2n − 1
.

(16)Fit
′

=
Fitavg(Fit − Fitmin)

Fitavg − Fitmin
,

Figure 5  An example of solutions representation for a double-pass 
system: (a) chromosome; and (b) real number

Figure 6  Flowchart of the IGA-based RPOD
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4.4 � Reproduction Operations for the IGA
After the fitness evaluation and calibration for the ini-
tial population, the GA operations are executed until the 
specified termination conditions are satisfied or the max-
imum generation is reached. According to the features 
and mechanism of the IGA, there are three operations 
included in the IGA-based searching: selection, crossover 
and mutation.

4.4.1 � Selection Operation
In GA, the selection operation is employed to select par-
ents from current population to generate off-springs used 
in other genetic operations. In this research, the roulette 
wheel approach, which is widely adopted in most GA 
practices [29], is chosen for the selection procedure. To 
ensure the implementation of other genetic operations, 
chromosome classification is operated based on the 
sequence number of each chromosome. However, differ-
ent from the chromosome classification carried out for 
parallel decoding, in this operation, chromosomes rep-
resentation for different passes are assigned in the same 
subpopulation to ensure that each subpopulation repre-
sents a solution for the whole multi-pass rolling system 
(as shown in Figure 8).

After the reclassification of chromosomes, the fitness 
value for each subpopulation is computed, followed by 
the selection operation.

4.4.2 � Crossover Operation
In the GA searching process, crossover, which is an 
important biological inspired operation, is widely 
employed to generate new populations. As previously 
discussed, the chromosome representation in this study 
is structured into a matrix form (as shown in Figure 4(b)). 
Thus, the uniform crossover which is a powerful and 
exploratory approach for the processing of matrix form 
crossover problems, is selected for the proposed RPOD 
method. The uniform crossover uses a fixed mixing ratio 
between two parents and evaluates each bit in the parent 
strings for exchange, can be described as follows.

Firstly, a crossover mask, which is a randomly gener-
ated binary matrix, is applied to determine the loci of 
genes for exchanges between parents. After that, off-
spring 1 will inherit the allele from parent 1 if the related 
locus of allele is 1 in the mask, otherwise it will inherit 
the allele from parent 2. Offspring 2 uses the opposite 
rule as offspring 1. For a five-pass rolling system, an 
example for such operation is shown in Figure 9.

Figure 7  Scheme of parallel decoding

Figure 8  Scheme of population classification for selection operation
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4.4.3 � Mutation Operation
Another biological inspired genetic operator employed 
for GA searching is the mutation manipulation, which 
is designed to maintain the genetic diversity from one 
generation to the next through permutations of alleles. 
Essentially the mutation operation is a neighbour search 
technique. Current studies indicate that the bit-by-bit 
mutation is the most suitable operator for binary string 
representations, thus another random mask is gener-
ated for the mutation operation in this work. As with the 
crossover operation, the mutation manipulation is proba-
bilistic and controlled by the mutation rate pm . Thus, 
suppose each subpopulation has n chromosomes and 
every chromosome has m bits of alleles, for each gener-
ation, the amount of alleles in current population to be 
mutated is m× n× Pop_size × pm.

5 � Case Studies
In this section, a case study is implemented to dem-
onstrate the proposed RPOD strategy in this research. 
A Matlab program has been developed to support the 
demonstration and validation. In order to simplify the 
validation process, a case for 3-pass optimal design is 
employed. It is assumed that the ingot is an oval bar with 
the dimension of 32 mm in width, 16.5  mm in height, 
and 373.65  mm2 in area. The final product is a round 
bar with a diameter of 16  mm. Work-piece material is 
45 steels. Roll diameter is of 360 mm, permission rolling 

force is 50  kN, permission rolling torque is 50  kN  m, 
power of drive motor is 570 kW, and the speed range is 
1000‒1500 r/min.

The IGA parameters are set as follows: each variable is 
represented by a 10-bit grey code, thus the length of the 
chromosome is 90 bits with the population size of 100 
and the generational gap of 0.9. The crossover rate and 
mutation rate are 0.7 and 0.013 respectively. The simula-
tion is terminated when the generation is over 100. As 
shown in Figure 10, there are three passes in the original 
solution extracted from the research conducted by Zhang 
in Ref. [30], with the pass sequence round-oval-round, 
and the manufacturing tolerance of 1.4%.

Figure  11 indicates that after 50 iterations, the opti-
mal solution is achieved. The geometrical parameters of 
passes obtained from RPOD are listed in Table  1, and 
technological parameters of original solution and optimal 
solution are listed in Table 2.

6 � Concluding Remarks and Future Work
Comparative studies indicate that after optimization 
the total power consumption and rolling torque are 
decreased, while the working diameter of each pass is 
increased. By comparing with the original solution, it 
can be concluded that the dimensions of final prod-
ucts obtained from the optimal solution are closer to 
the desired dimensions. In addition, the cross-section 
reduction efficiency of intermediate passes (K3 and K2) 
is improved. However, that of the final pass is decreased, 
which actually is of benefit to the improvements of man-
ufacturing precision and surface quality for the rolled 
work-pieces.

Based on the comparison made between the optimal 
solution obtained from IGA-based RPOD system and 
original solution from references, the following conclu-
sions can be achieved:

•	 The dimensions of final product obtained from the 
RPOD are more desirable, thus the proposed IGA 
can support the RPOD of multi-pass systems with 
higher performance rolling.

Figure 9  An example of uniform crossover in the RPOD

Figure 10  Solution from Zhang’s [30] thesis
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•	 The developed IGA-based RPOD approach can 
obtain an optimal solution for a three-pass rolling 
system in about three minutes, which indicates that 
the improved algorithm is efficient for RPOD.

•	 With the application of a new solution representa-
tion, the number of variables remains unchanged 
with the increase of pass amount, thus increase of 
pass number will not complicate the optimization.

•	 Figure 8 shows that the developed IGA possess high 
searching performance and fast convergence rate 
with the optimal solution achieved after only 50 iter-
ations.

•	 Although only a simple 3-pass rolling system was 
employed for case study at the current stage, the pro-
posed RPOD can be extended to the optimal design 
of more complex rolling system. Due to the proposed 
universal model and the new solution representa-
tion, the number of independent variables will not 
increase with the pass amount, nor the employment 
of passes with more complex groove profiles.

•	 Different from other RPOD expert systems, there is 
no predefined pass required in this approach, thus 
the proposed approach is more flexible and efficient.

•	 The proposed strategy is also suitable for other indus-
trial problems which need to satisfy a simultaneously 
optimization for sequence planning and geometrical 
design.

Future work will focus on:

•	 Due to the time constraints, currently only a three-
pass rolling system is employed to validate the pro-
posed strategy. Future works of this research will be 
extended to the validation of more complex rolling 
systems with more passes.

•	 Since the domains of independent variables 
employed for RPOD is determined by statistical anal-
ysis, more design data from successful solutions will 
be collected for the improvement of decision-making 
applied in the proposed approach.

•	 The proposed strategy is efficient and reliable. How-
ever, the industrial rolling operation is more com-
plex with xmore passes. Therefore, in the following 
research further improvements will be proposed for 
the searching efficiency of the optimal algorithm. In 
addition, small-scale lab experiments will be carried 
out to study the deformation behavior and to further 
validate the developed methodology.

Figure 11  Performances trace for the optimal solution seeking

Table 1  Geometrical parameters of  passes obtained 
from RPOD

Gen = 50 K3 K2 K1

m (mm) 0.83 0.83 0.83

a (mm) 10.00 13.47 8.10

f (mm) 0.16 0.17 0.17

g (mm) 0 −1 0

d (mm) 9.85 6.21 8.05

Roll gap (mm) 1.80 2.20 1.50

Pass area (mm2) 299.50 233.84 201.96

Table 2  Technological parameters of original and RPOD solutions

Pass sequence is K3 to K2 (leading pass) to K1 (final pass), GA generations equal to 50

Gen = 50 Original solutions Optimal solutions

Reduction ratio K3 K2 K1 K3 K2 K1

1.21 1.20 1.21 1.25 1.28 1.16

Rolling speed (× 102 r/min) 7.53 8.06 9.82 7.56 8.21 853.6

Rolling torque (kN·m) 5.03 4.51 3.24 4.66 4.35 3.18

Working diameter (× 102 mm) 3.40 3.46 3.44 3.45 3.50 3.48

Temperature (k °C) 1.03 1.02 1.03 1.02 1.08 0.98

Power consumption (× 10 kJ) 1.85 1.95 1.71 1.69 1.99 1.71
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