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Abstract 

The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact 
force between gears. However, this linear model cannot correctly describe the energy transfer process of collision 
that often occurs in gear system. Focus on the contact-impact events, this paper proposes an improved gear con-
tact force model for dynamic analysis in helical gear transmission system. In this model, a new factor associated with 
hysteresis damping is developed for contact-impact state, whereas the traditional linear damping factor is utilized for 
normal meshing state. For determining the selection strategy of these two damping factors, the fundamental contact 
mechanics of contact-impact event affected by supporting forces are analyzed. During this analysis, an effect factor 
is proposed for evaluating the influence of supporting forces on collision. Meanwhile, a new restitution of coefficient 
is deduced for calculating hysteresis damping factor, which suitable for both separation and non-separation states at 
the end of collision. In addition, the time-varying meshing stiffness (TVMS) is obtained based on the potential energy 
approach and the slice theory. Finally, a dynamic analysis of a helical gear system is carried out to better understand 
the contact force model proposed in this paper. The analysis results show that the contribution of supporting forces 
to the dynamic response of contact-impact event within gear pair is important. The supporting forces and dissipative 
energy are the main reasons for gear system to enter a steady contact state from repeated contact-impact state. This 
research proposes an improved contact force model which distinguishes meshing and collision states in gear system.
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1 Introduction
The contact force model plays a key role in predicting the 
response of multibody mechanical system since it has a 
significant influence on the response of the system [1]. As 
a typical multibody system, the gear transmission system 
is widely used in engineering application, such as air-
crafts, marine ships, automobiles, wind turbines, etc. The 
contact force between gears is mainly calculated by linear 
spring damping model [2–4] which consists of two mass 
elements, two spring elements, and a damping element. 
Khulief and Shabana [5] applied this model to dynamic 
analysis in multibody system, and Kahraman and Singh 
[6] earlier used it to analyze the dynamic characteristics 

of a single degree freedom gear system combined with 
error excitation. After that, scholars carried out further 
researches for gear transmission based on the linear 
model [7–11].

The damping term in the linear model, which utilized 
to describe the energy loss during meshing process, is 
obtained based on the oscillation decay period of the lin-
ear spring damping system. However, reference [12] pre-
sents that this damping term cannot correctly describe 
the energy transfer process for the contact-impact event 
which frequently occurs in gear system. Instead, a non-
linear impact damping model [12] is employed for colli-
sion analysis, which is proposed according to restitution 
coefficient to describe the dissipated energy during con-
tact-impact event. Based on this coefficient of restitution, 
other improved models are also established, such as the 
Lee and Wang model [13], the Lankarani and Nikravesh 
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model [14], the Gharib and Hurmuzlu model [15], the 
Flores et al. model [1], the Hu and Guo model [16], etc.

These nonlinear models mentioned before are mostly 
derived from two free impact-contact bodies. However, 
the gear pair is supported by bearings which are often 
described as spring elements in dynamics model. This 
indicates that the contact-impact event between gears is 
affected by supporting forces during simulation, thus, the 
governing motion equations of gear system contain the 
balance between contact-impact force and supporting 
forces. When the influence of supporting forces is large 
enough, these nonlinear models may exhibit obvious 
errors for the dynamic response of gear system [17, 18]. 
Particularly, the accumulation of these errors of repeated 
or sustained contact-impact event which frequently take 
place in gear system can cause the distortion simulation 
in gear dynamics. In addition, these nonlinear models 
cannot be used to correctly calculate the energy loss dur-
ing normal meshing process since they are only suitable 
for one single collision.

The purpose of this paper is to propose an improved 
contact force model for dynamic analysis of helical gear 
transmission system. In this model, different contact 
force models are applied in conjunction with TVMS to 
calculate the meshing and contact-impact forces, respec-
tively. In order to determine the strategy for choosing 
these force models, the effect of external forces on col-
lision is investigated, and then the judgment of impact 
end states, namely separation and non-separation, is 
deduced. Meanwhile, an impact damping factor asso-
ciated with Newton method is developed based on an 
improved restitution coefficient deduced by considering 
the two impact end states. Finally, the performance of 
this improved gear contact force model is analyzed with a 
simulation of a helical gear system.

where km and D indicate the TVMS and damping factor, 
respectively, δ denotes the relative displacement between 
contact point, δ̇ illustrates the relative velocity and 2b is 
the backlash between gears. For Eq. (1), the calculations 
of stiffness and damping are the two important tasks.

2.1  Time‑Varying Meshing Stiffness
The gear TVMS is a key parameter of gear dynamic 
model, and many studies have been carried out to calcu-
late this stiffness. The finite element method (FEM) has 
high enough accuracy to simulate the actual gear tooth 
profile and calculate automatically the contact posi-
tion, thus, it is utilized popularly for the TVMS [19, 20]. 
However, the FEM is complicated and requires a lot of 
computing resources. Differently, the analytical method 
(AM) is a simple and efficient approach for calculating 
TVMS. In AM, the potential energy method represented 
by Yang and Li [21] is used. According to this method, 
the meshing stiffness of spur gear pair is composed of 
tooth stiffness, tooth radial compressive stiffness, tooth 
shear stiffness, Hertzian contact stiffness and gear foun-
dation stiffness. For helical gear pair, the slice theory is 
applied popularly, in which the helical gear is regarded as 
a series of spur gear slices [22, 23]. Thus, the transverse 
meshing stiffness of the helical gear pair can be obtained 
by integration along tooth width direction. Additionally, 
the meshing stiffness of the helical gear pair also contains 
axial tooth stiffness and axial gear foundation stiffness, 
and hence this meshing stiffness can be given by

where kt and ka illustrate the transverse meshing stiffness 
and axial meshing stiffness, respectively, and βb indicates 
the base helix angle. According to the slice theory, the 
transverse meshing stiffness is obtained by integrating 
slice cylindrical spur gear pair along the mesh line, which 
can be expressed as

with

(2)km =
1

cosβb/kt + sin βb/ka
,

(3)kt =

n
∑

i=1

1

1/kh,i + 1/kta1,i + 1/ktb1,i + 1/kts1,i + 1/ktf 1,i + 1/kta2,i + 1/ktb2,i + 1/kts2,i + 1/ktf 2,i

(4)kn =
πE�l

4
(

1− ν2
) ,

(5)
1

kta
=

∫ α

π/2

sin2 ϕ

EAy1

dy1

dγ
dγ +

∫ ϕ

τc

sin2 ϕ

GAy2

dy2

dτ
dτ ,

2  Stiffness and Damping
In literatures, the gear contact force along the line of 
action is usually characterized by TVMS and meshing 
damping, as shown in Eq. (1):

(1)Fn =







km(δ − b)+ Dδ̇, δ > b,
0, −b ≤ δ ≤ b,

km(δ + b)− Dδ̇, δ < −b,
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where kh indicates the contact stiffness of the slice tooth 
pair, kta, ktb, kts and ktf are the slice tooth radial compres-
sive stiffness, slice tooth bending stiffness, slice tooth 
shear stiffness and slice gear foundation stiffness, respec-
tively. The symbols E, ν and ∆l illustrate Young’s modu-
lus, Poisson’s ratio and slice tooth width, respectively. α 
represents the transverse operation pressures angle, φ is 
the pressure angle of the contact point. Parameters xφ, yφ, 
y1, y2, dy1/dγ and dy2/dτ are listed in Ref. [24], whereas uf, 
Sf, L*, M*, P* and Q* are shown in Ref. [25]. Ay1, Ay2, Iy1 and 
Iy2 can be calculated as follows:

where x1 and x2 can also be found in Ref. [24].
For the axial meshing stiffness, Ref. [23] represents a 

detailed solution process and the results are given by

with

(6)

1

ktb
=

∫ α

π/2

[

cosϕ
(

yϕ − y1
)

− xϕ sin ϕ
]2

EIy1

dy1

dγ
dγ

+

∫ ϕ

τc

[

cosϕ
(

yϕ − y2
)

− xϕ sin ϕ
]2

EIy2

dy2

dτ
dτ ,

(7)

1

kts
=

∫ α

π/2

1.2 cos2 ϕ

GAy1

dy1

dγ
dγ +

∫ ϕ

τc

1.2 cos2 ϕ

GAy2

dy2

dτ
dτ ,

(8)

ktf =
cos2 ϕ

E�l

{

L∗
(

uf

sf

)2

+M∗

(

uf

sf

)

+P∗
(

1+ Q∗ tan2 ϕ

)

}

,

(9)Ay1 = 2x1�l, Ay2 = 2x2�l ,

(10)Iy1 =
2x31�l

3
, Iy2 =

2x32�l

3
,

(11)ka =
1

1/kab + 1/kat + 1/kaf

(12)

1

kab
=

∫ α

π/2

(

yϕ − y1
)2

EIx1

dy1

dγ
dγ +

∫ ϕ

τc

(

yϕ − y1
)2

EIx2

dy2

dτ
dτ ,

(13)
1

kat
=

∫ α

π/2

x2ϕ

GIp1

dy1

dγ
dγ +

∫ ϕ

τc

x2ϕ

GIp2

dy2

dτ
dτ ,

(14)
1

kaf
=

∫ rf

0

(

yϕ − y
)

EIaf
dγ ,

where kab and kat represent the axial tooth bending stiff-
ness and axial tooth torsional stiffness, respectively, and 
kaf indicates the axial gear foundation stiffness. Ix1, Ix2, Ip1 
and Ip2 can be obtained by

in which B denotes the tooth width.

2.2  Damping Factor for Meshing and Collision States
In addition to the TVMS, the meshing damping also has 
great effect on the dynamic behavior of the gear system. 
However, the meshing damping is difficult to evaluate 
due to it depends on complex mechanisms in the struc-
ture [26]. Generally, a simplified damping model is fre-
quently used and it is given by

where Jp and Jg denote the rotary inertia of gears, Rp and 
Rg illustrate the gears base radius, and ζm is the damping 
coefficient. As the analysis shown in Ref. [27], the value 
of ζm is between 0.03 to 0.17.

This damping model shown in Eq. (17) is effective for 
calculating the energy loss at the gear meshing interface 
in normal meshing state, but it lacks sufficient accuracy 
for the dissipative energy during collision which fre-
quently occurs in the gear system. An impact damping 
which is also called Hertzian damping is proposed for 
accurately computing this energy loss, and it also uti-
lized for the contact-impact dynamics in the gear system 
[21, 28]. Eq. (18) shows a classical impact damping factor 
model which is propose by Hu and Guo, and other simi-
lar models can be found in Ref. [29].

where μ is the hysteresis damping factor, ε denotes the 
coefficient of restitution, and δ̇(−) indicates the initial 
relative velocity between impact bodies. In addition, the 
value of the exponent n is taken as 1 in this paper.

However, these existing impact damping models are 
deduced based on Newton law coefficient of restitution 
which cannot be used for the collision affected by exter-
nal forces, thus, it is important to analyze the influence 
of supporting forces on collision for improving impact 

(15)Ix1 =
1

6
B3x1, Ix2 =

1

6
B3x2,

(16)
Ip1 =

1

6

(

4Bx31 + B3x1 sec
2 ϕ

)

,

Ip2 =
1

6

(

4Bx32 + B3x2 sec
2 ϕ

)

,

(17)D = cm = 2ζm

√

km
JpJg

JpR2
g + JgR2

p

,

(18)D = µδn =
3(1− ε)

2ε

km

δ̇(−)
δn,
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damping model. As mentioned earlier, these impact 
damping models only describe the energy loss of a sin-
gle collision process, and it may exhibit obvious error for 
normal gear mesh process. To obtained accurate dynam-
ics of gear system, it is necessary to utilize different 
damping models for different gear pair states, including 
meshing process and impact process. For this purpose, 
the essential problem is to analyze the end state of the 
collision, so as to determine the conversion of different 
damping models during simulation.

3  Impact Damping Model Considering Supporting 
Forces

An contact-impact model is employed for analysis, as 
shown in Figure  1 where the collision pair with masses 
mi and mj, and velocities ẋi and ẋj , is also supported by 
springs (ki, kj) and dampers (ci, cj). According to Refs. [2, 
3], the contact force during the contact-impact event is

where δ is the local deformation, km denotes the contact 
stiffness, δ̇ represents the relative velocity, and μ is the 
hysteresis damping factor. It should be noted that the 
hysteresis damping factor μ must be determined.

3.1  Influence of Supporting Forces on Collision
The linear spring force model is used to estimate the 
influence of supporting forces on contact-impact event in 
this paper, therefore, the dynamic equivalent equation of 
the contact-impact system can be written in the following 
form

where me = mimj/(mi + mj) represents the equivalent 
mass of these two bodies, ae denotes the relative accelera-
tion under the external forces and it is expressed as

where Fi and Fj represent the supporting forces.
According to Refs. [17, 18], which have discussed the 

influence of external forces on collision, the maximum 
elastic strain energy, the deformation velocity and the 

(19)Fn = kmδ + µδδ̇,

(20)meδ̈ + kmδ = meae

(21)ae =
Fi

mi
+

Fj

mj
,

energy loss can be expressed by Eqs. (22), (23), and (24), 
respectively, based on Eq. (20) and the separation end 
state of collision:

with

where δ̇(−) denotes the initial relative velocity, χ is the 
ratio of the work done by equivalent supporting force 
Fe = meae and its maximum value, δm and ΔE are the 
maximum compression and dissipated energy of colli-
sion, respectively.

Eqs. (22), (23), and (24) show that the maximum elas-
tic strain energy, the deformation velocity, and the energy 
loss during collision increase as ξc increases when the 
initial relative velocity and equivalent mass are fixed. It 
should be highlight that the ratio ξc is associated with km, 
me, δ̇(−) and ae. The value of ξc is less than 1 according to 
Eq. (25). When ξc < 0, the supporting forces weaken the 
compression of collision, whereas the case of 0 < ξc < 1 
illustrates the strengthening effect of supporting forces. 
In addition, ξc = 0 means the supporting forces are equal 
to zero, and ξc = 1 denotes there is no collision.

Similarly, the influence of supporting forces on restitu-
tion phase can be evaluated by the following formula

where δ̇(+) indicates the separation velocity right after 
collision. During restitution, the value of ξr is less than or 
equal to 1. The case ξr = 1 means the colliding bodies can-
not separate at the end of collision. The supporting forces 
accelerate the restitution effect when ξr < 0, whereas the 
condition of ξr > 0 illustrates the prevention of the sup-
porting forces on restitution. Therefore, the ratios ξc and 
ξr are defined as the effect factor of supporting force on 
collision.

As analyzed before, the non-separation state can 
occur when ξr = 1. This state is also the key to choose the 

(22)
1

2
kδ2m =

1i

2(1− ξ)
me

(

δ̇(−)
)2

,

(23)

δ̇ = δ̇(−)

√

√

√

√1−

(

δ

δm

)2

+
ξc

1− ξc

[

χ −

(

δ

δm

)2
]

,

(24)�E =

[

1

2(1− ξc)
me

(

δ̇(−)
)2

]

(

1− ε2
)

,

(25)ξc =

∫ δm
0

meaedδ

1
2
me

(

δ̇(−)
)2

+
∫ δm
0

meaedδ
,

(26)ξr =
−
∫ 0

δm
meaedδ

1
2
me

(

δ̇(−)
)2

−
∫ 0

δm
meaedδ

,

Figure 1 Contact-impact model under flexible support
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different damping models for meshing state and impact 
state. Thus, the end state of collision and its judgement 
are illustrated.

Eq. (27) shows the energy balance in collision process, 
and its detail derivation can be found in Ref. [18]:

where E+
r  and E−

r  denotes the final relative kinetic energy 
and the initial relative kinetic energy, respectively, Wec 
represents the work done by equivalent supporting force 
in compression phase, whereas Wer is in restitution phase. 
This expression denotes that if the initial relative kinetic 
energy E−

r  can satisfy all the energy consumption which 
consists of ∆E and Wer − Wec during contact-impact 
event, then E+

r  > 0 and the collision pair enters separation 
state. The E+

r  cannot be negative, hence, if E+
r  = 0 and 

the colliding bodies still not separated, the collision pair 
enters non-separation state. Thus, the judgement of the 
contact-impact end state can be described as follows.

(1) During restitution phase, the collision pair enters 
separation state when δ = 0 and E+

r  > 0.
(2) During restitution phase, the collision pair enters 

non-separation state when δ > 0 and E+
r  = 0.

3.2  Coefficient of Restitution
In general, the coefficient of restitution plays a crucial 
role for deducing the impact damping model, and it had 
been indicated in Ref. [30] that the Newton model and 
Poisson model cannot obey the law of energy conserva-
tion when the energy loss during impact from sources 
other than friction. Instead, an energy model which is 
also called Stronge model is proposed, and it is defined as 
the square root of the ratio ε of the elastic strain energy 
released during restitution to the energy absorbed by 
deformation in compression. In terms of the work done 
by the contact force during the two phases, the restitu-
tion coefficient is

where Wc and Wr represent the work done by contact 
force during the compression and restitution phases, 
respectively.

In fact, this energy model is obtained based on the 
separation state, and it can exhibit obvious error for the 
non-separation state, as shown in Figure  2. This figure 
represents the development of the contact force dur-
ing collision which is affected by an equivalent support-
ing force. It should be highlighted that the contact force 
is obtained by the liner spring model, this means there 
is no energy loss during collision and the coefficient of 

(27)E+
r = E−

r − (Wer −Wec)−�E,

(28)ε2 = −
Wr

Wc
,

restitution should theoretically be equal to 1. However, 
the result obtained by Eq. (17) is about 0.89. Therefore, it 
is necessary to improve the model of the restitution coef-
ficient, which can be applied to both the separation and 
the non-separation.

According to Eq. (28), the energy loss for separation 
state can be given by

thus the restitution coefficient is derived as

in which ∆E indicates the work done by damping force 
during impact-contact event.

Since the contact force model applied in Figure 2 does 
not contain damping force, the energy loss ∆E is equal to 
zero, and then the restitution coefficient calculated by Eq. 
(30) is equal to 1 which is the theoretical value. For the 
separation state, the result obtained by Eq. (30) is equal 
to Eq. (28). Hence, Eq. (30) is employed to deduce the 
impact damping model in this paper.

3.3  Impact Damping Model
As before analysis, the influence of supporting forces on 
collision cannot be ignored when these forces are large 
enough, and the existing impact damping models may 
exhibit obvious errors, as shown in Figure 3 which illus-
trates the plots of the pre-restitution coefficient repre-
sented in Table  1 and the post-restitution coefficient 
obtained by Eq. (30) with a continuous contact analysis. 
The straight line which represents the same value for 
post and pre- restitution coefficient is used as reference. 
This approach proposed by Lankarani and Nikravesh [14] 
is also adopted for analyzing the impact damping fac-
tor in Refs. [1, 16]. The results of Figure  3 indicate that 

(29)�E = Wc +Wr =

(

1− ε2
)

Wc,

(30)ε2 =
Wc −�E

Wc
,

Figure 2 Influence of equivalent supporting force
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the impact damping model needs to be reconsidered for 
the contact-impact event affected by supporting forces. 
Since the separation velocity right after contact-impact 
event cannot be predicted due to the variable end state, 
the impact damping factor is hard to be modeled, hence 
Newton method is employed to calculate this factor 
which obeys the straight line law shown in Figure 3.

For the impact damping factor, a function defined over 
the real numbers μ can be given in the following form 
according to Eq. (19) and Eq. (30):

where δo denotes the deformation at the end of collision. 
When f(μ) is equal to zero, the root of this function is the 
value of μ. Then, the function’s derivative is deduced as

f (µ) =

∫ δm
0

(

kmδ + µδδ̇
)

dδ −

(

∫ δm
0

µδδ̇dδ +
∫ δo
δm

µδδ̇dδ

)

∫ δm
0

(

kmδ + µδδ̇
)

dδ
− ε2

(31)=
Wc −�E

Wc
− ε2,

(32)
f ′(µ) =

Wc

[

∫ δm
0

δδ̇dδ −

(

∫ δm
0

δδ̇dδ +
∫ δo
δm

δδ̇dδ

)]

− (Wc −�E)
∫ δm
0

δδ̇dδ

W 2
c

=
Wc[Sc − (Sc + Sr)]− (Wc −�E)Sc

W 2
c

=
�ESc −Wc(Sc + Sr)

W 2
c

.

With the aid of Eqs. (31) and (32), a better approximation 
is given by

where μ0 denotes the initial impact damping factor, 
which is calculated by Shiwu Hu and Xinglin Guo model 
shown in Table 1. Therefore, the process for the impact 
damping factor is repeated as

until |εpost − εpre| ≤ 0.005εpre where εpost and εpre denote 
the post and pre-restitution coefficient respectively. Con-
sequently, the impact damping model considering sup-
porting forces is

(33)

µ1 = µ0 −
f (µ0)

f ′(µ0)
= µ0 −

(

1− ε2
)

W 2
c0 −�E0Wc0

�E0Sc0 −Wc0(Sc0 + Sr0)
,

(34)µn+1 = µn −

(

1− ε2
)

W 2
cn −�EnWcn

�EnScn −Wcn(Scn + Srn)
,

(35)D = µn+1δ.

Figure 3 Relation between the post- and pre-restitution coefficients: a ξc = − 0.022; b ξc = 0.521; c ξc = 0.723; d ξc = 0.941
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4  Application
A start-up and braking process of a helical gear system 
is taken as an example to illustrate the application of 
the improved gear contact force model, and then the 
influence of supporting forces on gear dynamics is also 
analyzed.

4.1  Model and Computation
A scale model of the high-speed gear train of a type wind 
turbine gearbox is built in the coordinate system oxyz, 

as shown in Figure  4(a) where the action plane of gear 
pair is in the oyz plane, and the parameters of the model 
are shown in Table 2. The model consists of driving ele-
ment, driving gear, driven gear, load element and two 
driving shafts, wherein, the driving gear is a left spiral 
helical gear. Due to the less effect of the axial force Fz on 
the rotation of gear pair, the movement around x-axis is 
ignored, and the displacements of the y-axis, z-axis and 
around z-axis direction need to be considered for the 
two gears. Meanwhile, only around z-axis is considered 
for the driving and load elements. Thus, the model is an 
8-degree freedom transmission system and its displace-
ment vector can be expressed as X = [θI, yp, zp, θp, yg, zg, 
θg, θo]T, and then the dynamic equations are given by

with
(36)Ẍ = −M

−1
CẊ −M

−1
KX +M

−1
P,

Table 1 Impact damping factor models

Model Factor µ Model Factor µ

Hunt and Crossley 3(1−ε)
2

km

δ̇(−)
Flores et al. 8(1−ε)

5ε
km

δ̇(−)

Lankarani and Nikravesh 3
(

1−ε2
)

4

km

δ̇(−)

Shiwu Hu and 
Xinglin Guo

3(1−ε)
2ε

km

δ̇(−)

Figure 4 Gear transmission system: a dynamic model; b action of contact force

Table 2 Properties considered for the transmission system

Property Value Property Value

Teeth number zp = 110, zg = 30 Support damping (N·s/m) cpy = cpz = 6770

Base radius (m) Rp = 0.186, Rg = 0.051 cgy = cgz = 5078

Mass (kg) mp = 68, mg = 8.4 Rotary inertia (N·m·s2) Jp = 0.8, Jg = 0.007

Base helix angle (º) βb = 13.6 JI = 0.8323, JO = 1.827

Backlash (m) 2b = 0.4 × 10−3 Tooth profile error amplitude (m) ea = 4 × 10−6

Support stiffness (N/m) kpy = kpz = 3.6 × 108, Tooth profile error wave number υ = 1

kgy = kgz = 2.7 × 108 Initial phase (rad) 0

Torsion stiffness (N·m) kp = 7.59 × 105, kg = 6.94 × 105 Material coefficient (s/m) α = 0.3

Damping coefficient ζm = 0.05, ζp = ζg = 0.02
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where Ẍ , Ẋ and X are the acceleration, velocity and dis-
placement vectors, respectively, M−1, C, K, and P denote 
the mass inverse matrix, the damping matrix, the stiff-
ness matrix, and the force vector. Fy and Fz are the 
components of Fn on y-axis and z-axis, as shown in Fig-
ure 4(b). β, βb, αn, and αt denote the helix angle, the base 
helix angle, the normal pressure angle, and transverse 
pressure angle, respectively. The parameter Fn indicates 
the normal contact force on the pitch circle, and it is cal-
culated by Eq. (1) in which the meshing stiffness shown 

M
−1 =























JI 0 0 0 0 0 0 0

0 mp 0 0 0 0 0 0

0 0 mp 0 0 0 0 0

0 0 0 Jp 0 0 0 0

0 0 0 0 mg 0 0 0

0 0 0 0 0 mg 0 0

0 0 0 0 0 0 Jg 0

0 0 0 0 0 0 0 Jo























,

C =























cp 0 0 − cp 0 0 0 0

0 cpy 0 0 0 0 0 0

0 0 cpz 0 0 0 0 0

− cp 0 0 cp 0 0 0 0

0 0 0 0 cgy 0 0 0

0 0 0 0 0 cgz 0 0

0 0 0 0 0 0 cg − cg
0 0 0 0 0 0 − cg cg























,

K =























kp 0 0 − kp 0 0 0 0

0 kpy 0 0 0 0 0 0

0 0 kpz 0 0 0 0 0

− kp 0 0 kp 0 0 0 0

0 0 0 0 kgy 0 0 0

0 0 0 0 0 kgz 0 0

0 0 0 0 0 0 kg − kg
0 0 0 0 0 0 − kg kg























,

P =























TI

− Fy
− Fz

− FyRp

Fy
Fz

− FyRg

To























=























TI

− Fn cosβb
− Fn sin βb

− FnRp cosβb
Fn cosβb
Fn sin βb

− FnRg cosβb
To























,

in Figure 5 is obtained by the approach presented in Sec-
tion 2 based on Table 2, the deformation and the defor-
mation velocity are given respectively by

with

where ȳp and ȳg denote the displacements of points P and 
G in the y-axis, respectively, and the negative symbol in 
the expression of ȳg indicates the opposite rotation direc-
tion of driven gear to driving gear. Assuming the static 
transmission error is caused by the driven gear, the static 
transmission error e and its rate ė are expressed as

in which ea denotes the fluctuation amplitude, υ repre-
sents the error rate wave number of single tooth, z2 and q 
illustrate the tooth number of driven gear and the initial 
phase, respectively. For the restitution coefficient Eq. (43) 
represented in Ref. [18] is also adopted in this study

in which α is the coefficient of material.
The four order Runge–Kutta method is applied to solve 

Eq. (36), and the numerical computation process is pro-
posed, as shown in Figure  6 where Fn, cm, and μn+1 are 
computed by Eqs. (1), (17), and (34), respectively. Accord-
ing to the operation conditions of the wind turbine gear-
box, the input and output torque of the transmission 

(37)δ =
ȳp − ȳg

cosβb
− e,

(38)δ̇ =
˙̄yp − ˙̄yg

cosβb
− ė,

(39)ȳp = yp + zp cot βb + θpRp,

(40)ȳg = yg + zg cot βb − θgRg ,

(41)e = ea sin
(

θgυz2 + q
)

,

(42)ė = eaυz2
θ̇g

2π
cos

(

θgυz2 + q
)

,

(43)ε = 1− αδ̇(−),

Figure 5 Meshing stiffness
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system shown in Figure  7 are set, and then the simula-
tion is carried out for the dynamic response analysis of 
the gear system. 

4.2  Development of Gear Pair State
In the process of gear transmission, the gear pair is not 
always in normal meshing state due to the influence of 
backlash and external loads, and sometimes its behavior 
reflects strong non-linear dynamic characteristics [31, 
32]. Under the working condition shown in Figure 7, the 
gear pair undergoes a development process from abnor-
mal meshing state to smooth meshing state, and then 
from smooth meshing state to abnormal meshing state 
until to stop, as shown in Figure  8(a). The curve is the 
ratio between δ obtained by Eq. (36) and 0.5 times back-
lash b, that is δ/b. According to the judgement of gear 
pair state, the gear pair is in contact state when the ratio 
is greater than 1 or less than −  1, and the deformation 
is |δ| − b; The gear pair is in contact loss state when the 
ratio is greater than − 1 and less than 1; At the moment 
of the absolute value of the ratio passes through 1 and 
greater than 1, the contact-impact event takes place; 
Then the gear pair enters contact loss state again or nor-
mal meshing state at the end of contact-impact event. 
Overall, in the start-up stage, there are several continu-
ous contact-impact phenomena, and then followed by a 
stable normal meshing state. During the brake stage, the 
gear pair collides repeatedly between front tooth sur-
face and back tooth surface, and it also exhibits vibration 
attenuation phenomenon.

For the phenomena of contact-impact event, the more 
details are shown in Figure  8(b) where the symbols “o” 

Figure 6 Numerical computation process

Figure 7 Input and output torques

Figure 8 Transmission error ratio δ/b 
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and “×” denote the start mark and the end mark of con-
tact-impact event, respectively. This figure shows the gear 
pair undergoes a repeated contact-impact process before 
a normal meshing state.

4.3  Influence of Supporting Forces on Dynamic Response
It can also be drawn from Figure 8(a) that the difference 
between solid line and dotted line which are obtained 
by the described model and the linear spring damping 
model, respectively, increases firstly and then decrease. 
Figure  8(b), which is the ratio curve of the circle A, 
shows the detailed difference between these two models. 

It is apparent that the solid line shows four collisions, 
whereas the dotted line exhibits three. In fact, this dif-
ferent response which has been represented in Ref. [18] 
is caused by the accumulative error in the dissipative 
energy of each collision between these two force models.

As aforementioned, the energy loss during collision 
and the impact end state are influenced by the effect 
factor ξc and ξr, respectively, thus, these two factor are 
plotted in Figure 9 for detailed analysis. This figure illus-
trates that most effect factors ξc during each collision are 
large than 0.3 which means the large effect of support-
ing force. For instance, the initial relative velocity of the 

Figure 9 Developments of influence factor

Figure 10 Development of relative velocity
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first collision is larger than the second collision, as shown 
in Figure  10(b), however the corresponding maximum 
contact force is smaller, as shown in Figure  11(b), since 
the effect factor ξc of the second collision is large than 0.3 
while the first collision is less than 0.1. According to Eq. 
(22), this phenomenon can be explained that the maxi-
mum elastic strain energy is transferred from the initial 
relative motion and the work done by supporting forces 
on deformation. In other words, the maximum contact-
impact force is affected by both initial relative velocity 
and supporting forces, and the large effect factor ξc can 
obviously influence on impact force. For the deformation 
velocity, this influence is also obvious, such as the sec-
ond and the third collisions. Figure 9 also shows that the 
effect factor ξr is equal to 1 when gear pair enters normal 
meshing state from impact state, which can also be con-
cluded by Eq. (26).

In conclusion, the contribution of supporting forces is 
important to the deformation, deformation velocity, con-
tact force, and dissipative energy of contact-impact event. 
The contact-impact force model considering the influ-
ence of supporting forces is necessary for the simulation 
of gear transmission system.

5  Conclusions
In this paper, the issue of contact force model consider-
ing the normal meshing and contact-impact states was 
analyzed for helical gear system. As the basic problem, 
the time-varying meshing stiffness and the meshing 
damping were discussed for the normal meshing state, 
and the collision evolution associated with fundamental 
contact mechanics was also investigated. Furthermore, 

the influence of supporting forces on collision, including 
deformation velocity, dissipative energy and impact end 
state, was analyzed. Especially, a new model of restitution 
coefficient was deduced for both separation and non-
separation states. According to this new model and the 
Newton method, a hysteresis damping factor was derived 
for calculating impact damping force. In order to better 
understand the described method proposed in this paper, 
a dynamic analysis of a helical gear system was carried 
out under start-up and braking conditions. In this analy-
sis, the specific application of the described model was 
represented with the computation process of the helical 
gear system. The results showed that: (1) the described 
contact force model is more suitable for dynamics analy-
sis in gear system; (2) the gear pair undergoes a repeated 
contact-impact process before entering normal meshing 
state; (3) the contribution of supporting forces is impor-
tant to impact force, deformation velocity and energy loss 
during collision when ξc > 0.3; 4) supporting forces and 
dissipative energy are the main reasons for gear system to 
enter a steady contact state from repeated impact state.
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