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On Generating Expected Kinetostatic 
Nonlinear Stiffness Characteristics 
by the Kinematic Limb‑Singularity 
of a Crank‑Slider Linkage with Springs
Baokun Li1   and Guangbo Hao2*

Abstract 

Being different from avoidance of singularity of closed-loop linkages, this paper employs the kinematic singularity to 
construct compliant mechanisms with expected nonlinear stiffness characteristics to enrich the methods of compli-
ant mechanisms synthesis. The theory for generating kinetostatic nonlinear stiffness characteristic by the kinematic 
limb-singularity of a crank-slider linkage is developed. Based on the principle of virtual work, the kinetostatic model 
of the crank-linkage with springs is established. The influences of spring stiffness on the toque-position angle relation 
are analyzed. It indicates that corresponding spring stiffness may generate one of four types of nonlinear stiffness 
characteristics including the bi-stable, local negative-stiffness, zero-stiffness or positive-stiffness when the mechanism 
works around the kinematic limb-singularity position. Thus the compliant mechanism with an expected stiffness 
characteristic can be constructed by employing the pseudo rigid-body model of the mechanism whose joints or links 
are replaced by corresponding flexures. Finally, a tri-symmetrical constant-torque compliant mechanism is fabricated, 
where the curve of torque-position angle is obtained by an experimental testing. The measurement indicates that the 
compliant mechanism can generate a nearly constant-torque zone.
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1  Introduction
A mechanism with springs is defined as a rigid-body 
linkage whose joints are placed springs. For this type of 
mechanisms, the kinetostatic driving force/torque of 
this type of mechanisms is nonlinear with respect to the 
position parameter. The nonlinear relation between the 
driving force/torque and the position parameter is called 
kinetostatic nonlinear stiffness characteristic. The mech-
anism with springs possessing this characteristic can be 
applied in constant force mechanism [1], vibration isola-
tor [2] and gravity balancer [3]. The mechanism attached 
springs is often used in the type synthesis of compli-
ant mechanisms based on the rigid-body replacement 
method and the compliant mechanisms analysis based on 

the pseudo-rigid-body model [4–6]. Compliant mecha-
nisms can be fabricated in monolithic and are applied 
in many applications needing high precision because of 
absence of backlash and friction [7], such as energy har-
vester based on buckled beam [8, 9], micro-switch [10] 
and high accurate driver [11]. However, the buckled 
beam only generates bi-stability but other nonlinear stiff-
ness characteristics. Moreover, the mechanical model 
of bi-stable buckled beam is very complicated [12, 13]. 
The four-bar linkage with placed springs can be used to 
design compliant mechanisms with bi-stable behavior by 
employing pseudo-rigid-body replacement [14], which 
develops the configuration of the bi-stable mechanism.

When the rigid-body replacement method is use to 
synthesize compliant mechanisms processing corre-
sponding performance, designers should grasp series 
of performances of the rigid-body linkage. Thus one 
should have much experience on linkage design and 
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performance analysis. Therefore, it is meaningful that 
some common attributes are used to construct compliant 
mechanisms with nonlinear stiffness characteristic.

Kinematic singularity which is a basic property of link-
ages affects the performance of linkages seriously, so 
many scholars pay much attention on singularity distri-
bution, singularity property identification and singular-
ity avoidance [15, 16]. However, kinematic singularity 
has two sides, and can be used to construct new types of 
devices. Kinematic singularity of the spatial parallel link-
age whose links are connected by universal joints are used 
to construct several types of reconfigurable parallel mech-
anisms [17]. When parallel mechanisms work near the 
singularity, they are sensitive to external load. This prop-
erty is applied to design the force sensors [18, 19]. A new 
compliant mechanism with negative-stiffness characteris-
tic is synthesized by using kinematic singularity of a four-
bar linkage [20]. The planar parallelogram linkage when 
the two cranks are collinear is used to construct a type 
of reconfigurable compliant gripper by applying rigid-
body replacement method [21]. A new medical device is 
designed by using the property that a parallel mechanism 
obtains an additional freedom when it is singular [22].

In this paper, by the crank-slider mechanism with springs 
as an example, the kinematic limb-singularity which is a 
common property of rigid-body linkages, is used to con-
struct the kinetostatic nonlinear stiffness characteristic. 
The rest of the paper is organized as follows: Section  2 
addresses the kinetostatic model of the mechanism and 
Section  3 classifies nonlinear stiffness characteristics as 
four types. Section 4 analyzes the influences of spring stiff-
ness on the nonlinear stiffness characteristics generated 
by the mechanism when moves from nonsingular position 
and passes the kinematic limb-singularity position. Sec-
tion  5 indicates that the mechanism only produces posi-
tive-stiffness characteristic when moves from the kinematic 
limb-singularity position to nonsingular position. Section 6 
describes the approach by creating an expected zero-stiff-
ness (constant-torque) characteristic of the mechanism 
working around the kinematic limb-singularity position. 
In Section 7, design of a nonlinear compliant mechanism is 
further discussed and is validated by the experimental test-
ing. Finally, Section 8 draws some important conclusions.

2 � Kinetostatic Model of the Mechanism
Figure  1 shows the schematic of the crank-slider 
mechanism with springs. Crank AB rotates about pin 
joint A in anticlockwise and drives the slider to moves 
along the horizontal line, where link AB and slider are 
connected by coupler BC. Three pin joints are placed 
torsional springs whose stiffness is KRA, KRB and KRC, 
respectively. Prismatic joint C is added extension spring 
whose stiffness is KPC.

The Cartesian coordinates system, O-xyz, is attached 
on the base, where origin O is fixed on point A, the pos-
itive direction of x-axis points to the horizontal right, 
the positive direction of y-axis is vertically up, and 
z-axis is determined by the right-hand rule.

Vectors AB and BC are defined by r1 and r2, respec-
tively. Projects of vector position C on the x-axis and 
y-axis with respect to the frame O-xyz are defined by r3 
and e, respectively. Scalars r1 and r2 are lengths of links 
AB and BC, respectively. Scalars r3 and e are the coor-
dinates of point C on the x-axis and y-axis, respectively. 
Link-length, r1 and r2, and offset, e, should satisfy

so as to allow the mechanism to pass through the right 
limiting position, which is called the kinematic limb-sin-
gularity and occurs when the crank and coupler are along 
the same line.

Here we suppose that there is no friction and clear-
ance between any two links connected by a kinematic 
pair. Moreover, we only discuss the kinetostatic model 
of the mechanism during the motion rather than con-
sidering any inertial force/torque and gravity caused by 
links quality.

The driving torque applied on link AB is set as

where vector k is the unit vector of z-axis (vectors i and j 
are unit vectors of x-axis and y-axis, respectively). Torque 
vector Td is along the z-axis, scalar ||Td|| is the magni-
tude of driving torque Td, where Td > 0 indicates Td is 
along the positive direction of z-axis and Td < 0 corre-
sponds to direction of Td pointing to negative z-axis.

The angular displacement of pin joint A is

where θA is the rotation angle of x-axis to link AB and 
indicates the input position angle of link AB, θA0 cor-
responds to the initial angle. In this paper, value of θA 
allows no spring lose efficacy.

Here we consider θA as the general coordinate of the 
mechanism. Thus the virtual angular displacement of 
joint A is

(1)−(r1 + r2) < e < r1 + r2,

(2)Td = Tdk ,

Ψ A = (θA − θA0)k ,

C
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Figure 1  Crank-slider linkage with springs
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The virtual work caused by driving torque, Td, is

The torque caused by the torsional spring placed at pin 
A is

so the virtual work due to TA can be calculated as

Angular displacement of rotational joint B is

where scalar θB is the rotation angle from vector BA to 
vector BC, and scalar θC is the rotation angle from nega-
tive direction of x-axis to vector CB. θB and θC satisfy

If initial values of θB and θC are denoted by θB0 and θC0, 
respectively, there is

According to the displacement analysis of the mecha-
nism, the following can be obtained

The angular displacement of joint B is

where

The torque of the torsional spring added at joint B is

Thus the virtual work caused by TB can be obtained as

δΨ A =
dΨ A

dθA
δθA = δθAk .

(3)δWd = Td · δΨ A = Tdk · δθAk = TdδθA.

TA = −KRAΨ A = −KRA(θA − θA0)k ,

(4)δWTA = TA · δΨ A = −KRA(θA − θA0)δθA.

Ψ B = (θB − θB0)k = (π − θA − θC)k ,

θB = π− θA − θC.

θB0 = π− θA0 − θC0.

θC = arcsin
r1 sin θA − e

r2
, θC0 = arcsin

r1 sin θA0 − e

r2
.

δΨ B =
dΨ B

dθA
δθA =

d(θB − θB0)

dθA
δθAk =

dθB

dθA
δθAk

= −
d(θA + θC)

dθA
δθA k =

(

−1− r1 cos θA
/

a
)

δθAk ,

(5a)a =

√

r22 − (r1 sin θA − e)2.

TB = −KRBΨ B = −KRB(θB − θB0)k .

(5b)

δWTB = TB · δΨ B

= −KRB

(

−θA − arcsin
r1 sin θA − e

r2

+θA0 + arcsin
r1 sin θA0 − e

r2

)

×

(

−1−
r1 cos θA

a

)

δθA.

For pin joint C, the angular displacement is

The corresponding virtual displacement is

The torque of spring placed at joint C is

Thus the virtual work due to torque, TC, can be repre-
sented as

For the prismatic joint C, according to the displacement 
analysis of the mechanism, the coordinate projection of 
point C on the x-axis can be obtained as follows

The corresponding initial coordinate projection can be 
written as

where

The instantaneous and initial projections of point C on 
the x-axis can be represented as the following expressions

The displacement of point C is

The corresponding virtual displacement can be yielded as

where

The force of translational spring attached at prismatic 
joint C can be obtained as

Ψ C = (θC − θC0)k .

δΨ C =
dΨ C

dθA
δθA =

d(θC − θC0)

dθA
δθAk =

r1 cos θA

a
δθAk .

TC = −KRCΨ C = −KRC(θC − θC0)k

= −KRC

(

arcsin
r1 sin θA − e

r2
−arcsin

r1 sin θA0 − e

r2

)

k .

(6)

δWTC = TC · δΨ C = −KRC

(

arcsin
r1 sin θA − e

r2

−arcsin
r1 sin θA0 − e

r2

)

×
r1 cos θA

a
δθA.

(7a)r3 = r1 cos θA + a.

(7b)r30 = r1 cos θA0 + a0,

(7c)a0 =

√

r22 − (r1 sin θA0 − e)2.

r3 = (r1 cos θA + a)i,

r30 = (r1 cos θA0 + a0)i.

PC = r3 − r30.

δPC =
dPC

dθA
δθA =

d(r3 − r30)

dθA
δθA = (−r1 sin θA − b/a)δθAi,

b = r21 sin θA cos θA − er1 cos θA.

(8)

δWFC = FC · δPC = −KPC(r1 cos θA + a− r1 cos θA0 − a0)

× (−r1 sin θA − b/a)δθA.
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According to the virtual work principle, the following is 
true

Combining Eqs. (2) through (9), the magnitude of the 
driving torque applied on the crank AB is

According to the construction of Eq. (10), the physical 
meaning of Eq. (10) is that the driving torque is to resist 
the forces or torques caused by springs attached at the 
joints.

The elastic potential energy of the mechanism can be 
represented as

According to the principle of virtual work, the following 
expressions are true

3 � Classifications of the Nonlinear Stiffness 
Characteristics

When some positions satisfy that Eq. (10) is equal to 
zero, i.e., Td=0, the mechanism is in static equilibrium 
without external load which includes stable equilibrium 
and unstable equilibrium [23].

If

(9)δWd + δWTA + δWTB + δWTC + δWFC = 0.

(10)

Td = KRA(θA − θA0)+ KRB

(

−θA − arcsin
r1 sin θA − e

r2

+θA0 + arcsin
r1 sin θA0 − e

r2

)

×
(

−1− r1 cos θA
/

a
)

+ KRC

(

arcsin
r1 sin θA − e

r2
− arcsin

r1 sin θA0 − e

r2

)

×
r1 cos θA

a

+ KPC(r1 cos θA + a− r1 cos θA0 − a0)× (−r1 sin θA − b/a).

(11)

U =
1

2
KRA(θA − θA0)

2 +
1

2
KRB(θB − θB0)

2

+
1

2
KRC(θC − θC0)

2 +
1

2
KPB(r3 − r30)

2

=
1

2
KRA(θA − θA0)

2 +
1

2
KRB

(

−arcsin
r1 sin θA − e

r2
− θA

+arcsin
r1 sin θA0 − e

r2
+ θA0

)2

+
1

2
KRC

(

arcsin
r1 sin θA − e

r2
− arcsin

r1 sin θA0 − e

r2

)2

+
1

2
KPC(r1 cos θA + a− r1 cos θA0 − a0)

2
.

(12a)Td = dU
/

dθA,

(12b)dTd

/

dθA = d
2U

/

dθ2A.

Td = dU
/

dθA =0,

which means the potential energy of the mechanism 
reaches the local minimum, then the mechanism is stable 
corresponding to θa and θc as shown in Figure 2.

When the potential energy of the mechanism arrives at 
the local maximum, which means

The mechanism locates at the unstable equilibrium posi-
tion, which corresponds to θb as Figure 2 shows.

For the crank-slider mechanism with springs as shown 
in Figure 1, when the input position angle, θA, satisfies

or

The mechanism is located at the left limiting position and 
the right limiting position, both of which are kinematic 
singularity positions.

dTd

/

dθA =d
2U

/

dθ2A > 0,

Td = dU
/

dθA =0,

dTd

/

dθA =d
2U

/

dθ2A < 0.

(13a)θA = arcsin
e

r1 − r2
,

(13b)θA = arcsin
e

r1 + r2
.

Td /U

θa θ  b θc

Tmax

Tmin

Umax

Umin2

Td-θA

U-θA

Umin1

Stable 
position

Unstable 
position

θA0

Stable 
position

Figure 2  Torque/energy versus position angles
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Equation (7a) can lead to the following expression

Equation (14) indicates that when the mechanism 
locates at the two limiting positions represented by Equa-
tions (13a) and (13b), the following expression is true

which indicates that the ratio between the output velocity 
and the input velocity is zero and is called the kinematic 
limb-singularity [24].

Figure  3 shows the motion of the mechanism which 
works around the right limiting position which is also 
one of the two kinematic limb-singularity positions. The 
mechanism moves from the initial non-singular position 
with no deflected springs (Figure  3(a)), passes the kin-
ematic limb-singularity position (Figure  3(b)) and then 
arrives at the end non-singular position (Figure  3(c)). 
During the motion as Figure  3 shows, the potential 
energy of the spring placed at joint C increases from 
zero to the maximum and then falls to zero. Thus if the 
stiffness of the torsional springs are not too large, the 
potential energy of the mechanism may have one local 
maximum and two local minimums, which correspond to 
the unstable position (θb as shown in Figure 3) and two 
stable positions (θa and θc as Figure 3 shows). This kine-
tostatic nonlinear stiffness characteristic is called the bi-
stable characteristic.

(14)dr3
/

dθA = −r1 sin θA − b
/

a.

(15)dr3
/

dθA = 0

If and only if the pin joints are attached springs, the 
mechanism does not exhibit the phenomenon that the 
potential energy increases firstly and then decreases, 
which means that there is no maximal potential energy 
during the motion because the pint joints rotate in one 
direction during the motion. Thus, the mechanism only 
produces the positive-stiffness characteristic but does 
not generate the bi-stable characteristic.

According to Eqs. (10) and (11), the driving torque is 
to resist the all of the force/torque caused by all of the 
springs and the total potential energy of the mecha-
nism is the sum of the potential energy of each spring. 
In other words, the mechanism may produce four types 
of kinetostatic nonlinear stiffness characteristics which 
are determined by the stiffness of springs placed at the 
joints.

Four nonlinear stiffness characteristics including 
bi-stable characteristics, local negative-stiffness char-
acteristic, local zero-stiffness characteristic and posi-
tive-stiffness characteristic are shown in Figure 4, which 
describes the driving torque varies with the input posi-
tion angle, θA. Unlike a generic elastic spring or structure, 
the driving force/torque applied on the mechanism with 
springs does not obey the Hooke’s law. If the mechanism 
is carried out the motion as Figure  3(a)–3(c) shows, it 
may produce four types of nonlinear stiffness character-
istics depicted by Figure 4(a)–(d), which are addressed as 
follows: 

(1)	 Figure  4(a) describes the bi-stable characteristic 
which includes three domains, where domains i 
and iii are positive-stiffness and domain ii is nega-
tive-stiffness. As Tdmax × Tdmin < 0, the mechanism 
exhibits snap-through phenomenon from position 
b to positon c during the motion, where positons a 
and c are stable and positon b is unstable.

(2)	 Figure 4(b) depicts the local negative-stiffness char-
acteristic which is similar to the bi-stable charac-
teristic. However, the torque is positive during the 
motion, so the mechanism does not exhibit the 
snap-through phenomenon.

(3)	 Figure 4(c) represents the local zero-stiffness char-
acteristic which can be designed by assigning 
appropriate parameters.

(4)	 Figure  4(d) shows the positive-stiffness character-
istic which appears when the mechanism moves 
from the kinematic limb-singularity position to a 
non-singular position.

It is noted that the nonlinear stiffness characteristics 
described by Figures  4(a) to 4(c) exist if and only if the 
mechanism moves from a non-singular position, passes 
the kinematic limb-singularity position and reaches 

B

A

C

Output motion

Input motion

a  Non-singular initial position

B

A

C

Instantaneous no 
output motion

Input motion

b  Kinematic limb-singularity position
B

A

C

Output motion
Input motion

c   Non -singular end position
Figure 3  Different positions of the mechanism
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another non-singular position. Therefore, in order to 
clearly illustrate the nonlinear stiffness characteristics, 
Section4 discusses the case that the initial position of the 
mechanism is in kinematic limb-singularity and Section5 
illustrates the case that the mechanism moves from the 
kinematic limb-singularity position.

The positive-stiffness characteristic is also produced 
when the stiffness of torsional springs placed at pin joints 
are too large or the stiffness of translational spring placed 
at prismatic joint C is zero, which is addressed in Section 4.

4 � Nonlinear Stiffness Characteristics with Initial 
Non‑singular Position

It is evident that the attached springs make the mecha-
nism to produce the nonlinear stiffness characteristic. 
In addition, not only the springs make the mechanism 
to behave in nonlinear stiffness characteristics, but the 
geometry parameters also influences the stiffness char-
acteristics. In this section, the theory of generating the 
nonlinear stiffness characteristic by adding springs is 
discussed, which is followed by developing a method for 
constructing an expected stiffness characteristic, where 
the local zero-stiffness (constant-torque) characteristic 
construction is taken as the example.

4.1 � Theory of the Nonlinear Characteristics Generation
The mechanism has four joints which can be placed 
springs which cause the nonlinear stiffness character-
istics. It is necessary to explore the specific stiffness 
characteristic caused by each spring so as to assign appro-
priate springs stiffness to design the mechanism with an 
expected nonlinear stiffness characteristic. In order to 
analyse the theory of generating the nonlinear character-
istic, the corresponding spring stiffness is set to nonzero 
exclusively and other springs stiffness are assigned as zero.

4.1.1 � Nonlinear Stiffness Characteristics When 
KRA = KRB = KRC = 0, KPC ≠ 0

In this case, the driving torque represented by Eq. (10) is 
simplified as

After comparing Eqs. (10) and (16), the driving torque 
is to resist the force caused by the translational spring 
placed at the prismatic joint C.

The potential energy calculated by Eq. (11) is written 
as

Solving Eq. (17) being equal to zero with respect to θA 
leads to

where

(16)
Td = KPC(r1 cos θA + a− r1 cos θA0 − a0)

× (−r1 sin θA − b/a).

(17)U =
1

2
KPC

(

r1 cos θA + a−r1 cos θA0 − a0)
2
.

(18a)θA1 = θA0,

(18b)θA2 = arcsin
e

r1 + r2
,

(18c)θA3 = arctan
C1 + C2

C3 + C4

,

Tdmax

Tdmin

i ii iii
Td

θA

a b c
θA0 o

(a) Bi-stable characteristic

i ii iii
Td

θAθA0
o

(b) Local negative characteristic

Zero-stiffnessTd

θA
θA0 o

Local zero-stiffness characteristic
Td

θAθA0 o

(d)

(c)

Positive-stiffness characteristic
Figure 4  Four nonlinear stiffness characteristics of the mechanism
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θA1 and θA3 are the two solutions of the common term 
of Eqs. (16) and (17) which is shown as the following 
expression

while θA2 is the solution of the term of Eq. (16) as follows:

From the above, if θA = θA1 or θA = θA3, then U = 0. 
While θA ≠ θA1 and θA ≠ θ3, there is U > 0. Thus we can 
conclude that the mechanism is located at the local 
minimal energy point when θA = θA1 and θA = θA3, 
respectively. According to Ref. [28], the mechanism is in 
equilibrium when θA = θA1 and θA = θA3 corresponding to 
θa and θc as Figure 2 shows, respectively.

Differentiating Eq. (16) with respect to θA yields

C1 = 4r31 cos θA0 sin
3 θA0 − 10er21 cos θA0 sin

2 θA0

+ 8e2r1 cos θA0 sin θA0 − r31 cos θA0 sin θA0

− 3r1r
2
2 cos θA0 sin θA0 − 2e3 cos θA0

+ 2er21 cos θA0 + 2er22 cos θA0,

C2 = a0

(

4r21 sin
3 θA0 − 6er1 sin

2 θA0 + 2e2 sin θA0

−3r21 sin θA0 − r22 sin θA0 + 4er1

)

,

C3 = −4r31 sin
4 θA0 + 10er21 sin

3 θA0 − 8e2r1 sin
2 θA0

+ 5r31 sin
2 θA0 + 3r1r

2
2 sin

2 θA0 + 2e3 sin θA0

− 8er21 sin θA0 − er22 sin θA0 + 4e2r1 − r31 − 3r1r
2
2 ,

C4 = a0

(

4r21 sin
2 θA0 cos θA0 − 6er1 sin θA0 cos θA0

+2e2 cos θA0 − 3r21 cos θA0 − r22 cos θA0

)

.

(19)r1 cos θA + a− r1 cos θA0 − a0 = 0,

(20)−r1 sin θA − b/a = 0.

(21)

dTd

dθA
=

d
2U

dθ2
A

= KPC(−r1 sin θA − b/a)2

+ KPC(r1 cos θA + a− r1 cos θA0 − a0)

×

[

−r1 cos θA −

(

r21 sin θA cos θA + er1 sin θA

)/

a−b2
/

a3
]

.

If the mechanism is located at θA = θA2, which is the 
solution of Eq. (20), then

Combing Eqs. (5a), (22b) and (22c) obtains

According to Eqs. (21), (22a) and (22d), the following 
equation can be obtained

Equation (17) can lead to

Thus we can conclude that the mechanism is in unsta-
ble equilibrium when located at θA = θA2 corresponding 
to θb as shown in Figure 2.

When the geometry parameters are given as 
r1 = 10  cm, r2 = 50  cm and e = 3  cm, and the initial 
input position angle is set to θA0 = −5°, the driving 
torque and potential energy variations versus the input 
position angle is shown in Figure  5. In this paper, the 
unit of translational spring and the torsional spring is 
N/cm and N·cm/(°), respectively. It should be pointed 
out that the initial input position angle should satisfy

(22a)

(r3 − r30)|θA=θA2

= (r1 cos θA + a− r1 cos θA0 − a0)|θA=θA2
> 0,

(22b)
(

r21 sin θA cos θA + er1 sin θA

)∣

∣

∣

θA=θA2

> 0,

(22c)cos θA|θA=θA2
> 0.

(22d)

[

−r1 cos θA −

(

r21 sin θA cos θA + er1 sin θA

)/

a

−b2
/

a3
]
∣

∣

∣

θA=θA2

< 0.

(23a)
dTd

dθA

∣

∣

∣

∣

θA=θA2

=
d
2U

dθ2
A

∣

∣

∣

∣

∣

θA=θA2

< 0.

(23b)U |θA=θA2
> 0.
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so as to allow the mechanism to pass the right kinematic 
limb-singularity position with starting from a non-singu-
lar position.

Figure  5 indicates that when KRA = KRB = KRC = 0 
and KPC ≠ 0, the kinematic limb-singularity position is 
in the unstable equilibrium point. Moreover, it can be 
shown that the increment of the translational spring 
stiffness increases both of the values of driving torque 
in positive direction and in negative direction. The 
potential energy is also increased by the increment of 
the translational spring stiffness.

4.1.2 � Nonlinear Stiffness Characteristics When KRB = KRC = 0, 
KPC = 0, and KRA ≠ 0

Substitution of the springs stiffness into Eq. (10) obtains 
the driving torque as

arcsin
e

r1 − r2
< θA0 < arcsin

e

r1 + r2
,

(24)Td = KRA(θA − θA0).

It is evident that the driving toque represented by Eq. 
(24) is to resist the torque due to the torsional spring placed 
at the pin joint A.

According to Eq. (24), on can obtain

Equation (25) shows that the driving force is directly pro-
portional to the input position angle, θA. In this case, the 
mechanism exhibits the positive-stiffness characteristic.

According to Eq. (11), the potential energy can also be 
obtained as

When r1 = 10 cm, r2 = 50 cm, e = 3 cm, and θA0 = −5°, 
the driving force and potential energy curves are 
described by Figure 6.

Figure 6 shows that the mechanism exhibits the posi-
tive-stiffness characteristic when a torsional spring is 
placed at the rotational joint A exclusively.

4.1.3 � Nonlinear Stiffness Characteristics When KRA = KRC = 0, 
KPC = 0 and KRB ≠ 0

In this case, Eq. (10) is simplified as

Comparison between Eqs. (5b) and (27) reveals that the 
physical meaning of Eq. (27) is that the driving force is to 
resist the torque caused by the torsional spring attached 
at the pin joint B.

After substituting the springs stiffness into Eq. (11) 
yields the potential energy as

When r1 = 10 cm, r2 = 50 cm, e = 3 cm, and θA0 = −5°, 
according to Eqs. (27) and (28), we describes the driving 
torque and potential energy variations with input posi-
tion angle change, which is shown in Figure 7.

Figure  7 indicates that placing torsional spring at the 
pin joint C only makes the mechanism to generate the 
positive-stiffness characteristic.

(25)dTd/dθA = KRA > 0.

(26)U =
1

2
KRA(θA − θA0)

2
.

(27)

Td = KRB

(

−θA − arcsin
r1 sin θA − e

r2

+θA0 + arcsin
r1 sin θA0 − e

r2

)

×
(

−1− r1 cos θA
/

a
)

.

(28)
U =

1

2
KRB

(

−θA − arcsin
r1 sin θA − e

r2

+θA0 + arcsin
r1 sin θA0 − e

r2

)2

.

K

K

K

K

K K

b  Potential energy versus input position angle
Input position angle θΑ (°)

Position angle  / °Input position angle θA (°)
a Driving torque versus input position angle
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Figure 5  Bi-stable characteristic when KRA = KRB = KRC = 0 and KPC ≠ 0
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4.1.4 � Nonlinear Stiffness Characteristics When KRA = KRB = 0, 
KPC = 0, and KRC ≠ 0

The driving force can be simplified as

Considering to Eq. (6), the physical meaning of Eq. (29) 
is that the driving torque is to resist the torque due to the 
torsional spring added at the pin joint C.

Substitution the springs stiffness into Eq. (11) obtains 
the potential energy as follows

(29)

Td = KRC

(

arcsin
r1 sin θA − e

r2
−arcsin

r1 sin θA0 − e

r2

)

× r1 cos θA
/

a.

(30)

U =
1

2
KRC

(

arcsin
r1 sin θA − e

r2
−arcsin

r1 sin θA − e

r2

)2

.

When r1 = 10 cm, r2 = 50 cm, e = 3 cm, and θA0 = −5°, 
Figure 8 depicts the driving torque and potential energy 
represented by Eqs. (29) and (30), respectively.

Figure  8 shows that the mechanism produces the 
positive-stiffness characteristic when the pin joint C is 
attached a torsional spring exclusively.

In addition, when KRA = KRB = KRC, Figures  6 through 
8 indicates that the stiffness of the driving torque curve 
caused by KRB is the greatest, the stiffness due to KRA 
is the second largest and the stiffness due to KRC is the 
lowest.

4.2 � Influences of Spring Stiffness on the Nonlinear 
Stiffness Characteristics

Section 4.1 illustrates that KPC makes the mechanism to 
generate the bi-stable characteristic including the nega-
tive domain and KRA, KRB or KRC only allow the mecha-
nism to exhibit the positive-stiffness characteristic. The 
total torque can be obtained by linear superposition of 
the torque due to KRA, KRB, KRC and KPC. Therefore, an 
expected nonlinear stiffness characteristic may be con-
structed by designing different values of KRA, KRB, KRC 
and KPC on the condition of KPC ≠ 0.

When r1 = 10 cm, r2 = 50 cm, e = 3 cm, θA0 = −5°, and 
KPC = 1  N/cm, the nonlinear stiffness characteristics of 
the mechanism for different values of KRA, KRB and KRC is 
described by Figure 9, where KRA = KRB = KRA,B.

Figure 9 indicates that one nonlinear characteristic can 
transformed to another one when the torsional springs 
stiffness, KRA, KRB and KRC, are set to different values 
when the translational spring, KPC, is nonzero. For a given 
translational spring stiffness, when the torsional spring 
stiffness is small, the mechanism exhibits the bi-stable 
characteristic. Increment of torsional springs stiffness 
delays the unstable equilibrium position and advances 
the second stable point. The bi-stable characteristic may 
degenerate to the local negative-stiffness characteristic 
and even the positive-stiffness characteristic with large 
increment of torsional springs stiffness.

In addition, existence of local maximum potential 
energy point is the precondition of the bi-stable char-
acteristic. When the torque curve has local negative-
stiffness domain but no maximum potential energy 
point, the mechanism does not exhibit the snap-through 
phenomenon.

When r1 = 10  cm, r2 = 50  cm, e = 3  cm, θA0 = −5° and 
KPC = 1  N/cm, Figure  10 depicts the nonlinear stiffness 
characteristic of the mechanism when one torsional 
spring stiffness is zero exclusively.

Figure 10 shows that when KPC is given as a constant, 
KRB has the greatest effect, KRA has the second greatest 
effect, and KRC has the smallest effect on the nonlinear 
stiffness characteristic of the mechanism, respectively.

Figure 6  Stiffness characteristics for different values of KRA when 
KRB = KRC = 0, and KPC = 0
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5 � Nonlinear Stiffness Characteristic with Initial 
Limb‑Singularity Position

Section  4 shows that the mechanism may generate the 
positive-stiffness when torsional spring stiffness is great 
enough. Section 5 manly discusses another approach for 
producing the positive-stiffness characteristic by making 
the mechanism to move from the right kinematic limb-
singularity position (Figure 3(b)) to the nonsingular posi-
tion (Figure 3(c)).

The torque versus position angle of the mechanism 
starting from the right limiting kinematic-singularity 
position can be derived by substituting

into Eq. (10), and is not detailed here.
Within this situation, as the translational spring placed 

at prismatic joint C moves in one-direction, the potential 
energy increases with the increment of the input rota-
tion angle, and does not exist the local minimum except 
the initial position. Thus the bi-stable characteristic does 

θA0 = arcsin
e

r1 + r2

not exist caused by KPC. For the three torsional springs 
attached at the three pin joints, the potential energy only 
increase. Therefore, the total potential energy increases 
during the motion of the mechanism, and the mechanism 
only exhibits the positive-stiffness characteristic.

When r1 = 10 cm, r2 = 50 cm, e = 3 cm, the torque curve 
versus the position angle is described by Figure 11.

Figure  11 verifies that the torque curve exhibits the 
positive-stiffness characteristic caused each spring. Thus 
the total torque caused by all of the springs does exhibit 
the positive-stiffness.

6 � Expected Nonlinear Stiffness Characteristic 
Creation

According to Sections 4 and 5, the mechanism only gener-
ates the positive-stiffness characteristic when the mecha-
nism moves from the kinematic limb-singularity position 
with no deflected springs and may produce four nonlin-
ear stiffness characteristics including the bi-stable charac-
teristic, the local negative-stiffness characteristic and the 
positive-stiffness characteristic when moves from the non-
singular position with no deflected springs towards limb-
singularity position. From Figures  9 and 10, we speculate 
the expected stiffness of the torque at the kinematic limb-
singularity position (θA2, Equation (18b)) can be created by 
designing appropriate springs stiffness. Here we take the 
zero-stiffness characteristic creation as an example to illus-
trate the method of the expected stiffness construction.

The procedure of designing the zero-stiffness character-
istic is addressed as follows:

(1)	 Establish the Relation among the Springs Stiff-
ness Substitute θA = θA2 and the other given param-
eters to the differentiation of Eq. (10) with respect 
to θA and then obtain the following expression

(2)	 Determine the Expected Stiffness Optimizing 
the springs stiffness, KRA, KRB, KRC and KPC which 
satisfy Eq. (31) can obtain the nonlinear stiffness 
characteristic with the expected stiffness K when 
the mechanism works around the kinematic limb-
singularity position, θA = θA2. If K is set to zero, the 
zero-stiffness (constant-torque) characteristic can 
be obtained.

(3)	 Search the Zero-Stiffness Domain The torque 
when the mechanism is located at the kinematic 
limb-singularity position, θA = θA2, is denoted by

	 The domain where the torque satisfies

(31)

dTd

dθA

∣

∣

∣

∣

θA=θA2

= f (KRA,KRB,KRC,KPC) = K .

Td|θA=θA2 .

a

b
Figure 7  Stiffness characteristics for different values of KRB when 
KRA = KRC = 0, and KPC = 0
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is considered as the constant torque domain.
	 When r1 = 10 cm, r2 = 50 cm, e = 3 cm and θA0 = −5°, 

carrying out the above procedure (1) obtains

	 The appropriate springs stiffness can be searched by 
using the optimization method. The searching algo-
rithm is not the main topic and not detailed here.

	 We suppose

(32)

∣

∣

∣

∣

∣

Td − Td|θA=θA2

Td|θA=θA2

∣

∣

∣

∣

∣

≤ 0.5%

(33)
KRA + 1.438020KRB + 0.039670KRC

− 1.359152KPC = K = 0.

(34)
KRA = KRB = 0 N · cm/

(

◦
)

, andKPC = 1 N/cm.

	 Substituting Eq. (34) into Eq. (32) and solving Equa-
tion with respect to KPC obtain the solution as fol-
lows

	 After substitute the stiffness parameters and geom-
etry parameters to Eq. (31) and carry out proce-
dure (3), one obtains the constant-torque domain as 
θA ∈ [1.57°, 4.26°]. The torque-position angle curve 
under the condition of these parameters is shown in 
Figure 12.

7 � Further Discussion and Experimental Validation
Sections 2 through 7 discuss that the nonlinear character-
istic of the crank-slider linkage with springs can be con-
structed by placing springs at the joint and making the 
mechanism to work around the right limiting kinematic 
limb-singularity position (Figure  13(b)). When KPC ≠ 0, 
KRA = KRB = KRC, the mechanism exhibits the bi-stable 
characteristic when works around the right limiting kin-
ematic limb-singularity position which is the unstable 
equilibrium position. Similarly, for the same springs stiff-
ness, the mechanism produces the bi-stable characteristic 
when the mechanism moves from the non-singular posi-
tion and passes the left limiting kinematic limb-singu-
larity position as shown in Figure 16, which must be the 
unstable equilibrium position. Thus when crank AB fully 
rotates about pin A, if KPC ≠ 0, KRA = KRB = KRC = 0, the 
mechanism exhibits the tri-stable characteristic which 
has two unstable equilibrium positions being located at 
the two kinematic limb-singularity positions.

However, torsional spring cannot be placed at joints 
A or B in case of torsional spring failure when crank 
AB fully rotates about pin A. For pin joint C, it is oscil-
lating during the motion of the mechanism. Therefore, 
the springs stiffness can be assigned as KPC ≠ 0, and 
KRA = KRB = 0 to design the tri-stable characteristic, 
which is shown in Figure 14.

Figure 14 shows that when KPC ≠ 0, and KRA = KRB = 0, 
if KRC is small, the mechanism generates the tri-stable 
characteristic. Increment of KRC decreases the both mag-
nitudes of the first local minimal force and the second 
maximal force. When KRC is too great comparing with 
the translational spring stiffness, KPC, the driving torque 
is mainly to resist the torque caused by the torsional 
spring stiffness, KRC, the tri-stable characteristic degener-
ates to the bi-stable characteristic.

It is worth pointed out that the nonlinear characteris-
tic analysis of the mechanism with springs can be used 
to synthesize the compliant mechanism with nonlinear 
characteristic. When the mechanism works around one 
of the two kinematic limb-singularity positions (Fig-
ure 3(b) or Figure 13), the nonlinear characteristics can 

KRC = 34.261457 N · cm/rad = 0.597975 N · cm/
(

◦
)

.

a

b
Figure 8  Stiffness characteristics for different values of KRC when 
KRA = KRB = 0, and KPC = 0
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be obtained by the corresponding compliant mecha-
nism based on the rigid-body replacement method. On 
the other hand, the tri-stable characteristic cannot be 
obtained by designing the fully compliant mechanism 
because no compliant rotational joint can fully rotate. 
However, prismatic joint C and pin joint C can both 
be replaced by the compliant joints as shown in Fig-
ure  15(a), while pin joints A and B are rigid kinematic 
pairs. Another example is shown in Figure 15(b), where 
coupler BC is replaced by the lumped-compliant rod and 
the prismatic joint is replaced by the compound compli-
ant parallelogram mechanism.

Fragments in-plane thickness of flexures Ci (i = 1, 2, 3) 
in (Figure 15(a)) and in-plane thickness of rod BiCi (i = 1, 
2, 3) (Figure 15(b)) can be set to different values to obtain 
the corresponding equivalent torsional spring stiffness. 
The equivalent stiffness of compliant rotational joints C 
and output translational joint can be calculated by refer-
ring Ref. [25]. Thus the expected nonlinear stiffness of the 
mechanism can be designed by assigning appropriate in-
plane thickness of the compliant elements.

A symmetrical mechanism with a constant-torque zone 
was fabricated by slow wire-electrode cutting and assem-
bled as shown in Figure 16 to validate the design of non-
linear stiffness characteristic. It is worth to point out that 
the constant-torque compliant mechanism can be used in 
many applications such as the dynamic torque-balancing 
mechanism [26], knee- and ankle-assisting device [27], 
and rehabilitating injured human joint [28]. Two types 
of constant-torque compliant mechanisms were devel-
oped in Refs.  [29, 30]. But without the 3D printer, it is 
difficult to machine the two types of compliant mecha-
nisms with complicated curvilinear beams. In this paper, 
the designed constant-torque compliant mechanism can 
be manufactured easily. This mechanism, where the rigid 
crank and the compliant structure are connected by three 

a

b

c

d
Figure 9  Nonlinear characteristic for different values KRA, KRB and KRC 
when KPC = 1 N/cm

Figure 10  Nonlinear stiffness characteristic for different values of KRA, 
KRB and KRC when KPC = 1 N/cm
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pin joints, is shown in Figure  16. The structure param-
eters are given as t = 1  mm, L1 = 38  mm, L2 = 30  mm, 
α = 3°, b1 = 8 mm, b2 = 5 mm, and the out-plane thickness 
of the compliant structure is 5 mm.

According to Ref. [25], the equivalent stiffness of each 
rotational joint Ci (i = 1, 2, 3) and each translational joint 
can be obtained by the two following equations

where E is the Young’s modulus, and I is the second 
moment of area about z axis.

We select the spring steel, 85, with Young’s modulus of 
200 GPa, as the material of the compliant structure. The 
experimental testing apparatus is shown in Figure  17, 
where the rotating platform is applied to rotate the three-
jaw chuck that clamps the torque sensor connected to 
the compliant mechanism. The rotation angle of the 
mechanism was recorded according by the micrometer, 
and the driving torque on the compliant mechanism was 
obtained from the torque sensor.

The driving torque can be calculated by Eq. (10), where 
the geometry parameters can be calculated as

KRC =
2.25EI

L1
, KP =

48EI

L2
,

θA0 = − arcsin
L1 sin α

r1
, r2 = gL1, e = −(1− g)L1sina,

a

b

c

d

Figure 11  Nonlinear stiffness characteristic with initial non-singular 
position

Figure 12  Local zero-stiffness characteristic and constant-torque 
domain

B

A

C

Input motion

Instantaneous no 
output motion

Figure 13  Left limiting kinematic limb-singularity position
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where γ = 0.85.
We can regard the designed symmetrical compliant 

mechanism shown in Figure 16 to be the one composed 
of three crank-slider mechanisms in parallel. Therefore, 
the driving torque, T, applied on the crank shown in Fig-
ure 16 should be three times the toque, Td, calculated by 
Eq. (10), namely,

Three curves (torque variation versus the crank rota-
tion angle) corresponding to the PRBM, finite element 
model and the experimental result are represented in Fig-
ure  18. Here the horizontal coordinate, θ, describes the 
crank rotation angle of the mechanism, which starts form 
zero, and can be represented below:

Figure 18 shows that there are errors among the PRBM 
result, finite element analysis (FEA) and experimental 
testing result. The error between the PRBM result and 

T = 3× Td.

θ = θA − θA0.

a 

b
Figure 14  Nonlinear characteristic for different KRC when 
KRA = KRB = 0 and KPC = 1 N/cm

a

b
Figure 15  Partially compliant crank-slider mechanism

Figure 16  Structure parameters of the compliant constant-torque 
mechanism
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the FEA is little, indicating that the PRBM can correctly 
describe the theoretical model of the compliant mecha-
nism. The relatively large discrepancy between the theo-
retical model and the experimental result may be due to 
beam fabrication errors with the available slow wire-elec-
trode system and the assembling tolerance. It indicates 
that the pseudo-rigid-body model, FEA and experimental 
result all exhibit the constant-torque characteristic.

8 � Conclusions

(1)	 A generic method of generating nonlinear charac-
teristics is proposed by using the kinematic limb-
singularity positions of the crank-slider linkage with 
attached springs.

(2)	 The mechanism with springs may generate four 
types of nonlinear characteristics including the bi-
stable characteristic, local negative-stiffness char-
acteristic, local zero-stiffness characteristic and 
positive-stiffness characteristic, when works around 
and passes the kinematic limb-singularity position. 
One nonlinear characteristic may transform to 
another one with different springs stiffness.

(3)	 The mechanism only exhibits the positive-stiffness 
characteristic when moves from the kinematic 
limb-singularity position.

(4)	 When the input crank fully rotates and the two tor-
sional spring stiffness placed at both ends of crank 
are exclusively zero, for small and great torsional 
spring stiffness placed at the pin joint connecting 
the coupler and slider, the mechanism produces the 
tri-stable characteristic and bi-stable characteristic, 
respectively.

(5)	 The theory of nonlinear stiffness characteristic gen-
eration can be used to design compliant mecha-
nisms with nonlinear stiffness characteristic
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