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Abstract 

It is significant to numerically investigate thermo-mechanical behaviors of shape memory alloy (SMA) structures 
undergoing large and uneven deformation for they are used in many engineering fields to meet special requirements. 
To solve the problems of convergence in the numerical simulation on thermo-mechanical behaviors of SMA struc-
tures by universal finite element software. This work suppose a finite element method to simulate the super-elasticity 
and shape memory effect in the SMA structure undergoing large and uneven deformation. Two scalars, named by 
phase-transition modulus and equivalent stiffness, are defined to make it easy to establish and implement the finite 
element method for a SMA structure. An incremental constitutive equation is developed to formulate the relation-
ship of stress, strain and temperature in a SMA material based on phase-transition modulus and equivalent stiffness. 
A phase-transition modulus equation is derived to describe the relationship of phase-transition modulus, stress and 
temperature in a SMA material during the processes of martensitic phase transition and martensitic inverse phase 
transition. A finite element equation is established to express the incremental relationship of nodal displacement, 
external force and temperature change in a finite element discrete structure of SMA. The incremental constitutive 
equation, phase-transition modulus equation and finite element equation compose the supposed finite element 
method which simulate the thermo-mechanical behaviors of a SMA structure. Two SMA structures, which undergo 
large and uneven deformation, are numerically simulated by the supposed finite element method. Results of numeri-
cal simulation show that the supposed finite element method can effectively simulate the super-elasticity and shape 
memory effect of a SMA structure undergoing large and uneven deformation, and is suitable to act as an effective 
computational tool for the wide applications based on the SMA materials.
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1 Introduction
Shape memory alloys (SMAs) have been widely used 
in many various engineering fields [1–4] because they 
possess two special thermo-mechanical characters, 
shape memory effect and super-elasticity [5–8]. There 
are four characteristic temperatures in a SMA at a free-
stress state. They are named as martensitic starting 
temperature, indicated by Ms, martensitic finishing tem-
perature, indicated by Mf, austenitic starting tempera-
ture, indicated by As and austenitic finishing temperature, 

indicated by Af, respectively [9–12]. They are generally 
satisfied with the relationship Mf < Ms < As < Af.

The shape memory effect can be expressed by the 
stress–strain curve in Figure 1(a), where a large nonlin-
ear strain upon loading becomes a residual strain after 
unloading at a constant temperature below As. However 
the residual strain can be fully recovered by heating to 
a high temperature above Af. The super-elasticity can 
be expressed by the stress–strain curve in Figure 1(b), 
where the large nonlinear strain upon loading will grad-
ually vanish during the process of unloading at a con-
stant temperature above Af. Both shape memory effect 
and super-elasticity are the macroscopic phenomena 
of martensitic phase transition and martensitic inverse 
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phase transition, which are induced by applied stress 
and temperature change in a SMA material [13, 14].

In order to design and analyze a SMA structure effi-
ciently, a numerical simulation method which can 
effectively predict the thermo-mechanical behaviors 
of SMA should be established. As a classical numeri-
cal computational method, finite element method has 
been successfully used to solve many problems related 
to solid and/or fluid mechanics. Many universal finite 
element software have been successfully applied in dif-
ferent practical fields related to the conventional mate-
rials. Some universal finite element software, such as 
ABAQUS, ANSYS, and so on, have good secondary 
development functions, which make them can also sim-
ulate the problems related to a new materials, such as 
SMA through calling a user material subroutine. Some 

researchers [15–17] implemented finite element analy-
sis on SMA structures based on the secondary devel-
opment functions of ANSYS. Many researchers [18–21] 
implemented finite element simulation on SMA struc-
tures using the secondary development functions of 
ABAQUS. Although some universal finite element soft-
ware can simulate the thermo-mechanical behaviors 
of SMA based on their secondary development func-
tions, the problems of convergence often occur when a 
SMA structure undergoes large and uneven deforma-
tions. However many products or structures made from 
SMA need undergo large and uneven deformations to 
meet special requirements. Therefor it is necessary to 
develop a finite element method and its computer pro-
gram to simulate the thermo-mechanical behaviors of 
a SMA structure undergoing large and uneven defor-
mation. Zhou [22] established a finite element program 
to predict the martensite and plastic zone of SMA thin 
plate with a hole considering the plastic deformation. 
However, the super-elasticity and shape memory effect 
of SMA structures during the thermo-dynamic load-
ing-unloading process haven’t been numerically simu-
lated in the work.

To avoid the problems of convergence in the numerical 
simulation on the thermo-mechanical behaviors of SMA 
structures with complex boundary conditions and exter-
nal loads. This work suppose a finite element method to 
simulate the macroscopic thermo-mechanical responses 
of super-elasticity and shape memory effect in a SMA 
structure undergoing large and uneven deformation. In 
order to make it easy to develop and implement the finite 
element method for a SMA structure, two scalars named 
by phase-transition modulus and equivalent stiffness are 
defined respectively. A concisely incremental constitu-
tive equation formulating the relationship of stress, strain 
and temperature in a SMA material is derived based 
on phase-transition modulus and equivalent stiffness. 
A phase-transition modulus equation is developed to 
describe the evolution law of phase-transition modulus 
during the processes of martensitic phase transition and 
its inverse phase transition in a SMA material. A finite 
element equation is established to express the incremen-
tal relationship of nodal displacement, external force and 
temperature change in a finite element discrete structure 
of SMA. The incremental constitutive equation, phase-
transition modulus equation and finite element equation 
compose the element finite method which simulates the 
thermo-mechanical behaviors of a SMA structure. Two 
SMA structures are numerically simulated by the sup-
posed finite element method, which illustrates that it 
can accurately simulate the super-elasticity and shape 
memory effect in a SMA structure undergoing large 
and uneven deformation. Therefor the supposed finite 
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element method is suitable to act as an effective compu-
tational tool for the wide applications based on the SMA 
materials.

2  Incremental Constitutive Equation
Thermo-mechanical constitutive equation of a material is 
the important basis to investigate the thermo-mechanical 
behaviors of a SMA material and/or structure. Many con-
stitutive equations have been developed to describe the 
thermo-mechanical behaviors of SMA material [23–26]. 
Some constitutive equations from practical viewpoints 
played important roles in practical applications of SMA 
[27–30]. In order to make it easy to establish and imple-
ment the finite element method for a SMA structure 
undergoing large and uneven deformation, a concisely 
incremental constitutive equation should be formulated 
to describe the thermo-mechanical behaviors of a SMA 
material.

According to the diagram of shape memory effect and 
super-elasticity of a SMA, shown in Figure 1, the incre-
ment of strain tensor of SMA dεij can be decomposed as

where dεEij , dε
T
ij  and dεPij stand for the increments of elas-

tic strain tensor, thermal expansion strain tensor and 
phase-transition strain tensor, respectively.

According to generalized Hooke’s law, the increment of 
stress tensor of SMA dσij reads as

where Dijkl is the material stiffness tensor. The increment 
of thermal expansion strain tensor can be expressed as

where Λij and dT are the thermal expansion tensor of a 
SMA and the increment of temperature respectively.

In this paper a SMA is assumed to be an isotropic 
material, therefor its stiffness tensor and thermal expan-
sion tensor are formulated as

and

where E, v and α are elastic modulus, Poisson’s ratio and 
thermal expansion coefficient of SMA respectively. The 
elastic modulus can be expressed as

(1)dεij = dεEij + dεTij + dεPij ,

(2)dσij = Dijkldε
E
kl ,

(3)dεTij = ΛijdT ,

(4a)

Dijkl =
E

1+ v

[

1

2
(δikδjl + δilδjk)+

v

1− 2v
δijδkl

]

,

(4b)Λkl = αδkl ,

(4c)E = EA − (EA − EM)ξ ,

where ξ, EA and EM are martensitic volume fraction, aus-
tenitic elastic modulus and martensitic elastic modulus 
respectively.

Using Eqs. (1), (2) and (3), we can have

In this paper, the increment of phase-transition strain 
tensor is formulated as

where σ̄ and dε̄P are the equivalent stress and the incre-
ment of equivalent phase-transition strain respectively. 
According to solid mechanics, the equivalent stress reads 
as

The incremental relationship of equivalent stress and 
equivalent phase-transition strain can be expressed as

where H̄ is called as phase-transition modulus in this 
paper. The phase-transition modulus is a scalar which 
describes the incremental relationship of equivalent 
stress and equivalent phase-transition strain in a SMA 
material. The evolution law of phase-transition modulus 
is derived in Section 3.

On the other hand, the increment of equivalent stress 
can also be expressed as

according to Eq. (7). Using Eqs. (6), (8) and (9), we can 
have

From Eqs. (10) and (5), we obtain the incremental con-
stitutive equation of a SMA, expressed as

where

In Eq. (12),

(5)dσij = Dijkl(dεkl −ΛkldT − dεPkl).

(6)dεPkl =
∂σ̄

∂σkl
dε̄P ,

(7)σ̄ =

√

3

2

(

σij −
1

3
σkk

)(

σij −
1

3
σkk

)

.

(8)dσ̄ = H̄dε̄P ,

(9)dσ̄ =
∂σ̄

∂σij
dσij

(10)dεPkl =
∂σ̄

∂σkl

∂σ̄

∂σij

dσij

H̄
.

(11)dσij = Cijkldεkl − LijdT ,

(12a)Cijkl =
H̄

H̄ + D̄
Dijkl ,

(12b)Lij =
H̄

H̄ + D̄
DijklΛkl .
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is called as equivalent stiffness in this paper. The equiv-
alent stiffness is a scalar which depends on the stiffness 
tensor and stress state of a material.

The incremental constitutive equation, Eq. (11), is 
more conveniently used to establish and implement the 
finite element method for a SMA structure than those 
constitutive equations of SMA mentioned above, which 
is due to the definition of phase-transition modulus and 
equivalent stiffness. During the process of numerical 
simulation, the values of phase-transition modulus and 
equivalent stiffness can be calculated according to the 
current stress state by Eq. (12), and then the increment 
of stress can be calculated according to the increments of 
strain and temperature by Eq. (11).

3  Phase‑Transition Modulus Equation
Based on the cosine-type martensitic phase-transition 
equation [9], the relationship between martensitic vol-
ume fraction and equivalent stress can be expressed as

and

during the processes of martensitic phase transition and 
martensitic inverse phase transition, respectively.

In Eq. (14a),

where σms and σmf are called as martensitic starting stress 
and martensitic finishing stress respectively. They can be 
expressed by the martensitic starting temperature and 
martensitic finishing temperature as

where CM is a material constant describing the relation-
ship of stress and temperature during the process of mar-
tensitic phase transition in a SMA material.

In Eq. (14b),

where σas and σaf are called as austenitic starting stress 
and austenitic finishing stress respectively. They can be 

(13)D̄ = Dijkl
∂σ̄

∂σkl

∂σ̄

∂σij

(14a)ξ =
1

2
cos[ϕ1(σ̄ )] +

1

2
,

(14b)ξ =
1

2
cos[ϕ2(σ̄ )] +

1

2
,

(15a)ϕ1(σ̄ ) =
σ̄ − σmf

σms − σmf
· π ,

(15b)
{

σms = CM(T −Ms),

σmf = CM(T −Mf ),

(15c)ϕ2(σ̄ ) =
σ̄ − σas

σaf − σas
· π ,

expressed by the austenitic starting temperature and aus-
tenitic finishing temperature as

where CA is a material constant describing the relation-
ship of stress and temperature during the process of mar-
tensitic inverse phase transition in a SMA material.

The incremental relationship of the equivalent phase-
transition strain and the martensitic volume fraction can 
be expressed as

According to Eqs. (8) and (16), we can have

Substituting Eq. (14a) into Eq. (17), we can express the 
phase-transition modulus as

during the process of martensitic phase transition in a 
SMA material. Substituting Eq. (14b) into Eq. (17), we 
can express the phase-transition modulus as

during the process of martensitic inverse phase transition 
in a SMA material.

Eq. (18) is the phase-transition modulus equation 
expressing the evolution law of phase-transition modu-
lus, i.e., the relationship of phase-transition modulus, 
stress and temperature, during the processes of martensi-
tic phase-transition and martensitic inverse phase-transi-
tion occurring in a SMA material.

4  Finite Element Equation
According to the stress–strain curves of SMA, shown 
in Figure  1, both super-elasticity and shape memory 
effect of a SMA belong to the problem of large deforma-
tion. Therefor the Total-Lagrange method suitable for 
the problem of large deformation is used to develop the 
finite element equation for a SMA structure. Consider-
ing one point in a loaded body, the displacement, Green-
Lagrange strain and Piola-Kirchhoff stress at the time t 
and t + Δt are respectively expressed as

and ui +�ui, εij +�εij , σij +�σij.
They can also be respectively expressed as

(15d)
{

σas = CA(T − As),

σaf = CA(T − Af ),

(16)dε̄P = εLdξ .

(17)H̄ =

[

εL
dξ

dσ̄

]−1

.

(18a)H̄ = −
2(σms − σmf )

εL sin[ϕ1(σ̄ )]
,

(18b)H̄ = −
2(σaf − σas)

εL sin[ϕ21(σ̄ )]
,

ui, εij , σij
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and

by the form of matrix. The increment of strain can be 
expressed as

which is also expressed as

by the form of matrix, where ΔεL0 is corresponding with 
the first and second terms, ΔεL1 is corresponding with 
the third and fourth terms, and ΔεN is corresponding 
with the fifth term in the right hand of equality sign in 
Eq. (20) respectively.

At the time t + Δt, the virtual work equation of a finite 
element discrete structure reads as

where δ is the symbol of variation, Ve and Se express the 
volume and surface of an element, and f and q stand for 
body force array and surface force array respectively. The 
increment of displacement array at one point in an ele-
ment can be expressed by the increment of nodal dis-
placement array of the element as

where �ue is the increment of nodal displacement array 
of the element and N is the shape function matrix of the 
element, respectively.

Operating the variation operation on Eq. (22) leads to

The increment of strain array is formulated by the 
increment of nodal displacement array as

where B is the strain matrix of element. It includes BL0, 
BL1 and BN, which are with respect to the ΔεL0, ΔεL1 and 
ΔεN in Eq. (20), respectively. According to Eqs. (19) and 
(24), if the higher order small term is ignored, the varia-
tion of the increment of strain can be expressed as

u, ε, σ

u+�u, ε +�ε, σ +�σ

(19)
�εij =

1

2
[�uj,i +�ui,j + uk ,i�uk ,j+

�uk ,iuk ,j +�uk ,i�uk ,j],

(20)�ε = �εL0 +�εL1 +�εN

(21)

∑

e

∫

Ve

δ�ε
T(σ +�σ )dVe =

∑

e

∫

Ve

δ�uTf dVe +
∑

e

∫

Se

δ�uTqdSe,

(22)�u = N�ue
,

(23)δ�u = N δ�ue
.

(24)�ε = B�ue
= (BL0 + BL1 + BN )�ue

,

(25)δ�ε = Bδ�ue
= (BL0 + BL1)δ�ue

.

In order to establish finite element equation for a SMA 
structure, we express the incremental constitutive equa-
tion, Eq. (11), with the form of matrix as

Substituting Eqs. (22)–(26) into Eq. (21) and carrying 
out the necessary derivations and reductions, we can 
have

where

The ΔU and δΔU in Eq. (28) denote the increment of 
nodal displacement array and its virtual displacement 
array of the finite element discrete structure respectively. 
The PF in Eq. (28e) is the equivalent nodal loads array 
reduced from external force. The PT in Eq. (28d) is the 
equivalent nodal loads array reduced from the change of 
temperature. The Pσ in Eq. (28a) is the equivalent nodal 
loads array reduced from non-equilibrium force.

The nodal virtual displacement array δΔU should be 
arbitrary, so Eq. (27) can be arranged and reduced as

where KL and KN express structural stiffness matri-
ces which relate with small deformation and large 

(26)�σ = C�ε − L�T .

(27)
− δ�UTPσ + δ�UTK L�U+

δ�UTKN�U − δ�UTPT = δ�UTPF ,

(28a)

δ�UTPσ = −
∑

e

∫

Ve

δ�ueT(BT
L0 + BT

L1)σdVe,

(28b)
δ�UTK L�U =

∑

e

∫

V
δ�ueT

×

(BT
L0 + BT

L1)C(BL0 + BL1)�ue
dVe,

(28c)
δ�UTKN�U =

∑

e

∫

V
δ�ueT

×

(BT
L0 + BT

L1)CBN�ue
dVe,

(28d)

δ�UTPT =
∑

e

∫

Ve

δ�ueT(BT
L0 + BT

L1)L�TdVe,

(28e)

δ�UTPF =
∑

e

∫

Ve

δ�ueTNTf dVe

+
∑

e

∫

Se

δ�ueTNTqdSe.

(29)(K L + KN )�U = PF + PT + Pσ ,
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deformation respectively. The nonlinear equation, Eq. 
(29), is the finite element equation which describes the 
relationship of the nodal displacement, external force and 
temperature change in a finite element discrete structure 
of SMA. This non-linear equation is solved by the New-
ton-Raphson method during the processes of finite ele-
ment simulations on the SMA structures in this paper.

The incremental constitutive equation, Eq. (11), the 
phase-transition modulus equation, Eq. (18), and the 
finite element equation, Eq. (29), compose the supposed 
finite element method, which simulate the thermo-
mechanical macroscopic response of super-elasticity and 
shape memory effect occurring in a SMA structure.

5  Applications
In order to operate finite element simulations on the 
thermo-mechanical response of a SMA structure using 
the supposed finite element method mentioned above, a 
MATLAB program is compiled based on finite element 
equation, Eq. (29), incremental constitutive equation, Eq. 
(11), and phase-transition modulus equation, Eq. (18). A 
uniform tensile SMA bar, shown in Figure 2(a), is numer-
ically simulated to verify the MATLAB program. The 
material parameters of SMA [23] used for the numeri-
cal simulations are listed in Table 1. Figure 2(b) plots the 
finite element mesh of the SMA bar, which include 42 
plane strain four-node elements. The numerical results 
at integral point 1 of the shaded element, shown in Fig-
ure 2(b), are used to compare with the analytic solutions 
[9] to illustrate the validity of the supposed finite element 
method in this paper. 

Figure 3(a) plots the stress–strain curve of the integral 
point 1, shown in Figure 2(b), at a constant temperature 
above austenitic finishing temperature Af. The large non-
linear phase-transition strain produced in the loading 

process is fully recovered during the unloading process, 
which illustrates the super-elasticity of a SMA material. 
Figure 3(b) shows the stress–strain curve of the integral 
point 1, shown in Figure 2(b), at a constant temperature 
below austenitic finishing temperature Af. The large non-
linear phase-transition strain produced in the loading 

Figure 2 A SMA tensile bar and its finite element mesh

Table 1 Material parameters of SMA [23]

Mf (K) Ms (K) As (K) Af (K)

271 291 295 315

EA (GPa) EM (GPa) CA (MPa/K) CM (MPa/K)

70 30 7.0 7.0

εL v α (1/K)

0.06 0.33 1.0 × 10−7
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process becomes residual strain after the unloading 
process. The residual strain can be fully recovered upon 
heating to a high temperature above Af, which illustrates 
the shape memory effect of a SMA material.

According to the curves in Figure 3(a) and Figure 3(b), 
the results from the supposed finite element method in 
this paper have a good agreement with that from the ana-
lytic solutions [9]. Therefore the supposed finite element 
method in this paper can effectively simulate the thermo-
mechanical macroscopic responses of super-elasticity 
and shape memory effect occurring in a SMA structure.

5.1  Thermo‑mechanical Behaviors of SMA Bar
Figure 4 shows a deformation mechanism for a SMA bar, 
which includes two punch heads, one die and one sup-
port. The moments of force applied on the punch head 
make the punch head rotate around the rotation point 
and generate a large and uneven bending deformation in 
the SMA bar. The SMA bar has length of 28 mm, width 
of 2 mm and thickness of 4 mm. The radius of arc in the 
punch head is 6 mm, and the radius of the head in the die 
is 8 mm. During the numerical simulations the SMA bar 
is meshed by the 4-node plane strain element, and the 
total number of element is 224. The punch head and die 
are assumed to be rigid body. The friction-free contacts 
are set between punch head and SMA bar and between 
punch head and SMA bar. The material constants of 
SMA bar are listed in Table 1.

Figure 5 plots the relational curve between the moment 
of force and the rotation angle of punch head at a con-
stant temperature of 317  K. During the loading process 
there is a nonlinear curve segment occurring, which is 
the results of martensitic phase transition occurring in 
some materials of the SMA bar. During the unloading 
process there is a non-linear curve segment occurring, 
which is the result of martensitic inverse phase transition 

occurring in the materials having experienced marten-
sitic phase transition in the loading process. There is a 
hysteresis loop occurring in the curve, which illustrates 
the super-elasticity of the SMA bar. Figure  6 plots the 
relational curve between the moment of force and the 
rotation angle of punch head at a constant temperature 
of 300 K. During the loading process there is also a non-
linear curve segment occurring, which is also the result 
of martensitic phase transition occurring in some mate-
rials of SMA bar. However there is not a hysteresis loop 
occurring in the curve after the unloading process. 

Figure 4 A deformation mechanism for a SMA bar
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Figure 5 Curve of the moment of force versus the rotation angle of 
punch head at 317 K
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Figure  7 shows the shape changing process of SMA 
bar at a constant temperature of 317  K in the loading-
unloading cycle. The deformed shapes of SMA bar at the 
same moment of force during the processes of loading 
and unloading are different. This is because the loading-
path does not coincide with the unloading-path, which is 
results from the hysteresis loop shown in Figure  5. Fig-
ure  8 shows the shape changing process of SMA bar in 
the loading-unloading-heating cycle. The deformation 
of SMA bar, which is induced by the martensitic phase 
transition upon loading, becomes the residual deforma-
tion after the unloading process. The residual deforma-
tion in the SMA bar is fully recovered by heating it from 
300 K to 320 K, which illustrates the shape memory effect 
of SMA bar.

5.2  Thermo‑mechanical Behaviors of SMA Cirque
Figure  9 shows a deformation mechanism for a SMA 
cirque, which includes a punch head and a support. 
The applied force makes the punch head move down 
and produce large and uneven deformation in the SMA 
cirque. The radius of punch head bottom is 2  mm. The 
inside radius and outer radius of SMA cirque are 10 mm 
and 12  mm respectively. The thickness of SMA cirque 
is 4  mm. During the numerical simulations the SMA 
cirque is meshed by the 4-node plane strain element, and 
the total number of element is 544. The punch head is 
assumed to be a rigid body. The friction-free contacts are 
set between the punch head and SMA cirque. The mate-
rial parameters of SMA cirque are listed in Table 1.

Figure 7 Shape changing process of SMA bar in a loading-unloading 
cycle at 317 K

Figure 8 Shape changing process of SMA bar in a 
loading-unloading-heating cycle

Figure 9 A deformation mechanism of a SMA cirque
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Figure  10 plots the relational curve between the 
applied force and the displacement of punch head at a 
constant temperature of 320 K. During the loading pro-
cess there is a nonlinear curve segment due to the mar-
tensitic phase transition occurring in some materials of 
the SMA cirque. During the unloading process there is 
also a nonlinear curve segment occurring, which is the 
result of martensitic inverse phase transition occurring 
in the materials having experienced martensitic phase 
transition in the loading process. There is a hysteresis 
loop occurring in the curve after unloading, which 
illustrates the super-elasticity of SMA cirque. Figure 11 
plots the relational curve between the applied force 
and the displacement of punch head at a constant tem-
perature of 295 K. During the loading process there is a 
nonlinear curve segment due to the martensitic phase 
transition occurring in some materials of SMA cirque. 
There is not a hysteresis loop occurring in the curve 
after unloading. 

Figure 12 shows the shape changing process of SMA 
cirque in a loading-unloading cycle at a constant tem-
perature of 320 K. The deformed shapes of SMA cirque 
corresponding with the same applied force during 
the processes of loading and unloading are different 
because the loading-path does not coincide with the 
unloading-path, as shown in Figure 10. Figure 13 shows 
the shape changing process of SMA cirque in the load-
ing-unloading-heating cycle. The deformation of SMA 
cirque, which is induced by the martensitic phase tran-
sition upon loading, becomes the residual deformation 
after unloading. However, the residual deformation in 
the SMA cirque is fully recovered by heating it from 

295  K to 320  K, which illustrates the shape memory 
effect of SMA cirque.

On the whole, the supposed finite element method 
has good accuracy and convergence in the simulation 
on both super-elasticity and shape memory effect in a 
SMA structure, and is suitable to be an effective com-
putational tool for the wide applications based on a 
SMA material.

6  Conclusions
Two scalars, phase-transition modulus and equivalent 
stiffness, are defined to establish and implement the finite 
element method. The super-elasticity and shape memory 
effect of SMA bar and cirque are respectively simulated 
by the supposed finite element method. Accordingly, sev-
eral conclusions are presented as follows.

1) The concisely incremental constitutive equation 
describing the relationship of stress, strain and tem-
perature in a SMA material is developed based on 
phase-transition modulus and equivalent stiffness.
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Figure 11 Curve of the applied force versus the displacement of 
punch head at 295 K

Figure 12 Shape changing process of SMA cirque in a 
loading-unloading cycle at 320 K

Figure 13 Shape changing process of SMA cirque in a 
loading-unloading-heating cycle
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2) The phase-transition modulus equation expressing 
the relationship of phase-transition modulus, stress 
and temperature during the processes of martensitic 
phase transition and martensitic inverse phase tran-
sition in a SMA material is presented.

3) The finite element equation formulating the incre-
mental relationship of nodal displacement, external 
force and temperature change in a finite element dis-
crete structure is established to simulate the thermo-
mechanical behaviors of a SMA structure.

4) The supposed finite element method, which includes 
the incremental constitutive equation, phase-transi-
tion modulus equation and finite element equation, 
can effectively simulate both processes of super-elas-
ticity and shape memory effect in a SMA structure, 
and is suitable to act as an effective computational 
tool for the wide applications based on a SMA mate-
rial.
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