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Abstract 

The current researches mainly adopt “Guide to the expression of uncertainty in measurement (GUM)” to calculate 
the profile error. However, GUM can only be applied in the linear models. The standard GUM is not appropriate to 
calculate the uncertainty of profile error because the mathematical model of profile error is strongly non-linear. An 
improved second-order GUM method (GUMM) is proposed to calculate the uncertainty. At the same time, the uncer-
tainties in different coordinate axes directions are calculated as the measuring points uncertainties. In addition, the 
correlations between variables could not be ignored while calculating the uncertainty. A k-factor conversion method 
is proposed to calculate the converge factor due to the unknown and asymmetrical distribution of the output quan-
tity. Subsequently, the adaptive Monte Carlo method (AMCM) is used to evaluate whether the second-order GUMM is 
better. Two practical examples are listed and the conclusion is drawn by comparing and discussing the second-order 
GUMM and AMCM. The results show that the difference between the improved second-order GUM and the AMCM is 
smaller than the difference between the standard GUM and the AMCM. The improved second-order GUMM is more 
precise in consideration of the nonlinear mathematical model of profile error.
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1 Introduction
Profile error is an important feature to evaluate the 
machining quality of sculptured surfaces. More and more 
studies have been done to improve the algorithms of cal-
culating the profile error [1]. The least squares fitting was 
adopted to evaluate the profile error of the ellipse. The 
data was obtained by the coordinate measuring machine 
(CMM) [2]. Geometry optimization approximation 
algorithm was proposed to calculate the elliptical pro-
file error considering the geometric characteristics [3]. 
Profile error could be obtained by non-uniform rational 
B-splines (NURBS) surface fitting according to the 
data points. NURBS surface fitting was accepted when 
the center axis was difficult to obtain [4]. The singular 
value decomposition-iterative closest point method was 

proposed to match the measurement points and the ideal 
section curve. Based on this, the profile error of the blade 
surface was calculated and balanced [5]. Surface recon-
struction was implemented by the genetic algorithm. The 
profile error was evaluated by calculating the shortest 
distance between measurement points and sculptured 
surface in the split spherical approximation method [6]. 
In our lab, Lang et al. [7] proposed the sequential quad-
ratic programming (SQP) algorithm to calculate the pro-
file error. The computing speed is faster, and the result is 
more approach to the optimal solution.

However, the method of calculating the profile error 
could not get the corresponding uncertainty. The “Guide 
to the expression of uncertainty in measurement” is a 
standard of evaluating the uncertainty. The international 
organization revised the GUM in 2008, which has been 
accepted all over the world [8]. GUMM is a method to 
estimate the uncertainty by calculating the first-order 
Taylor series expansion of profile error. The GUMM 
was used to analyze the uncertainty about the location 
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of a hole [9]. Though the GUMM is a standard method 
to calculate the uncertainty, it also has some limitations. 
GUMM can only be applied in the linear models [10]. 
When the actual situation does not meet the require-
ment, some alternative methods are put forward. The 
idea of the random-fuzzy and fuzzy-random uncertain-
ties was proposed to estimate the uncertainty [11]. GUM 
S1 [12] used the Monte Carlo method (MCM) to analyze 
the uncertainty without considering the distribution of 
the output variable and the format of the mathematical 
model. The MCM is mainly based on the statistical analy-
sis to calculate the uncertainty [13]. When the partial 
derivatives of the model could not be calculated, Cox and 
Siebert [14] adopted the MCM to calculate the expanded 
uncertainty. The MCM was used to evaluate the uncer-
tainty in an experimental model, which reduced the work 
load of calculating the partial derivatives in a non-linear 
model [15]. The proper number of the experiment is dif-
ficult to determine in the Monte Carlo simulation. The 
AMCM was proposed because it could adaptively select 
the proper number of the experiment [16]. However, the 
prior information of the distributions is often unknown 
or inaccurate in AMCM. In this situation, AMCM is not 
suitable to calculate the uncertainty. It can still be used 
as a suitable method to evaluate the GUMM. The sec-
ond-order GUMM was proposed to estimate the uncer-
tainty considering the difficulty of the prior information. 

The paper structure is as follows: Section 2 establishes 
a mathematical model of profile error. In Section  3, the 
second-order Taylor series expansion of GUMM is pro-
posed to calculate the uncertainty. Some improvements 
of GUMM are also listed. Subsequently, two practical 
examples are presented in Section 4. Section 5 compares 
and discusses the AMCM and GUMM. AMCM is used 
for evaluating the GUMM. The conclusion is drawn in 
Section 6.

2  Mathematical Model of Profile Error
Profile error is the greatest deviation between the actual 
sculptured surfaces and the theoretical sculptured sur-
faces [20], as shown in Figure 1, where t is the diameter of 
the enveloping spheres.

The model of sculptured surfaces profile error is shown 
as follows [7]:

where α,β , γ are the rotation angles of measuring points 
along the directions of X axis, Y  axis and Z axis respec-
tively, �x,�y,�z are the offsets along the directions of X 
axis, Y  axis and Z axis respectively, si(xi, yi, zi) is the ini-
tial measuring point, s′i(x

′
i, y

′
i, z

′
i) is the closest point. The 

meaning of the symbols α,β , γ ,�x,�y,�z is shown in 
Figure 2.

3  Uncertainty Calculation Methods
3.1  Gumm
Taylor expansion of the non-linear model 
f = f (m1,m2, . . . ,mn) in the neighborhood of the point 
(m0

1
,m0

2
, · · ·,m0

n) is given as follows:
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Figure 1 Sketch of the profile error

In 2011, the second-order and third-order Taylor series 
expansion in GUMM were adopted to calculate the 
uncertainty in a simple non-linear model [17]. However, 
the relativity of variables was neglected, which led to the 
imprecise result. In 2013, Wen et  al. [18] calculated the 
uncertainty of cylindricity errors in AMCM and GUMM. 
The model is non-linear, so the first-order Taylor series 
expansion is inadequate. The uncertainty of measuring 
points in different coordinate axes directions was not 
calculated, and on the contrary the measuring points 
uncertainty was estimated by considering the limited fac-
tors, which was imprecise and complex. Although vir-
tual coordinate measuring machine has been developed 
to estimate the uncertainty [19], virtual CMM is usually 
adopted when the actual data is difficult to be obtained.



Page 3 of 10Liu et al. Chin. J. Mech. Eng.           (2019) 32:90 

where partial derivative ∂f /∂(·) is the sensitiv-
ity coefficient of each variable, δpmi is defined as 
δpmi=(mi −m0

i )
p, i = 1, . . . , n, p = 1, 2, 3.

Then strive for the variance or covariance of Eq. (2) at 
the left and right sides. The square of uncertainty calcula-
tion formula [21] is given as follows:

(2)

f = f (m0
1,m

0
2, · · ·,m

0
n)+

n
∑

i=1

∂ f

∂mi
δmi +

1

2

n−1
∑

i=1

n
∑

j=i+1

(

∂2f

∂2mi
δ2mi

+2
∂2f

∂mi∂mj
δxiδxj +

∂2f

∂2mj
δ2mj

)

+ o(δ3).

(3)

u2(f ) ≈

n
∑

i=1

(

∂f

∂mi

)2

u2(mi)+ 2

n−1
∑

i=1

n
∑

j=i+1

∂f

∂mi

∂f

∂mj
cov(mi,mj)

+

n
∑

i=1

n
∑

j=1

[

1

2

(

∂2f

∂mi∂mj

)2

+
∂f

∂mi

∂3f

∂mi∂2mj

]

r2(mi,mj)u
2(mi)u

2(mj),

3.2  Uncertainty Evaluation Formulas
In order to calculate the uncertainty of profile error, we 
need to consider the calculation of the sensitivity coeffi-
cient and the standard uncertainty of variables [22].

The closest point s′i
(

x′i, y
′
i, z

′
i

)

 can be determined by 
measuring points si(xi, yi, zi) and the transformation 
matrix T (α,β , γ ,�x,�y,�z) , so it is no need to consider 
the uncertainty of the three variables x′i, y

′
i, z

′
i . xi, yi, zi 

are the coordinates of measuring points, so they are 
independent in theory. α,β , γ ,�x,�y,�z are the rota-
tion angles and offsets of the measuring points, and the 
change of one variable can directly cause the changes of 
other variables. α,β , γ ,�x,�y,�z interact on each other. 
Assuming xi, yi, ziare independent and α,β , γ ,�x,�y,�z

are related, Eq. (3) will be turned into Eq. (4) and Eq. (5).
According to the uncertainty propagation law, we can 

get the square of uncertainty calculation formula [23, 24]. 

The first-order Taylor expansion:

The second-order Taylor expansion:
(4)

u21(f ) =

9
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8
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+

9
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1
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+
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]
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8
∑

i=4

9
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(
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+
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+

∂f
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∂3f
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]

u2(mi,mj).

Figure 2 The meaning of the symbols

Table 1 Symbolic representation

Symbol Variable Symbol Variable Symbol Variable

m1 xi m2 yi m3 zi

m4 α m5 β m6 γ

m7 �x m8 �y m9 �z

where u(·) is the standard uncertainty of each variable 
and r(· , ·) is the correlation coefficient between two dif-
ferent variables.
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The symbols of the nine variables 
(xi, yi, zi,α,β , γ ,�x,�y,�z) are shown in Table 1.

According to Table 1, Eq. (4) and Eq. (5) can be turned into 
Eq. (6) and Eqs. (6)–(12) respectively. The first-order Taylor 
expansion to calculate the uncertainty is shown as follows:

For the second-order Taylor expansion except for the 
part of the first-order, the formulas are shown as follows:

(6)

u21(f ) =

(

∂f

∂xi
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(
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+ 2
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∂f
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∂β

∂f
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+ 2
∂f

∂β

∂f
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∂f

∂γ

∂f
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+ 2
∂f
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∂f
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∂f
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(7)

u221(f ) =
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1
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+
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1

2
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(
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(
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1

2
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(
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+
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1

2
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(
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Finally, we get the final uncertainty Eq. (13) of the sec-
ond-order Taylor expansion:

(8)

u222(f ) =
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∂α∂2β
+
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∂3f
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∂f
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)
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+
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(9)
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[
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+
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∂γ ∂2β

)

]
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+
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)
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(10)
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(11)
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+
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+

∂f
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∂3f

∂�y∂2�x

)

]

× u2(�x,�y)

+
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∂�z∂2�x

)
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u226(f ) =
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)
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(13)
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=

√

u2
1
(f )+ u2
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26
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3.3  Improvements of GUMM

(1) For measuring points uncertainty:
 The uncertainties in the directions of X axis, Y  axis 

and Z axis are written as ux, uy, uz respectively. 
They are different and have their own trends, so 
we cannot use u0 to replace ux,uy,uz . The u0 is 
obtained by estimating some influence factors. The 
u0 is not accurate, because the factors that are con-
sidered are limited. u0 is difficult to estimate in this 
situation of this paper. Whereas ux,uy,uz can be 
easily calculated according to the measuring points 
si(xi, yi, zi) . We adopt ux,uy,uz to calculate the 
uncertainty.

(2) For the uncertainty of T (α,β , γ ,�x,�y,�z):
 In order to calculate the uncertainty, the uncer-

tainty of T (α,β , γ ,�x,�y,�z) is also a neces-
sary value. In most cases, the relativity of variables 
is too high to neglect. The relativity of variables 
α,β , γ ,�x,�y,�z must be considered.

(3) For the converge factor about the unknown distri-
bution:

 When the probability density function (PDF) of 
profile errors is not the Gaussian distribution or 
t-distribution, the k-factor conversion method is 
proposed to calculate the converge factor. The con-
version method is to approximate the coverage fac-
tor of the non-normal distribution.

The skewness coefficient is a parameter to describe the 
degree of deviation from the center. The formula of the 
skewness coefficient is shown in Ref. [25]. The skewness 
coefficient of the profile error is given as follows:

where f is the profile error, f̄  is the mean of profile error, 
Var(f ) is the variance of profile error.

When the skewness coefficient is unequal to zero, the 
converge factor kdown is unequal to kup . When the distri-
bution of the output variable is the normal distribution, 
kdown, kup are equal to 2 for the 95% confidence inter-
val [26]. When the distribution of the output variable is 
unknown, assuming kdown + kup is equal to 4. It is the 
same as the situation of normal distribution. According 
to the sample values, we can get the mean of profile error 
f̄  , 2.5%-quantile Q0.025 and 97.5%-quantile Q0.975 . Then 
calculate kdown and kup in the k-factor conversion method.

(14)SK =
E(f − f̄ )3

[Var(f )]3/2
,

(15)kdown = 4 ×
f̄ − Q0.025

Q0.975 − Q0.025

,

(16)kup = 4 ×
Q0.975 − f̄

Q0.975 − Q0.025

.

We can get the 95% confidence interval of profile error 
in GUMM as follows:

where u is the uncertainty of the profile error.

4  Experiment
S-shaped test specimen has been put off in recent years 
and it has been proved to be a good specimen to detect 
the machining quality [27, 28]. S-shaped test speci-
men is adopted as examples to analyze the second-order 
GUMM. Two practical S-shaped test specimens were 
measured many times by Edward DAISY564 CMM in 
the same environment condition. The temperature is 
controlled at 20  °C and the fluctuation is less than 1  °C. 
The edition of measuring software is AC-DIMSv5.2, 
and the maximal measuring distances are 500  mm, 
600 mm, 400 mm in the directions of X axis, Y  axis and 
Z axis respectively. The maximum permissible error is 
MPEE ≤ (2+ L/300) µm, the maximum allowable space 
detection error is MPEP ≤ 2.2 µm. Before the experi-
ment, the Edward DAISY564 CMM should be initialized. 
The probe should be installed and inspected according to 
the standard. Two S-shaped test specimens have differ-
ent distributions of deviations shown in Figure 3. Differ-
ent colors represent different deviations. The measuring 
experiment in CMM is shown in Figure 4.

4.1  Profile Error and Uncertainty Calculation in Experiment 
1

In Unigraphics NX, we set 5 rows along the Z directions 
and each row has 32 points. We select 160 points in the 
whole surface as the theoretical points. 100 groups of 
measuring points can be obtained in CMM according to 
the theoretical points. In the procedure, the points in the 
edge of the surface must avoid to be selected. The theo-
retical points are uniformly sampled on the sculptured 
surfaces as the green ones in Figure 5. The average meas-
uring points of 100 groups are presented as the red ones 
in Figure 5. SQP is adopted to search the nearest points 
[7].

In SQP, we can get the profile error, the best transfor-
mation matrix and the nearest points. The mean of the 
profile errors f̄  is calculated as the final profile error. 
The value is 0.0656 mm. Then GUMM and AMCM are 
adopted to calculate the uncertainty.

(1) GUMM

 According to the formula of uncertainty, we must 
get the uncertainties of measuring points and the 
uncertainties of transformation matrix in order to 
get the uncertainty of profile error. By measuring 

(17)[fdown, fup] = [f̄ − kdown × u, f̄ + kup × u]
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160 points of the S-shaped test specimen 100 times, 
we get the uncertainties of the measuring points. 
The uncertainties in the directions of X axis, Y  axis 
and Z axis have different values. The average values 
of the ux, uy, uzare ux = 6.5 µm, uy = 0.615 µm,

uz = 1.5 µm, respectively. The correlation coef-
ficients αβ , αγ , α�x, α�y, α�z, βγ , β�x 
β�y, β�z, γ�x, γ�y, γ�z, �x�y, �x�z, �y�z 

can be calculated in SPSS and the values are shown 
in Table 2. It’s obvious that the correlation between 
these variables α, β , γ , �x, �y, �z cannot be 
ignored. The covariance matrix is shown in Table 3. 

 According to the GUMM, the uncertainty of the 
first-order Taylor expansion is calculated with 
Eq. (6) and the value is u1 = 0.0028968  mm. The 
uncertainty of the second-order Taylor expansion is 
u2 = 0.02265 mm calculated by Eqs. (6)–(13).

(2) AMCM
 Estimating the distributions of variables is an impor-

tant step to use AMCM [29]. The distributions of 
the measuring points coordinates follow the Gauss-
ian distributions, which is tested by Kolmogorov–
Smirnov Test in SPSS shown in Table  4. Because 
all the p-values (0.762, 0.712, 0.943) are greater 
than 0.05 (p > 0.05), the distributions of x, y, z all 
follow the Gaussian distributions. x, y, z are inde-
pendent. They all follow the Gaussian distribu-
tions N (µ, σ 2) , where µ is the mean of each vari-
able and σ 2 is the variance of each variable shown 
in Table  4. The distribution of α,β , γ ,�x,�y,�z 
follows the multivariate Gaussian distribution 
N (µ, σ 2) , where µ is the expectation vector, 
µ = (0.0005,−0.0004, 0.0001,−0.0315, 0.0320,−0.0395) ; 
σ 2 is the covariance matrix shown in Table 3. The 
number of experiments is M = 106 , the frequency 
distribution of profile error in AMCM is shown in 
Figure 6, where the dashed lines are drawn in cor-
respondence of the 95% confidence interval. 

 Using AMCM, the profile error is 0.0875 mm, the 
uncertainty is 0.0433 mm and the confidence inter-
val of 95% is [0.0188, 0.1714] mm.

4.2  Profile Error and Uncertainty Calculation in Experiment 
2

In Unigraphics NX, adaptive placement strategy is 
adopted to select 50 points. It is shown in Figure 7. The 
CMM measures these points 100 times repeatedly.

Using SQP, the profile error is 0.0993 mm. The best 
transformation matrix T (α,β , γ ,�x,�y,�z) and the 
nearest points s′i(x

′
i, y

′
i, z

′
i) are also obtained. The nine 

a  Experiment 1

b  Experiment 2
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Figure 3 Distributions of deviations on two S-shaped test specimens

Figure 4 CMM experiment for S-shaped test specimen

Figure 5 The theoretical points and average measuring points
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variables xi, yi, zi,α,β , γ ,�x,�y,�z have been known, 
the covariance and variance between the variables can 
also be obtained. Then GUMM and AMCM are adopted 
to calculate the uncertainty.

(1) GUMM

 The uncertainties of measuring points ux, uy, uz are 
ux = 5.97 µm, uy = 0.40697 µm, uz = 1.3 µm. 
Covariance matrix of the best transformation 
matrix is shown in Table 5.

Table 2 Correlation coefficient matrix of α, β, γ , �x, �y, �z

Correlation α β γ �x �y �z

α 1 0.086 − 0.002 0.049 − 0.060 0.131

β 0.086 1 − 0.018 − 0.094 − 0.006 0.203

γ − 0.002 − 0.018 1 − 0.029 0.040 0.027

�x 0.049 − 0.094 − 0.029 1 − 0.728 0.092

�y − 0.060 − 0.006 0.040 − 0.728 1 − 0.362

�z 0.131 0.203 0.027 0.092 − 0.362 1

Table 3 Covariance matrix of α,β, γ ,�x,�y,�z  (mm2)

Covariance α β γ �x �y �z

α 9.44 × 10−8 3.90 × 10−9 − 4.01 × 10−9 − 3.12 × 10−7 6.30 × 10−7 − 8.2 × 10−6

β 3.90 × 10−9 5.78 × 10−8 − 7.06 × 10−10 − 2.89 × 10−7 − 8.23 × 10−7 7.10 × 10−6

γ − 4.01 × 10−9 −7.06 × 10−10 3.63 × 10−9 3.54 × 10−7 − 6.38 × 10−7 4.83 × 10−7

�x − 3.12 × 10−7 − 2.89 × 10−7 3.54 × 10−7 4.23 × 10−5 − 5.62 × 10−5 2.59 × 10−5

�y 6.30 × 10−7 − 8.23 × 10−7 − 6.38 × 10−7 − 5.62 × 10−5 1.41 × 10−4 − 1.90 × 10−4

�z − 8.24 × 10−6 7.10 × 10−6 4.83 × 10−7 2.59 × 10−5 − 1.90 × 10−4 1.877 × 10−3

Table 4 One-Sample Kolmogorov–Smirnov test

Parameter or measuring points x y z

Parameters-Mean (mm) 26.631907 97.468943 35.192155

Parameters-Std. deviation (mm) 6.50275 × 10−3 6.1498 × 10−4 1.48275 × 10−3

Kolmogorov–Smirnov Z 0.669 0.699 0.529

Asymp. Sig. (2-tailed) 0.762 0.712 0.943
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Figure 6 Frequency distribution of profile error in AMCM

Figure 7 Location of theoretical points
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 Based on the values, the uncertainty of the first-order 
GUMM is u1 = 0.00199 mm, the second order is 
u2 = 0.01945 mm.

(2) AMCM
 Refer to the principle of AMCM in experiment 1, the 

profile error is 0.1233 mm, the uncertainty is 0.0416 
mm, the confidence interval of 95% is [0.0597, 
0.2062] mm. The distribution of profile error in 
AMCM is shown in Figure 8.

5  Results and Discussion

(1) According to experiment 1:

 In GUMM, the skewness coefficient of profile 
error SK  is 0.6287. The distribution of the profile 
error is asymmetrical and unknown. According 
to the 100 profile errors, the f̄ = 0.065574 mm, 
Q0.025 = 0.05849 mm and Q0.975 = 0.075034 mm 
are obtained. According to Eqs. (15), (16), kdown and 
kup are shown as follows:

 The uncertainties are calculated in the first-order 
and the second-order GUMM. They are written as 
GUMM-1 and GUMM-2 respectively in Table  6 
and Table 7. The coverage probability p is 0.95. dlow 
and dhigh are the difference of the GUM and AMCM 
in 95% confidence interval. When the first-order 
Taylor series expansion is considered in GUMM, 
the values of dlow and dhigh are far larger than those 
in GUMM-2 (0.0419 > 0.0083 & 0.09914 > 0.0537). 
In a word, the second-order GUMM is more pre-
cise to calculate the uncertainty of profile error.

(2) According to experiment 2:
 In GUMM, the skewness coefficient is 

SK = −0.4356 . The distribution of profile error is 
asymmetrical. Then the converge factors are shown 
as follows. 

kdown = 4 ×
0.065574 − 0.05849

0.075034 − 0.05849
≈ 1.7,

kup = 4 ×
0.075034 − 0.065574

0.075034 − 0.05849
≈ 2.3.

 In Table  7, dlow and dhigh in GUMM-2 are less 
than those in GUMM-1 (0.00708 < 0.0348 & 
0.07578 < 0.1037). It indicates that the second-order 

kdown = 4 ×
0.099314192− 0.089258703

0.106076038− 0.089258703
≈ 2.4,

kup = 4 ×
0.106076038− 0.099314192

0.106076038− 0.089258703
≈ 1.6.

Table 5 Covariance matrix of α,β, γ ,�x,�y,�z  (mm2)

Covariance α β γ �x �y �z

α 1.46 × 10−7 6.95 × 10−8 6.74 × 10−9 2.12 × 10−7 − 1.52 × 10−6 − 4.23 × 10−6

β 6.95 × 10−8 5.74 × 10−8 7.05 × 10−9 4.28 × 10−7 − 1.75 × 10−6 1.66 × 10−6

γ 6.74 × 10−9 7.05 × 10−9 3.97 × 10−9 4.27 × 10−7 − 7.35 × 10−7 1.08 × 10−6

�x 2.12 × 10−7 4.28 × 10−7 4.27 × 10−7 5.20 × 10−6 − 7.39 × 10−6 1.28 × 10−4

�y − 1.52 × 10−6 − 1.75 × 10−6 − 7.35 × 10−7 − 7.39 × 10−5 1.47 × 10−4 − 2.20 × 10−4

�z − 4.23 × 10−6 1.66 × 10−6 1.08 × 10−6 1.28 × 10−4 − 2.20 × 10−4 9.21 × 10−4
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Figure 8 Frequency distribution of profile error in AMCM

Table 6 Uncertainty evaluation results in  experiment 1 
(mm)

Methods f̄ u 95% confidence 
interval

dlow dhigh

GUMM-1 0.0656 0.002897 [0.060675, 0.07226] 0.0419 0.09914

GUMM-2 0.0656 0.02265 [0.027095, 0.11770] 0.0083 0.0537

AMCM 0.0875 0.0433 [0.0188, 0.1714]

Table 7 Uncertainty evaluation results in  experiment 2 
(mm)

Methods f̄ u 95% confidence 
interval

dlow dhigh

GUMM-1 0.0993 0.00199 [0.094524, 0.102484] 0.0348 0.1037

GUMM-2 0.0993 0.01945 [0.05262, 0.13042] 0.00708 0.07578

AMCM 0.1233 0.0416 [0.0597, 0.2062]
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GUMM is more precise to calculate the uncertainty 
of profile error.

6  Conclusions

(1) When the amount of data is limited, SQP can obtain 
the profile error accurately and quickly. However, 
when the amount of data is very large, SQP is time 
consuming. SQP is an appropriate method accord-
ing to the proper CMM data in this paper.

(2) When the mathematical model of profile error is 
non-linear, the second-order Taylor series expan-
sion needs to be considered. The third order or a 
higher-order requires the calculation and analysis of 
tensors, which is difficult to achieve at present. The 
precise prior distributions of variables in AMCM 
are often difficult to obtain in most cases, so the 
AMCM is not widely used.

(3) If you want to get different confidence inter-
vals, you need to find the corresponding end-
points of the confidence intervals. If you want to 
obtain the shortest 99% confidence interval, you 
need to sort the profile error from the smallest to 
the largest. Then find the location of the left end-
point n in MATLAB. Next the right endpoint 
f(M * 99/100 + n) is obtained, where M is the num-
ber of experiments. The 99% confidence interval in 
AMCM is [f(n), f(M * 99/100 + n)]. In GUMM, you 
need to select the corresponding converge factors 
(k = 3 in 99% confidence interval). The details are 
shown in Ref. [30].
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