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Abstract 

As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax 
policies are being implemented, choosing the optimum cutting parameters during the machining process is crucial 
for automobile panel dies in order to achieve synergistic minimization of the environment impact, product quality, 
and processing efficiency. This paper presents a processing task-based evaluation method to optimize the cutting 
parameters, considering the trade-off among carbon emissions, surface roughness, and processing time. Three 
objective models and their relationships with the cutting parameters were obtained through input–output, response 
surface, and theoretical analyses, respectively. Examples of cylindrical turning were applied to achieve a central com-
posite design (CCD), and relative validation experiments were applied to evaluate the proposed method. The experi-
ments were conducted on the CAK50135di lathe cutting of AISI 1045 steel, and NSGA-II was used to obtain the Pareto 
fronts of the three objectives. Based on the TOPSIS method, the Pareto solution set was ranked to find the optimal 
solution to evaluate and select the optimal cutting parameters. An S/N ratio analysis and contour plots were applied 
to analyze the influence of each decision variable on the optimization objective. Finally, the changing rules of a single 
factor for each objective were analyzed. The results demonstrate that the proposed method is effective in finding the 
trade-off among the three objectives and obtaining reasonable application ranges of the cutting parameters from 
Pareto fronts.
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1  Introduction
In 2017, the total number of automobiles in China 
reached 217 million, and has shown an increasing trend 
each year [1]. In recent years, the upgrading of cars has 
accelerated which has caused an acceleration of the need 
for automobile panel dies. The design and manufactur-
ing times of automobile panel dies accounts for 2/3 of the 
automobile development cycle [2], and therefore the pro-
cessing efficiency and quality of the die directly restrict 
the speed of an auto body modification. There are large 
numbers of rotating machinery parts on the die. Turn-
ing is a necessary process for the machining of rotary 

parts, such as ejector pins [3]. However, carmakers have 
been striving to maximize profits, putting their economic 
benefit first and ignoring the environmental attributes 
of their products. Carbon emissions (C) are the major 
causes of global problems, such as the melting of the 
Arctic and Antarctic glaciers, rising sea levels, and global 
warming. To neutralize or alleviate the environmental 
pressure of carbon emissions, and to achieve the sustain-
able development of the economy, society, and future 
generations, countries around the world have jointly for-
mulated a series of environmental laws and regulations 
and related standards. The international community first 
enacted an environmental-related law (United Nations 
Framework Convention on Climate Change) in 1992 to 
meet the challenge of global warming. The enforcement 
of the Kyoto Protocol in 2005 marked the entry into a 
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substantial phase of reducing greenhouse gases in the 
international community [4].

Lightweight design technologies used in machine tool 
structures, 3-R manufacturing, the application of new 
processing technologies and other aspects are potential 
measures for energy saving and a reduction of emissions 
in the manufacturing industry [5]. However, these meas-
ures are difficult to apply widely within a short time.

There is a massive amount of existing machine tools in 
reserve, and parameter optimization for existing machine 
tools and processing technology is not only an effective 
way to improve the processing quality and efficiency [6], 
it is also an effective measure in energy saving and the 
reduction of emissions [7]. Therefore, parameter optimi-
zation has become a hotspot in current research. Cam-
patelli et  al. [8] employed an experimental approach to 
model the energy consumption in the milling of AISI 
1050 carbon steel, and claimed that increasing the mate-
rial removal rate (MRR) as much as possible will help 
reduce energy consumption during the processing. 
Wójcicki et al. [9] adopted a model-based approach for a 
systematic energy efficiency evaluation and optimization 
during turning operations, combining a spindle, chiller, 
and material removal models, and taking into account 
the strong interrelations between the cutting process, a 
spindle with a permanent magnet motor, and its chiller. 
Zhong et  al. [10] considered the effects of the cutting 
parameter combinations on the energy consumption at 
a certain material removal rate, and based on this dis-
covery, considered a specific energy consumption as the 
optimization goal and took the cutting parameters as the 
optimization variables during the material removal pro-
cess during the turning; cutting parameter sets with a 
large feed rate were then recommended. Bilga et al. [11] 
regarded the cutting speed, feed rate, cutting depth, and 
nose radius along with their interactions as the variables 
to optimize energy consumption, and showed that the 
feed rate is the vital dominating parameter for a reduc-
tion of the energy consumed; however, the nose radius 
does not contribute much. To lower the specific cut-
ting energy in high-speed milling, Wang et al. [12] took 
7050-T7451 aluminum alloy as the processing object to 
reveal the influence of the cutting speed, undeformed 
chip thickness, and tool rake angle on the cutting energy 
consumption.

However, parameter optimization aiming at mini-
mizing the environmental cost (energy consump-
tion or carbon emission) often sacrifices the economy 
of the mechanical products, machining processes, or 
product performance. Therefore, parameter optimiza-
tion constrained by multiple optimization objectives 
has received increasing attention. Wang et  al. [13] took 
energy consumption, cost, and surface roughness as the 

optimization objectives, and applied NSGA-II as a tool 
for multi-objective parameter optimization. The results 
show that the parameter optimization has a significant 
energy saving effect, but shows little improvement of the 
surface roughness. Based on the proposed system bound-
ary of energy consumption, Yi et al. [14] took the surface 
roughness as a constraint along with the cutting speed 
and feed rate to further optimize the carbon emissions 
and processing time simultaneously. Liu et  al. [15] took 
the cost of carbon emissions into account, taking the cut-
ting speed and feed rate as decision variables, and carbon 
emissions and the processing time as the optimization 
objectives to analyze the relationship between decision 
variables and the optimization objectives. He et  al. [16] 
proposed the establishment of a multi-objective opti-
mization model that takes the cutting parameters as the 
decision variables, and the energy consumption, cutting 
force, and time as the performance indicators for the 
turning and milling processes. Non-inferior optimal tar-
get areas were obtained through a theoretical analysis, 
experimental design, and statistical regression. Bagaber 
et al. [17] took the dry cutting of stainless steel 316 with 
high strength and corrosion resistance as an example and 
carried out an orthogonal experiment with three factors 
and five levels using an uncoated cemented carbide tool. 
Good results were achieved on reducing the energy con-
sumption, improving the surface quality, and prolonging 
the tool life. Lin et  al. [18] proposed a multi-objective 
teaching–learning-based optimization algorithm during 
an entire turning operation, which is intended to mini-
mize the carbon emissions and operation time simulta-
neously by optimizing the cutting parameters; later, the 
analytic hierarchy process was used to find the optimal 
solution among the available Pareto-optimal solutions. 
Camposeco-Negrete [19] presented an experimental 
study to optimize the cutting parameters in the rough 
turning of AISI 6061 T6 aluminum and establish the 
restrictive relationship among the energy consumption, 
surface roughness, and MRR; meanwhile, it was pointed 
out that the feed rate and cutting depth are significant 
factors for minimizing the specific energy consumption, 
although to minimize the surface roughness, the feed 
rate was determined to be the most significant factor. Lin 
et  al. [20] used a teaching–learning-based optimization 
algorithm to deal with the relationships between carbon 
emissions, operation time, machining time, and cutting 
parameters for both dry and wet turning environments, 
and the research results show that the use of cutting flu-
ids has a vital catalytic role in reducing the carbon emis-
sions and processing times and improving the production 
efficiency. Tansel [21] considered existing research on the 
trade-offs among directly related environmental, eco-
nomic, and quality objectives to be either incomplete or 



Page 3 of 18Jiang et al. Chin. J. Mech. Eng.           (2019) 32:94 

inaccurate, and used three analysis methods (the RSM-
based Goal Programming model, TOPSIS-based Taguchi 
approach, and Grey Relational Analysis-based Taguchi 
approach) to analyze the coupling relationship between 
cutting parameters and different tools (multi-coated 
TiCN+Al2O3+TiN, surface carbon coating, and dia-
mond coating), and different materials (6061, 6082, and 
7075). The results show that the RSM-based Goal Pro-
gramming approach is generally better than the other 
two. Li et al. [22] used a multi-objective particle swarm 
optimization algorithm as a tool to minimize the energy 
and processing time simultaneously through the opti-
mization of the cutting parameters during CNC milling, 
and pointed out that the width of cut is a major process 
parameter affecting both the energy and processing time. 
To address the problem of a simultaneous optimization 
of the cutting parameters and processes, Zhang et al. [23] 
used an improved universal gravity search algorithm to 
establish a two-part search space for the cutting param-
eters and process layout, and proposed a target optimi-
zation model for minimizing the processing time and 
carbon emissions.

A comparison of the literature on the optimization of 
environmental indicators in recently published studies is 
shown in Table 1. Summarizing the findings of the thor-
ough literature review above, it can be claimed that the 
current studies on parametric optimization for minimiz-
ing the negative environmental influence present the fol-
lowing shortages.

1.	 Numerous parameter optimization models only take 
energy consumption, carbon emissions, or other 
environmental indicators as the optimization objec-
tive, which often sacrifice processing efficiency or 
product quality, and are extremely one-sided. To fully 
analyze the trade-offs among environmental, product 
quality, and efficiency indicators, for example, mini-
mizing the carbon emissions and processing time 
and maximizing the product quality, multi-objective 
parameter optimization is worth studying.

2.	 The optimal parameters in many studies are directly 
derived from experimental parameter combinations, 
the results of which are extremely dependent on the 
selected experimental parameters. If the experimen-
tal parameters are not chosen well, they are easily 
trapped into the local optimum.

3.	 In multi-objective optimization studies using carbon 
emissions as an indicator, the same cutting depth is 
often specified, or the carbon emissions are calcu-
lated after a single cutting according to the orthogo-
nal test table. Although the former applies the same 
processing tasks, it limits the cutting depth and the 
parameter optimization is not comprehensive. The 

latter will result in a different amount of material 
removed owing to a different cutting depth, and the 
results lack comparability.

As shown in Table  1, energy consumption minimi-
zation is usually selected as an environmental indica-
tor in the literature. However, compared with energy 
consumption, carbon emissions can more fully reflect 
the environmental impact of the machining process, 
and are more in line with the actual situation. Surface 
roughness is one of the commonly used indicators for 
evaluating the product quality. Different surface rough-
ness thresholds may cause large changes in the process-
ing time, tool wear, carbon emissions, and other factors. 
The surface roughness is a reasonable indicator of the 
surface quality. The processing time largely determines 
the market competitiveness of the products and the 
ability to cope with market risks. It is also an important 
indicator used to measure the technical and manage-
ment level of an enterprise. It is therefore reasonable 
to take lower carbon emissions, a lower surface rough-
ness, and a lower processing time as the optimization 
objectives. In terms of the decision variable selection, 
cutting parameters directly affect the carbon emissions, 
surface quality, and processing time, and thus the cut-
ting parameters were chosen as the decision variables. 
During actual processing, the workpiece material is 
often selected long in advance, and there is no need 
to apply an optimization. Cutting tools have an effect 
on the optimized targets and a particular optimization 
space [24], which can be used as one of the decision 
variables. However, in an investigation into the factory 
setting, it was found that the tool used is relatively fixed 
and that the tool parameters cannot be easily replaced. 
For the time being, however, this is not considered as a 
control variable in the present study.

This study aims to achieve high efficiency, high pre-
cision, and low environmental costs for sustainable 
machining by optimizing the cutting parameters with-
out replacing the machine tools or other equipments. 
The optimization method simplifies the parameter opti-
mization when considering multiple factors, allowing 
it to become easily popularized. In this way, sustain-
able processing can be realized without increasing the 
production cost of an enterprise, and products with a 
better green performance can be produced, which is 
helpful to enhance the market competitiveness of the 
enterprise. Therefore, NSGA-II and TOPSIS were taken 
as algorithm tools, the processing task was used as 
the evaluation objective, the cutting parameters were 
applied as decision variables, and the carbon emis-
sions, surface roughness, and processing time were 
used as the optimization objectives to study the balance 
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between each objective and achieve a better surface 
quality, shorter processing time, and less environmental 
costs.

2 � Methods
Facing increasingly severe environmental problems, the 
trade-off and restrictive relationship among the process-
ing efficiency, processing quality, and environmental 
impact were studied along with the optimization of the 
cutting parameters as decision variables to reduce the 
environmental impact, and improve the processing qual-
ity and efficiency. First, existing optimization models of 
the cutting parameters when considering the environ-
mental impact were analyzed, and it was found that the 
multi-objective optimization model is a popular but dif-
ficult research topic. In view of the existing problems 
of this research, carbon emissions, the processing time, 
and the surface roughness were selected in this study as 
the optimization objectives, with the cutting parameters 
as the decision variables; RSM, NSGA-II, and TOPSIS 
as the technical means; and the processing task as the 
research object used to solve the multi-objective optimi-
zation problem. Figure  1 shows the organization of the 
present paper.

First, three objective models and their relationships 
with the cutting parameters are needed, namely, the mod-
eling carbon emissions model based on an input–output 
analysis to ensure the reliability of the system boundary, a 
response surface analysis to model the surface roughness 
to ensure the accuracy of the prediction, and a math-
ematical method to build the processing time model to 
ensure the accuracy of the processing time calculation. 
The mathematical relationships used to establish the pro-
cessing task-based multi-objective optimization model 
for high-efficiency, low carbon emissions, and high-qual-
ity processing manufacturing are described in Section 3.

A turning case study is given in Section  4, and the 
multi-objective optimization equation is derived accord-
ing to the experiment results.

The results and a discussion of the optimal Pareto solu-
tions are presented in Section  5. NSGA-II was selected 
as the multi-objective optimization method to obtain 
the Pareto frontier. The optimal solution was obtained 
by sorting the Pareto solution set based on TOPSIS. A 
main effect analysis was carried out to find the ranking 
of significant factors. Contour maps were drawn through 
a simulation analysis to analyze the interaction between 
the decision variables and optimization objectives. Sub-
sequently, a sensitivity analysis was carried out to analyze 
and explain the changing rules between the objectives 
and decision variables.

Finally, some concluding remarks are given.

3 � Multi‑Objective Optimization Model
3.1 � Decision Variables
In this study, the traditional turning process was selected 
as the research object for multi-objective optimization 
research, although the research method and theory can 
be applied to other machining processes. As mentioned 
in Section  1, the spindle speed, cutting depth, and feed 
rate were selected as decision variables.

3.2 � Targets to be Optimized
3.2.1 � Carbon Emission
An input–output analysis was originally applied to the field 
of economics, and the concept was quickly applied to other 
areas, playing an important role in describing the relation-
ship between the final demand and total outputs from an 

Mathematical method to build processing time model

Establishment of optimization model based on 
processing task

Experiment and record the results

Establish mathematical expressions for each objective

Search for pareto solution by NSGA-II

Further screening results with TOPSIS method

Main effect factors analysis

Modeling carbon emission model based on input-
output analysis

Coupling effect analysis

Start

Response surface methodology to build surface 
roughness model

Satisfied with the result?

Yes

No

The sensitivity analysis

Stop

Figure 1  Flow chart of the present paper
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up-down perspective. The carbon emission model of the 
machine tools used during the cutting process should not 
only consider the carbon emissions produced by electric 
energy consumption, but also the carbon emissions pro-
duced by auxiliary equipment, tools, and cutting fluid. 
An input–output analysis is used to analyze the carbon 
emissions during the machining processes to ensure the 
accuracy of the carbon emission calculation, as shown 
in Figure  2. The machining process requires the input of 
power and resources, in addition to the target products, 
and is also accompanied by a large amount of waste gen-
erated at the output. According to the consumption form 
of the energy resources used during the machining process, 
carbon emissions are divided into consumable and trans-
ferable carbon emissions. Consumable carbon emissions 
refer to carbon emissions from the electricity consumed 
during the machining process. The use of electricity does 
not produce carbon emissions, but the production process 
of electricity does. Carbon emissions from electric power 
are obtained by multiplying the electricity consumption by 
the electricity carbon emission factor (Eq. (2)). A calcula-
tion of the electricity consumption of CNC machine tools 
can be found in a previous study [26]. Transferable car-
bon emissions refer to the carbon emissions transferred 
from raw materials, cutting tools, cutting fluids, and other 
resources during the processing, which are transformed 
into waste materials such as chips, scrap cutting tools, and 
scrap cutting fluids. That is, transferable carbon emissions 
include two parts: input resource carbon emissions and 
output waste carbon emissions. As the calculation method, 
the mass/volume is multiplied by the carbon emission coef-
ficient. Products are effectively exported, regardless of the 
carbon emissions produced. Because a processing task-
based optimization model is adopted in this paper, the 
amount of material removed is also fixed, which cannot 
and does not need to be optimized. Therefore, this part of 
the carbon emissions is not calculated in this multi-objec-
tive optimization

(1)C = Cconsum + Ctrans,

(2)Cconsum = CFene × Eene,

3.2.2 � Surface Roughness
The formation of the surface roughness during the mechan-
ical cutting process can be roughly summarized into three 
factors: geometric factors, physical factors, and vibrations of 
the process system. Geometric factors refer to the residual 
area of the cutting layer left behind on the machined sur-
face when the tool moves relative to the workpiece. Many 
theoretical surface-quality calculation models are calcu-
lated based on this characteristic [27]. The actual surface 
roughness after cutting has a large difference from the theo-
retical roughness, which is mainly affected by the physical 
properties of the material being processed and the cutting 
mechanism. During the cutting process, the edge fillet of 
the tool and the flank surface will be plastically deformed 
by pressing and rubbing against the workpiece. The higher 
the toughness, the greater the plastic deformation of the 
material, allowing built-up edge and scale to easily appear, 
seriously deteriorating the roughness. The vibration of the 
processing system, such as the cutting parameters and the 
cooling lubricants, is an important factor affecting the sur-
face roughness, and is an important means to control and 
improve the surface roughness during actual cutting. In 
this paper, the quality of dry turning is improved by chang-
ing the cutting parameters. For dry turning, in this study, 
the machining quality is improved by changing the cutting 
parameters. Because the surface roughness of the workpiece 
is a non-linear process, a second-order polynomial response 
surface mathematical equation is utilized, as shown in Eq. 
(6), and the coefficients of the function can be obtained 
using the least squares method.

where h represents the turning parameters (spindle 
speed, feed rate, and depth of cut), β is the coefficient of 
each term, and ε is a residual error.

3.2.3 � Processing Time
Taking machine tools as a whole as the research object, 
the machining processing time Tmachin refers to the time 
required to complete the processing of a part, which con-
sists of the maneuver time (also known as the basic time) 
tmaneuver and auxiliary time tauxiliary.

(3)Ctrans = Cresource + Cwaste,

(4)Cresource = Ctool + Ccool + Cair ,

(5)Cwaste = Cchips + Ctool−w + Ccool−w ,

(6)

Ra = β0 +
∑

i

βihi +
∑

i<j

βijhihj +
∑

i

βiih
2
i + ε,

(7)Tmachin = tauxiliary + tmaneuver .

               Waste
Cutting chips
Waste cutting tools
Waste cutting fluid
Cutting fluid loss
Waste lubrication
Lubrication loss

Resource
  Raw material 
  Cutting tools
  Cutting fluid
  Compressed air
  Lubrication

Production
effective output

machine tool
 Input  Output

Electricity

Figure 2  Input–output analysis of machine tools
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The maneuver time tmaneuver is the cutting time needed 
to directly change the size, shape, and surface quality of 
the workpiece, including the stand-by time and idle run-
ning time.

The idle running time, tidle , is determined as indicated 
in Figure 3.

The auxiliary time tauxiliary is the time consumed by 
various auxiliary actions used to process each workpiece 
during a certain process, such as starting and stopping 
the machine tools, changing a tool, trial cutting, meas-
urements, and other related steps consuming auxiliary 
action time. In this study, AISI 1045 steel was processed, 
and the processing task was small. It is considered that 
the auxiliary times of each group of processing tasks 
are the same, and thus there is no room for optimiza-
tion, which can be omitted for convenience, and that the 
stand-by time is the same.

According to the generalized Taylor formula [28], the 
tool life is as shown in Eq. (12):

(8)tmaneuver = tstand−by + tidle + tcut .

(9)

tidle = max

(

Lx1

vfx
,
Lz1

vfz

)

+

N
∑

j=1

[

Lz2j

vf
+

Lx2j

vf
+

Lz3j + Lz2j

vfz
+

Lx2j

vfx

]

+max

(

Lx1 − Lx2

vfx
,
Lz1 + Lz2 + Lz3

vfz

)

,N = 1, 2, 3, · · ·

Lx2j = Lx2 + j · ap.

(10)tcut =

N
∑

j=1

[

Lz3j

vf

]

,N = 1, 2, 3, · · ·

(11)

tauxiliary = tclam + tset + tpro +
tchan · tcut

Ttool
+ tunl .

3.3 � Constrains
For the diversity of the materials to be processed, the pro-
cessing equipment, and fine and rough processing tech-
nology, the proper values of the cutting parameters will 
be within a different interval. At the same time, the range 
of the cutting parameters will be defined by the proces-
sors based on personal experience. Therefore, for the spe-
cific practical machining process, the cutting parameters 
should be restricted to a certain scope to avoid unneces-
sary calculations and a waste of resources.

Combined with the above research, a multi-objective 
optimization equation is obtained.

4 � Case Study
4.1 � Experiments and Data Acquisition
The turning process was taken as the research object. The 
experimental scenarios were carried out on a SMTCL 
CAK50135di CNC lathe with a spindle power of 6.5 kW, 
and its maximum spindle speed can reach 1450  r/min. 
The fast forward speed of the machine tool is 1900 mm/
min. A carbide cutting tool was employed for the experi-
ment. The cutting tool material is YT15 and the rake angle 
is 10°, the main cutting-edge angle is 75°, and the tool tip 
radius is 1 mm. Some AISI 1045 steel bars with dimen-
sions of φ90 × 120 mm were employed. The hardness of 
the steel is 187 HB, and its composition is 0.42%–0.50%C, 
0.50%–0.80%Mn, 0.17%–0.37%Si, and ≤ 0.25%Cr [29].

The experimental setup is shown in Figure  4. The 
power requirement during the mechanical machining 
process was measured using a WT333 type digital power 
meter (Yokogawa). The measurement software provided 
by the manufacturer is WTViewerFreePlus. This type of 
measurement equipment can be used to measure all AC 
and DC parameters; moreover, integral and harmonic 
measurements can be conducted at the same time with-
out changing the measurement mode. The limits of the 
measured current can be as low as 50 μA and as high as 
40  A. The sampling frequency is 10  Hz, and the read-
ing accuracy is 0.1%. For a more detailed description of 
the experiment, refer to our previous study [26]. A sur-
face roughness measurement was conducted using a 
Tr200V1.5 surface roughness meter (Beijing Times Rui 
Da Technology Co., Ltd.) with a range of 0.005–80 μm.

(12)Ttool =
A1/m

vmc · ax/mp · f y/m
.

(13)min{C , t,Ra},

(14)s.t.,







nmin ≤ n ≤ nmax,
fmin ≤ f ≤ fmax,
ap−min ≤ ap ≤ ap−max.

1xL

1zL
2xL

3zL

zL

Figure 3  Turning path diagram
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To establish a regression model of the surface roughness, 
a bar with a diameter of 66.5 mm was selected as the test 
object according to the actual experiment conditions. The 
central composite design can fit the response surface bet-
ter than the Box–Benhnken design. At the same time, it is 
advisable that the experiment level not exceed the bound-
ary of the cube to avoid exceeding the processing capacity 
of the machine. To reduce the number of experiments and 
ensure the accuracy of the results, the central composite 
inscribed design method was selected. The value of α was 
set to ± 1. Table 2 shows the experiment design and results.

As mentioned above, to ensure the comprehensiveness 
of the parameter optimization and the comparability of 
the results, a task-based parameter optimization method 
was chosen. The designated processing task is to process 
a bar with a diameter of 90–84  mm, the cutting length 
is equal to 30 mm. In addition, it is assumed that the 
machine starts to perform a fast forward after 30  s of a 
standby period.

To establish a multi-objective optimization equation, 
the following parameters or data need to be measured 
and acquired.

According to the actual measurement of SMTCL 
CAK50135di, the stand-by power under the selected cut-
ting parameter is 321 W. The tool used is produced by 
Zhuzhou Cemented Carbide Cutting Tools Co., Ltd. The 
cutting tool material is YT15 and its weight is 474 g.

The cutting fluid needs regular supplementation 
and replacement, and according to an investigation on 
machine tools, the coolant is water-based, the specifica-
tions of the cutting fluid is 20  L/barrel, the ratio of oil 
to water is 1:10, and the frequency of replacement is 5 
months. The machine tool runs 22 days per month, with 
coolant applied for 8 h per day. The remaining coolant to 
be replaced is approximately 8 L.

The carbon emission factors used are as shown in 
Table 3.

4.2 � Establishment of Multi‑Objective Optimization Model
The experiment data recorded in Table 2 can be regressed 
using a response surface method, see Appendix A for 
details, and the surface roughness model is therefore as 
follows:

Applying the above data, combined with Section 3, the 
multi-objective optimization equations for machining 
tasks is obtained, and at the same time, the restrictive 
conditions are given according to the actual situation.

(15)Ra = −11.556+ 203.16f − 343.4f 2.

Figure 4  Experiment setup

Table 2  Design of regression analysis experiment

n (r/min) f (mm/r) ap (mm) Ra (μm)

1 600 0.1 0.30 5.113

2 450 0.2 2.00 14.700

3 600 0.3 2.00 18.538

4 300 0.2 1.15 15.620

5 300 0.1 0.30 5.373

6 300 0.3 0.30 18.349

7 300 0.1 2.00 5.209

8 450 0.2 1.15 15.916

9 450 0.3 1.15 17.919

10 600 0.2 1.15 14.727

11 600 0.3 0.30 17.985

12 450 0.2 1.15 15.812

13 450 0.2 1.15 15.462

14 600 0.1 2.00 4.907

15 450 0.2 1.15 15.976

16 450 0.2 1.15 15.113

17 450 0.1 1.15 6.028

18 450 0.2 0.30 14.977

19 450 0.2 1.15 15.090

20 300 0.3 2.00 19.630

Table 3  Equivalent carbon emission factors

Name of carbon emission factors Quantitative 
value

CFene (g-CO2/kW·h) 724.2

CFtool (g-CO2/kg) 29600

CFc_pro (g-CO2/L) 2850

CFc_dis (g-CO2/L) 4000

CFmaterial (g-CO2/kg) 2690

CFdisposal (g-CO2/kg) 361
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where

where Δ is a corrected  coefficient, of which any value 
greater than the cutting depth will be reasonable.

5 � Results and Discussion
5.1 � Analysis of Optimization Results
A non-dominated sorting genetic algorithm with an elitist 
strategy (NSGA-II) is one of the most popular multi-objec-
tive genetic algorithms, which reduces the complexity 
of the non-inferior sorting genetic algorithm and has the 
advantages of a fast running speed and good convergence 
of the solution set [30]. In this paper, NSGA-II is employed 
as a computing tool for the Pareto frontier in multi-
objective optimization. The population size is 50 and the 
reproductive algebra is set to 2000, with the remaining 
parameters set by default. Matlab R2014a is used to sim-
ulate the optimization model, and the Pareto front of the 
multi-objective optimization is as shown in Figure 5. The 
corresponding Pareto frontier is shown in Appendix C.

The curve in Figure  5(a) reflects the trade-off among 
the three objectives. Meanwhile, the relationships 

(16)min







C = 724.2× Eene +
tcut
Ttool

× CFtool ×Mtool +
(tcut+tidle)

3168 × 89,

t = tcut + tidle,

Ra = −11.556+ 203.16f − 343.4f 2,

(17)s.t.,







300 ≤ n ≤ 600,

0.1 ≤ f ≤ 0.3,

0.3 ≤ ap ≤ 2,

(18)

Eene =

[

321.4 × 30+
(

750.9+ 115.4 × n/60+ 11.32× (n/60)2
)

× tidle
]

3.6× 106

+

[(

750.9+ 115.4 × n/60+ 11.32× (n/60)2 + 2.256× πd · n/60 · f · ap
)

× tcut−1

]

3.6× 106

+

[(

750.9+ 115.4 × n/60+ 11.32× (n/60)2 + 2.256× πd · n/60 · f · rem
(

R− r, ap
))

× tcut−2

]

3.6× 106
,

(19)

tidle =
498

19
+ ceil

(

R− r

ap

)

×

(

8

n/60 · f
+

228

190

)

,

tcut = tcut−1 + tcut−2,

tcut−1 = floor

(

R− r

ap

)

×
30

n/60 · f
,

tcut−2 = ceil
(

rem
(

R− r, ap
)

/�
)

×
30

n/60 · f
,

Ttool =
60

f

(

6× 105

3.1415926× n/60

)2.13

,

between the two targets among the three goals are shown 
in Figure 5(b), (c), and (d). From Figure 5(b), there is an 
approximate linear relationship between the processing 
time and carbon emissions. That is, within the bound-
ary of the system, the increase in the processing time will 

cause an approximately linear increase in carbon emis-
sions, which has a certain relationship with the selec-
tion of the system boundaries, but little effect on the 
law. From Figure  5(c), the amount of carbon emissions 
and surface roughness are inversely proportional. This 
means that reducing the surface roughness often results 
in greater carbon emissions. The same relationship is also 
shown between the surface roughness and the processing 
time (Figure 5(d)).

The cutting parameters for minimizing the carbon 
emissions are ap = 1.5 mm, n = 300  r/min, and f = 0.3 
mm/r, with 55.57  g of carbon emissions, a processing 
time of 79.28 s, and a surface roughness of 18.49 μm. The 
parameters minimizing the processing time are ap = 1.5 
mm, n = 600 r/min, and f = 0.3 mm/r, with carbon emis-
sions of 83.07 g, a processing time of 53.94 s, and a sur-
face roughness of 18.49  μm. Usually, the bigger the 
cutting parameters are, the smaller the processing time; 
however, the cutting depth here is not the maximum in 
the optional interval because the processing task-based 
optimization model was chosen in this study. When the 
specified total processing depth is 3  mm, for the maxi-
mum spindle speed and feed rate, the total processing 
time of the cutting depth in the interval [1.5, 2.0] is the 
same, which is the least used. Here ap = 1.5 mm is given 
by the Pareto algorithm when considering the other two 
objectives. Because the surface roughness calculation 
formula used in this paper is based on geometric formu-
las, the surface roughness may be the same under differ-
ent cutting parameters. It is easy to see from the above 
data that there are no appropriate decision variables to 
achieve the minimum of the three goals concurrently. 
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When one of them reaches the minimum, the other two 
goals are often unsatisfactory.

In general, the Pareto solution set obtained by the 
multi-objective optimization problem is at the same non-
dominated solution level, and there are many solutions 
with the same degree of congestion, and the dimensions 
of each optimization target are often different. There 
is no unified standard, making a comparison difficult, 
which causes problems for decision makers. Usually, the 
execution solution is selected from the Pareto frontier 
based only on subjective consciousness or personal expe-
rience. To this end, this study adopts the TOPSIS method 
to sort the three targets.

In this research, the TOPSIS method is applied to rank 
the Pareto frontier. TOPSIS is one of the commonly used 
multi-attribute decision-making methods. The idea is to 
sort the finite objects to be evaluated based on the ideal 
optimal and worst values using the Euclidean distance, 
obtaining the degree of approximation of each point 
with these values, and thus giving the optimal solution. 
See Appendix C for the Pareto frontier results. Accord-
ing to the calculation, the optimal approximation is 
0.6206, and the corresponding decision variables are 
ap = 1.88 mm, n = 560 r/min, and f = 0.12 mm/r. Carbon 
emissions under the decision variables are 104.94 g·CO2, 

Figure 5  Pareto front of multi-objective optimization
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the processing time is 97.59 s, and the surface roughness 
is 7.65 μm.

5.2 � Analysis of the Main Effect Factors
To analyze the impact of the decision variables on each 
goal, the response values of the carbon emissions and 
processing time are calculated according to Table 4, and 
an S/N ratio analysis is carried out. The S/N ratio is uti-
lized to measure how the response changes relative to the 
nominal/target values. For static designs, Minitab offers 
four signal-to-noise ratios. The purpose of multi-objec-
tive optimization in this study is to minimize the car-
bon emissions, processing time, and surface roughness. 
Thus, the lower-the-better type of objective function was 
selected [31]. The conversion relation between the S/N 
ratio and the signal is as follows:

where n is the number of experiments, and yi is the value 
of the carbon emissions or processing time.

The S/N ratio at each level for the various factors of the 
carbon emissions and processing times is plotted in Fig-
ures  6 and 7 respectively. As shown in Figure  6, on the 
whole, the larger the cutting parameters are, the smaller 
the processing time. The condition at ap = 1.5  mm or 
2.0 mm, n = 600 r/min, and f = 0.25 mm/r can be consid-
ered as the level at which the processing time is minimal 
within the given range of parameters. This is because this 
study adopted a task-based optimization model, under 
which the spindle speed and feed rate are fixed, and for a 
cutting depth of 3 mm, when ap = 1.5 mm or 2.0 mm, two 
cutting processes are needed, and therefore the process-
ing times under these two sets of cutting parameters are 
the same. In fact, the machining processing time is the 
same when the cutting depth is located within the inter-
val [1.5 mm, 2 mm).

In addition, the carbon emissions will be at minimum 
when ap = 2.0  mm, n = 300  r/min, and f = 0.25  mm/r 
within the given range of parameters. From the results, 
it can be found that, within the selected cutting param-
eters, the cutting parameters that minimize the carbon 

(20)S
/

N = −10× lg

(

1

n

n
∑

i=1

y2i

)

,

emissions differ from those that minimize the process-
ing time, even the law of change is reversed (the spindle 
speed has the opposite effect on the carbon emissions 
and processing time). However, whether it is for the 
carbon emissions or processing time, the optimal result 
depends on the selected cutting parameters. The selec-
tion of the cutting parameter values directly determines 
the accuracy of the optimization results. This means that 
the optimal values of this part are only optimal among 
the selected discrete cutting parameters and are not glob-
ally optimal.

Tables 5 and 6 are the S/N ratios of the carbon emis-
sions and processing time, respectively. A first rank con-
tribution is assigned to the highest range value. For both 
the carbon emissions and processing time, the cutting 
depth is the most significant factor, followed by the feed 
rate, and the spindle speed is the least significant factor.

5.3 � Coupling Effect Analysis
The effect of the cutting parameters on the carbon emis-
sions and processing time based on the processing task 
in this study can be observed from the contour plots in 

Table 4  Levels and factors selected for S/N ratios

Spindle speed  
(r/min)

Feed rate 
(mm/r)

Cutting depth (mm)

1 300 0.1 0.5

2 400 0.15 1

3 500 0.2 1.5

4 600 0.25 2
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Figure 6  Main effects plot for processing time
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Figure 7  Main effects plot for carbon emissions
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Figures 8 and 9. For the processing time during the turn-
ing process, in general, the greater the values of the cut-
ting parameters are, the shorter the processing time, 
although the influence rate of the decision variables on 
the processing time is different. The effect of the cutting 
depth on the processing time is more significant than that 
of the spindle speed on the processing time based on the 
contour map (Figure 8(a)). The effect of the cutting depth 
on the processing time is more significant than that of the 
feed rate on the processing time (Figure 8(b)). The effect 
of the feed rate on the processing time is more significant 
than that of the spindle speed (Figure 8(c)). The influence 
of the cutting depth, feed rate, and spindle speed on the 
processing time is gradually weakened. This is consistent 
with the analysis results in Section  5.2. Thus, the mini-
mum processing time can be achieved when the levels of 
the spindle speed, feed rate, and cutting depth are at their 
highest levels. 

The value of the carbon emissions is minimized when 
the cutting depth and the feed rate were at their high-
est values, and the spindle speed was at its lowest value 
(Figure 9). Moreover, as stated in the graphs, the effects 

Table 5  S/N ratios of carbon emissions

Level ap n f

1 − 46.62 − 40.11 − 43.16

2 − 41.52 − 40.83 − 41.51

3 − 38.72 − 41.66 − 40.58

4 − 38.37 − 42.63 − 39.97

Delta 8.25 2.52 3.19

Rank 1 3 2

Table 6  S/N ratios of processing time

Level ap n f

1 − 47.17 − 44.6 − 45.45

2 − 42.14 − 42.62 − 42.64

3 − 39.34 − 40.94 − 40.61

4 − 39.27 − 39.76 − 39.22

Delta 7.89 4.84 6.23

Rank 1 3 2
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of the cutting depth on the carbon emissions are more 
significant than those of the spindle speed on the carbon 
emission (Figure 9(a)), whereas the effects of the cutting 
depth on the carbon emissions are more significant than 
the feed rate on the carbon emissions (Figure 9(b)), This 
is also consistent with the analysis results in Section 5.2.

5.4 � Sensitivity Analysis
To further analyze the changing rules of the target to be 
evaluated with the decision variables, a sensitivity analy-
sis method is adopted (Figures 10, 11, 12). From the per-
spective of the target to be evaluated, it is easy to find that 
the processing time decreases monotonously with the 
increase in the three decision variables. The carbon emis-
sions decreased monotonously with an increase in the feed 
rate and the cutting depth; however, with an increase in 
the spindle speed, the carbon emissions show a decreas-
ing trend first, followed by an increasing trend. From the 
impact of the decision variables on the evaluation objec-
tives, the objectives to be optimized vary smoothly with the 

spindle speed and feed rate, but with an increase in the cut-
ting depth, they show a stepped decrease. This is because, 
in this study, a processing task-based optimization model 
was selected, and for the processing depth (3 mm) speci-
fied in this paper, a cutting depth that can be divided by 3 
without any remainder (e.g., 0.5  mm, 0.75  mm, 1.0 mm, 
1.5  mm) is a watershed for the processing time and car-
bon emissions. Between the two watersheds, although the 
cutting depth changes, the total processing time remains 
unchanged. However, the processing time at the watershed 
will decline in a cliff-like descent. This is because, at the 
watershed, the cutting cycle processing times will change 
suddenly, which will lead to the step change in the process-
ing time. The step change of the processing time directly 
affects the step change of the carbon emissions. However, 
there is a weak upward trend in carbon emissions between 
the two watersheds, the reason for which is as follows: 
although the processing times between the two watersheds 
are constant, that is, the idle time and cutting time remain 
unchanged, with the increase in the cutting depth, the devi-
ation between the setting of the cutting depth and the cut-
ting depth during the last cutting increases, which causes 
an increase in the cutting power fluctuation of the machine 
tool, leading to an increase in the energy consumption 
during the entire processing process, naturally causing an 
increase in the carbon emissions.

6 � Conclusions
In this study, a task-based multi-objective optimization 
model that incorporates the environment impact, prod-
uct quality, and processing efficiency was considered, and 
the following conclusions were obtained.

1.	 Different optimal cutting parameters were obtained 
for different optimization purposes. When only the 
processing time is optimized, the cutting parameters 
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selected should be as large as possible. When only 
the surface roughness is optimized, a smaller feed 
rate should be selected. When only carbon emissions 
are optimized, the cutting parameters need to be 
considered comprehensively, as is the case when the 
three targets are simultaneously optimized.

2.	 The cutting depth among the other parameters has 
the most significant effect on both the carbon emis-
sions and processing time, and the spindle speed has 
the least significant effect by comparison, with the 
feed rate being between them.

3.	 The variation of the carbon emissions and processing 
time with the decision variables is analyzed. The rea-
son for the decrease in carbon emissions and time in 
a cliff-like descent is analyzed emphatically. This also 
explains the reason for the slight increase in carbon 
emissions between the two watersheds.

4.	 Future studies will be conducted on milling, grinding, 
drilling, and other extensions. Meanwhile, factors 
such as the cutting tools and machining operations 
will be added to the decision variables, and the deci-
sion variables will be optimized to find the trade-off 
that takes the environment impact, product quality, 
processing efficiency, and even cost into account.

Abbreviations
A: a constant denoting the coefficient related to the operation conditions; 
ap: the depth of the cut (mm); C: total carbon emissions in metal cutting 
processes (g); Cconsum: consumable carbon emissions (g); Cair: carbon emissions 
for preparing compressed air (g); Cchips: carbon emissions from chips (g); Ccool: 
carbon emissions from the use of coolant (g); Ccool-w: carbon emissions from 
waste coolant (g); CFc-pro: carbon emission factor of coolant fluid production 
(g-CO2/L); CFc-dis: carbon emission factor for waste coolant disposal (g-CO2/L); 
CFdisposal: carbon emission factor for chips disposal (g-CO2/kg); CFene: carbon 
emission factor of electricity (g/kwh); CFmaterial: carbon emission factor of 
material production (g-CO2/kg); CFtool: carbon emission factor of cutting tools 
(g-CO2/g); Cresource: carbon emission caused by resource depletion (g); Ctrans: 
transferable (transitional) carbon emissions (g); Ctool: carbon emissions caused 
by tools, which include tool usage stage and tool sharpening process (g); Ctool-

w: carbon emissions from scrap tool treatment (g); Cwaste: carbon emissions 
caused by waste generation (g); Eene: energy consumption of machine tools 
(kW·h); f: feed rate (mm/r); h: spindle speed, feed rate, and depth of cut; Mtool: 
weight of a tool (g); n: spindle speed (r/min); Ra: roughness height; t: the sum 
of tidle and tcut(s); tchan: tool changing processing time (s); tcut: the actual cutting 
processing time (s); tclam: Workpiece clamping processing time (s); tstand-by: the 
period when the machine tool stays without any operations (s); tidle: the period 
when the spindle rotates without cutting (s); tset: tool setting processing time 
(s); tpro: programming time (ignored during mass processing) (s); tunl: unload-
ing blank processing time (s); Ttool: life cycle of cutting tools (min); x, y, z, m: 
influence index; β: the coefficients of each term; ε: residual error.
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Appendix A. Response Surface Analysis
Minitab was used to analyze the response surface experi-
ment, and a variance analysis, model summary, and 
regression model of the surface roughness were obtained.

The regression equation in uncoded units space is as 
follows:

1.	 Considering the total effect in Table  7, in this case, 
the P value of the regression term is 0.000, which 
indicates that the original hypothesis should be 
rejected and that the model is generally valid. Mean-
while, the P value of a lack-of-fit is 0.203, which is 
significantly higher than the significant level of 0.05. 
Accepting the original hypothesis, it is considered 
that there is no unfit phenomenon in this model.

2.	 Considering the total effect of the fit, in this case, 
R-Sq is close to R-Sq(adj), and the fitting effect of 
the model is considered good. Here, R-Sq (pred) is 
closer to the R-Sq value, which is larger, indicating 
that the future prediction using this model is reliable 
(Table 8).

3.	 Considering the significance of each effect, it can be 
seen from the table that the corresponding probabil-
ity values of feed rate f  and its squared term are less 
than 0.05, indicating that these effects are significant. 
The probability values corresponding to the other 
items are far greater than 0.05, which is obviously 
greater than the significant level. It is considered that 
these items are not significant.

(21)

Ra = −10.99+ 0.0049Vc + 194f + 0.95ap

− 0.000015V 2
c − 321.5f 2 − 0.485a2p

− 0.0357Vcf − 0.00361Vcap + 3.24fap.
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Based on the above analysis, we know that, except for 
feed rate f  and its squared term, the other items are 
not significant and should be eliminated, and thus we 
need to re-fit the new model.

Regression equation in uncoded units,

1.	 The P value of the regression term is 0.000 (Table 9), 
which indicates that the original hypothesis should 
be rejected and that the model is generally valid. 
Meanwhile, the P value of a lack-of-fit is 0.219, which 
is significantly higher than the significant level of 
0.05. Accepting the original hypothesis, it is consid-
ered that there is no unfit phenomenon even though 
seven items are deleted from the model.

2.	 Although there are seven fewer items in the model, 
R-Sq is close to R-Sq(adj), and the fitting effect of the 
model is considered good. R-Sq (pred) is closer to the 
R-Sq value, which is larger, indicating that the future 
prediction using this model is reliable (Table 10).

(22)Ra = −11.556+ 203.16f − 343.4f 2.

3.	 It can be seen from the table that the corresponding 
probability values of feed rate f  and its squared term 
are less than 0.05, indicating that these two effects are 
significant. This shows that the effect of the regres-
sion is still good after deleting the insignificant inter-
action.

Appendix B. Processing Time Calculation
As the requirement of the experiment mentioned 
above, a bar with a diameter of 90  mm is required to 
be machined to a diameter of 84  mm, that is, the total 
cutting depth on one side is 3.0  mm. When the cutting 
depth is set at 0.5, 1.0, 1.5, and 2.0 mm, the cycle is six, 
three, two, and two processing times, respectively. For 
a 2.0  mm cutting depth, two cycles are needed, one for 
a cutting depth of 2.0  mm, and the other for a cutting 
depth of 1.0 mm instead of 2.0 mm. Then, the fourth set 
of experimental parameters in Table 3 were taken as an 
example calculation.

During the experiment, the tool path (fast forward, 
feed, and withdraw) and the distance were as shown in 
Figure  2, with Lx1 = 200 , Lz1 = 400 , Lz2 = 2 , Lz3 = 30 , 
and Lx2 = 6 . The standby processing time of each group 
is set at a fixed value of 30  s, and combined with the 
information of the machine tool coordinate system set-
tings, the idle running processing time will be as follows:

Table 7  Analysis of variance

Source DF Adj SS Adj MS F-Value P-Value

Model 9 493.989 54.8877 216.03 0.000

Linear 3 1.798 0.5992 2.36 0.133

Vc 1 0.002 0.0021 0.01 0.929

f 1 1.737 1.7370 6.84 0.026

ap 1 0.059 0.0585 0.23 0.642

Square 3 59.374 19.7914 77.90 0.000

Vc*Vc 1 0.001 0.0006 0.00 0.961

f*f 1 28.426 28.4262 111.88 0.000

ap*ap 1 0.337 0.3371 1.33 0.276

2-way interaction 3 0.781 0.2604 1.02 0.422

Vc*f 1 0.100 0.0999 0.39 0.545

Vc*ap 1 0.074 0.0741 0.29 0.601

f*ap 1 0.607 0.6072 2.39 0.153

Error 10 2.541 0.2541

Lack-of-fit 5 1.747 0.3494 2.20 0.203

Pure error 5 0.794 0.1587

Total 19 496.530

Table 8  Model summary

S R-sq (%) R-sq (adj) (%) R-sq (pred) (%)

0.504053 99.49 99.03 97.21

Table 9  Analysis of variance

Source DF Adj SS Adj MS F-Value P-Value

Model 2 491.814 245.907 886.47 0.000

Linear 1 432.846 432.846 1560.36 0.000

f 1 432.846 432.846 1560.36 0.000

Square 1 58.969 58.969 212.58 0.000

f*f 1 58.969 58.969 212.58 0.000

Error 17 4.716 0.277

Lack-of-fit 12 3.922 0.327 2.06 0.219

Pure error 5 0.794 0.159

Total 19 496.530

Table 10  Model summary

S R-sq (%) R-sq (adj) (%) R-sq (pred) (%)

0.526689 99.05 98.94 98.65
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Although the cutting depth is set to a certain value, the 
total depth to be cut is not necessarily an integral multi-
ple of the cutting depth. When the cutting depth is dif-
ferent from the set cutting depth in the last cutting, the 
cutting power of the machine tool will change. Therefore, 
this study calculated the processing time with the same 
cutting depth as the set cutting depth, and the process-
ing time with a different cutting depth as the set cutting 
depth, which were called tcut−1 and tcut−2 , respectively. 
When the total depth to be machined is an integer multi-
ple of the set cutting depth, tcut−2 = 0.

Appendix C. Carbon Emission Calculation
Carbon Emissions from Consumable Carbon Emissions
Combined with the power calculation formula of the 
machine tools, the carbon emissions from the consum-
able carbon emissions is as follows:

Carbon Emissions from Cutting Tools
The carbon emissions from the cutting tools includes 
carbon emissions from the tool production and 
from tool re-sharpening after a tool failure. The tool 

(23)

tidle =
400

1900/60
+ ceil

(

3

ap

)

×

(

8

n/60 · f
+

38

1900/60

)

+
430

1900/60

=
498

19
+ ceil

(

3

ap

)

×

(

480

n · f
+

228

190

)

.

(24)

tcut = tcut−1 + tcut−2,

tcut−1 = floor

(

R− r

ap

)

×
30

n/60 · f
,

tcut−2 = ceil
(

rem
(

R− r, ap
)

/�
)

×
30

n/60 · f
.

(25)

Eene =

[

321.4 × 30+
(

750.9+ 115.4 × n/60+ 11.32× (n/60)2
)

× tidle
]

3.6× 106

+

[(

750.9+ 115.4 × n/60+ 11.32× (n/60)2 + 2.256× πd · n/60 · f · ap
)

× tcut−1

]

3.6× 106

+

[(

750.9+ 115.4 × n/60+ 11.32× (n/60)2 + 2.256× πd · n/60 · f · rem
(

R− r, ap
))

× tcut−2

]

3.6× 106
,

(26)Cconsum = 724.2× Eene.

re-sharpening process is not included in this case owing 
to limited conditions. The tool quality is 474  g, and 
therefore, the carbon emissions caused by tool wear can 
be obtained.

The calculating method of the tool life is shown in the 
following formula. According to the cutting parameters, 
the calculating method of the tool life is obtained [25]:

Carbon Emissions from Coolant Fluid
Thus, carbon emissions caused by coolant can be calcu-
lated based on Section 4.1.

Thus, the formula for calculating the carbon emissions is 
as follows:

(27)Ctool =
tcut

Ttool
× 29.6× 474.

(28)Ttool =
60

f

(

6× 105

3.1415926× n/60

)2.13

.

(29)

Ccool =
(tcut + tidle)

5× 22× 8× 60× 60
(2850× 20+ 4000× 8)

=
(tcut + tidle)

3168
× 89.

(30)

C = 724.2× Eene +
tcut

Ttool
× 14030.4 +

(tcut + tidle)

3168
× 89.

Appendix D. Pareto Front Solution Set
Table  11 shows the corresponding Pareto frontier of the 
multi-objective optimization in this study. In addition, the 
cutting parameters corresponding to the lowest target are 
marked.
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Table 11  Pareto front solution set

No. Cutting 
depth 
(mm)

Spindle 
speed  
(r/min)

Feed rate (mm) Carbon 
emissions 
(g-CO2)

Processing 
time (s)

Surface 
roughness 
(μm)

Relative closeness Note

1 1.50 300 0.30 55.57 79.28 18.49 0.5007 Minimum carbon emission

2 1.50 300 0.10 91.26 180.61 5.33 0.4943 Minimum surface roughness

3 1.50 300 0.10 91.26 180.61 5.33 0.4943 Minimum surface roughness

4 1.50 600 0.30 83.07 53.94 18.49 0.5029 Minimum processing time

5 1.93 600 0.10 116.97 104.61 5.33 0.6056 Minimum surface roughness

6 1.51 546 0.30 77.39 56.48 18.49 0.5073

7 1.99 600 0.19 94.31 68.83 14.57 0.5378

8 1.66 335 0.22 64.48 89.43 16.70 0.5000

9 1.52 300 0.13 78.50 144.21 9.22 0.5175

10 1.53 300 0.26 58.61 87.56 17.99 0.4885

11 1.53 333 0.25 61.72 84.31 17.64 0.4965

12 1.89 560 0.13 101.99 92.52 8.76 0.6187

13 1.53 336 0.24 62.74 85.92 17.31 0.4979

14 1.55 300 0.15 74.01 131.14 11.02 0.5172

15 1.52 326 0.15 75.68 124.45 10.80 0.5407

16 1.98 559 0.20 87.94 68.55 15.61 0.5259

17 1.61 300 0.28 57.08 82.42 18.43 0.4934

18 1.54 300 0.11 86.51 166.75 6.64 0.5042

19 1.52 300 0.12 83.44 158.22 7.55 0.5102

20 1.57 310 0.18 68.07 109.66 13.99 0.5093

21 1.50 300 0.10 90.22 177.63 5.59 0.4966

22 1.55 300 0.18 67.41 112.31 14.01 0.5026

23 1.55 301 0.14 76.72 138.38 9.94 0.5193

24 1.53 300 0.11 87.92 170.81 6.24 0.5012

25 1.89 590 0.11 110.87 98.26 6.77 0.6162

26 1.59 314 0.17 69.44 111.70 13.46 0.5154

27 1.94 599 0.10 114.82 101.59 5.91 0.6102

28 1.88 560 0.12 104.94 97.59 7.65 0.6206 Minimum overall

29 1.51 309 0.10 91.55 176.00 5.33 0.5021 Minimum surface roughness

30 1.91 567 0.12 104.45 94.49 8.13 0.6199

31 1.52 300 0.11 84.60 161.31 7.19 0.5084

32 1.98 594 0.12 107.61 91.45 8.14 0.6165

33 1.55 301 0.13 77.70 141.14 9.57 0.5189

34 1.95 600 0.21 91.19 64.18 16.18 0.5153

35 1.77 600 0.17 96.91 74.07 12.81 0.5677

36 1.98 596 0.21 90.75 64.28 16.22 0.5150

37 1.72 300 0.17 69.77 117.41 13.16 0.5063

38 1.51 300 0.11 85.11 163.05 7.02 0.5071

39 1.71 327 0.17 72.28 112.90 12.66 0.5288

40 1.95 600 0.15 100.03 78.02 11.57 0.5851

41 1.50 544 0.29 77.71 57.56 18.48 0.5051

42 1.96 558 0.21 87.39 67.91 15.83 0.5231

43 1.92 600 0.10 116.92 104.61 5.33 0.6057 Minimum surface roughness

44 2.00 599 0.18 95.29 70.59 13.99 0.5469

45 1.55 301 0.12 82.24 153.67 7.99 0.5140

46 1.89 589 0.11 111.72 99.91 6.46 0.6149

47 1.54 304 0.13 80.70 148.25 8.52 0.5190

48 1.71 300 0.15 73.85 129.08 11.32 0.5150
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Table 11  (continued)

No. Cutting 
depth 
(mm)

Spindle 
speed  
(r/min)

Feed rate (mm) Carbon 
emissions 
(g-CO2)

Processing 
time (s)

Surface 
roughness 
(μm)

Relative closeness Note
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