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Abstract 

The scattered fields of plane waves in a solid from a cylinder or sphere are critical in determining its acoustic char-
acteristics as well as in engineering applications. This paper investigates the scattered field distributions of different 
incident waves created by elastic cylinders embedded in an elastic isotropic medium. Scattered waves, including 
longitudinal and transverse waves both inside and outside the cylinder, are described with specific modalities under 
an incident plane wave. A model with a scatterer embedded in a structural steel matrix and filled with aluminum is 
developed for comparison with the theoretical solution. The frequency of the plane wave ranged from 235 kHz to 
2348 kHz, which corresponds to scaling factors from 0.5 to 5. Scattered field distributions in matrix materials blocked 
by an elastic cylindrical solid have been obtained by simulation or calculated using existing parameters. The simula-
tion results are in good agreement with the theoretical solution, which supports the correctness of the simulation 
analysis. Furthermore, ultrasonic phased arrays are used to study scattered fields by changing the characteristics of 
the incident wave. On this foundation, a partial preliminary study of the scattered field distribution of double cylin-
ders in a solid has been carried out, and the scattered field distribution at a given distance has been found to exhibit 
particular behaviors at different moments. Further studies on directivities and scattered fields are expected to improve 
the quantification of scattered images in isotropic solid materials by the phased array technique.
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1 Introduction
The theoretical problem of ultrasonic scattering from 
a cylindrical or spherical obstacle has been studied by 
many researchers in the past several decades. In the 
early 1950s, an eigenvalue mode expansion method was 
proposed, and the scattered field of an elastic cylinder 
immersed in a fluid was first analyzed theoretically and 
experimentally [1]. The characteristics of the peripheral 
waves from plane wave scattering by a circular cylindrical 
shell were analyzed and compared with calculated results 
[2]. The scattering problems of a plane wave were also 
discussed under various conditions [3–6]. Theoretical 
predictions have also been widely verified by laboratory 

measurements and studies [7, 8]. A system with a fre-
quency (f ) range of 0 < f < 100  MHz (equivalent to 
0 < ka < 7.2 ) reached good agreement for 2.5 < ka < 6.5 
on some parts of a fiber [9].

The corresponding problem for a solid elastic scatterer 
embedded in an elastic matrix has also attracted research 
attention. A general physical model was proposed for 
acoustic scattering from heterogeneous cylinders in sol-
ids, which described the scattering characteristics of 
both plane compressive and shear waves incident upon a 
solid cylindrical discontinuity in an isotropic solid [10]. 
This work used three displacement potential functions to 
describe the scattered wave equations for an elastic solid 
cylinder and derived the scattering equations for a fluid-
filled cylindrical bore, which are similar to the displace-
ment potential functions of a bulk wave in classical Biot 
theory [11–14]. The stress distribution at the interface 
of the elastic scattering cylinder was calculated in detail 
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based on the theory of solid mechanics [15]. Assuming 
mode conversion in a solid, both scattered longitudinal 
waves and scattered shear waves were generated simul-
taneously [16]. Acoustic wave attenuation in the medium 
was taken into consideration and applied to the scattered 
field for a cylindrical cavity in an elastic medium [17, 18]. 
Attenuation was found to be universal, depending on 
the components and interface of the medium [19, 20], 
and the scattering displacement field was recalculated 
based on the time-domain impulse responses under this 
condition.

The methods for dealing with scattered fields for 
spheres and cylinders are interlinked in some respects. 
The problem of scattering from solid spheres in an elas-
tic isotropic solid was first examined theoretically in 1956 
[21]. A resonant scattering theory analysis was later pre-
sented for a Lucite sphere with an iron spherical inclu-
sion [22]. The resonances of an elastic sphere embedded 
in an elastic isotropic medium and the dispersion curves 
for the phase velocities of circumferential waves were also 
obtained [23]. In fact, each scattering problem involving 
spherical solid inclusions in solid matrices appeared to 
be derived from almost the same theoretical foundation 
[24–28], and today’s more extensive scattering fields have 
made some progress, such as large deformation shape 
[29], corners and circular cones [30], time-harmonic field 
[31, 32], and poroelastic extension and single negative 
metamaterials [33, 34].

Ultrasonic phased array inspection technology can 
detect complex geometric components using ultrasonic 
beams. The deflection beam and focus beam of a phased 
array are normally generated with a time delay, which 
ensures a larger detection region for the sample [35]. 
The phased array technique can measure the scattering 
matrix of the defects and extract their signal characteris-
tics, but the specific inconsistency of each array element 
has been found to have a great influence on defect detec-
tion and imaging [36, 37]. The angular distribution of a 
scattered field in a solid or saturated fluid has been dis-
cussed by many researchers [10, 38]. However, the main 
challenge is to improve the quantification of the scat-
tered image obtained experimentally by the phased array 
technique, which is already used in industry. Ultrasonic 
phased array systems have always been used to measure 
and image a sample rather than obtain quantitative scat-
tered pressure or directivity distributions. The focus of 
this paper is the scattered fields of one and two cylindri-
cal inclusions obtained using the phased array technique, 
which will help provide some theoretical support for 
improving phased arrays for quantitative nondestructive 
testing.

The remainder of this paper is organized as follows. 
Section  2 presents the scattering theory of plane wave 

incidence in an elastic and isotropic medium. The dis-
placement potentials in the matrix and the scatterer are 
respectively established, after which the scattering coef-
ficients are obtained from equations according to bound-
ary conditions. A theoretical and numerical simulation 
with different frequencies are then obtained in Section 3. 
Then, application of the phased array technique to the 
scattered pressure distribution, as well as to the directiv-
ity of single and double cylinders, is described. The paper 
ends with conclusions and a description of future work in 
Section 4.

2  Theory and Model
2.1  Scattering Theory of Plane Wave Incidence
The theory of acoustic fields and wave propagation in 
elastic solids is relatively mature [15]. Many plane lon-
gitudinal waves propagating in an elastic medium with 
density ρ1 and velocity c1L are vertically incident on an 
infinitely long elastic cylinder with density ρ2 and veloc-
ity c2L , as illustrated in Figure 1. Note that the solid elas-
tic matrix is labeled as material 1 and the solid cylinder 
as material 2. Due to mode conversion at the interface 
between the two solids, scattered compressive and shear 
waves are produced in material 1. r is the radial distance 
from the center of the inclusion, and θ is the angle meas-
ured counterclockwise from the positive x-axis, as shown 
in Figure 1. A plane wave in the incident field can be writ-
ten in the form of a displacement potential:

where Φ0 is the incident amplitude, k = ω/c is the wave-
number, ω is the angular frequency, c is the velocity in the 
material, and t is the time of wave propagation. For con-
venience in calculation, the incident amplitude Φ0 is set 
to one, and the time factor is omitted.

It is very difficult to solve Eq. (1) directly. Inspired by 
the boundary conditions at the cylinder surface, the 
plane wave, which is decomposed into an infinite sum 

(1)Φi = Φ0e
i(kr cos θ−ωt)

,

Figure 1 Scattering of plane wave for a cylinder
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of cylindrical Bessel functions, provides a solution. The 
incident potential can be written as

where Φι has been normalized to unity, k1L is the wave-
number, which is equal to ω/c1L in material 1, Jn is the 
cylindrical Bessel function of the first kind of order n , and 
εn is the Neumann coefficient.

In addition to the mode conversion occurring in 
material 1, longitudinal and transverse waves are also 
excited in material 2. Similarly, they can be represented 
by displacement potentials [18]:

where Φ1L represents the compressive wave potential, 
Φ1S the shear wave potential in material 1, and definitions 
are analogous for material 2. H (1)

n  is a cylindrical Hankel 
function of the first kind, An and Bn are undetermined 
coefficients in material 1, and Cn and Dn are undeter-
mined coefficients in material 2. k1L and k1S are compres-
sive and shear wavenumbers in material 1, respectively, 
and k2L and k2S are the same in material 2.

At the surface separating two elastic media, the con-
ditions are easily derivable. At such a surface, it is nec-
essary to require that the two media remain in perfect 
contact, which leads to the conditions that the displace-
ments must be continuous across the boundary and 
that an arbitrary volume enclosing portions of both 
media be at equilibrium, which leads to continuity of 
normal traction across the cylindrical surface. The 
boundary conditions for stress and displacement have 
specific expression forms.

Note that the field outside the cylinder is the sum 
of the incident and scattered fields, whereas the field 
inside the cylinder is only the transmitted field. Com-
bined with the theory of elastic media, a matrix equa-
tion involving the coefficients An , Bn , Cn , Dn can be 
obtained [16]:

(2)Φi =

∞
∑

n=0

inεnJn(k1Lr) cos(nϕ),

(3)Φ1L =

∞
∑

n=0

inεnAnH
(1)
n (k1Lr) cos(nϕ),

(4)Φ1S =

∞
∑

n=0

inεnBnH
(1)
n (k1Sr) sin(nϕ),

(5)Φ2L =

∞
∑

n=0

inεnCnJn(k2Lr) cos(nϕ),

(6)Φ2S =

∞
∑

n=0

inεnDnJn(k2Sr) sin(nϕ),

where i, j=1, 2, 3 and 4. The expressions for each element 
a
(n)
i,j  and Fin can be calculated using the material param-

eters described above. Hence, the undetermined coef-
ficients for waves inside and outside the cylinder can be 
calculated by the matrix equation, and then the scattered 
wave potentials can be obtained.

2.2  Simulation Model
The goal of the simulation model is to verify the results 
of theoretical calculations using ultrasonic scattered 
field data. The simulation geometry, a two-dimensional 
model, consists of a rectangular matrix and a cylindri-
cal scatterer filled with different materials. The medium 
is 140 mm wide and 50 mm deep. The coordinate origin 
is located in the center of the rectangle on the edge. The 
center of the scatterer lies at 0 to 25 mm, which ensures 
that the scatterer generates a symmetric spatial distribu-
tion. The length of the cylinder is infinite, and the bottom 
radius of the cylinder is 2 mm.

To perform the calculations, a simulation model has 
been developed by the authors using the finite element 
method [39, 40]. The program uses the theory of elastic 
wave propagation in a solid. The input signal is located 
at the top of the rectangular matrix, just above the cylin-
drical scatterer. A plane wave and Gaussian phased array 
signal are used as input signals to excite the solid to gen-
erate various constituent waves.

3  Numerical Simulations
3.1  Theoretical Verification of Scattered Longitudinal 

Waves
In this study, which involves modeling the propagation of 
a longitudinal wave in an isotropic medium, the focus is 
on observation of scattered longitudinal and transverse 
waves and the angular distribution of scattered waves 
in relation to the frequency of incident waves in the 
medium. This characteristic in relation to the ka product 
makes it possible to observe frequency behaviors accord-
ing to the scatterer in the medium. The tentative matrix 
is assumed to be non-dispersive and non-attenuating, a 
behavior that is linked to the appearance of scattering.

To verify this theory, structural steel and aluminum are 
used as the matrix and scatterer materials, respectively. 
Table 1 lists their parameters in detail.

Figure 2 shows a set of numerical simulations describ-
ing the angular scattered pressure distribution of an 
incident plane wave. The rectangular matrix medium 
is excited on the top using a plane wave as the vertical 
velocity input. Acoustic pressure data are collected by 
probes on the cylindrical surface. The results give the 

(7)
∣

∣

∣
a
(n)
i,j

∣

∣

∣

|An,Bn,Cn,Dn|
T = |Fin|,
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angular scattered pressure distribution as a function of 
ka at four frequency levels: 225, 850, 1409, and 2248 kHz, 
corresponding to the four cases shown in Figure  2. The 

angular distribution of the scattered field in Figure  2a 
is almost invariant, which indicates that when the fre-
quency is relatively low, the presence of the scatterer has 
little influence on the scattered pressure amplitude. As 
the frequency increases, the scatterer presents an obvi-
ous obstruction to the incident wave, and backscattering 
is fairly intense, as shown in Figure  3b. When the fre-
quency is high enough, the scattered waves will gradually 
disperse, and a series of sidelobes will appear, as shown in 
Figure 2c and d. The higher the frequency of the incident 
plane wave, the larger the scattered pressure amplitude 
will be, and the greater the number of sidelobes gener-
ated will be. Graphically, although the simulation results 
are always less than the theoretical solutions, they are 

Table 1 Material properties of the simulation model

Material Longitudinal 
wave 
velocity
νL (m/s)

Transverse 
wave 
velocity
νS (m/s)

Density
(kg/m3)

Lamé
�

Lamé
µ

Alu-
minum

6568 3149 2700 5.1× 10
10

2.6× 10
10

Steel 5900 3200 7850 1.5× 10
10

7.5× 10
10
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Figure 2 Angular distribution of scattered pressure of plane wave from simulation results and theoretical solutions versus ka ( f = 235 kHz, 850 kHz, 
1109 kHz, and 2348 kHz ) incident pressure amplitude is one, plane wave width is 2.8 mm, and cylinder radius is 2 mm): a ka = 0.5 , b ka = 1.8 , c 
ka = 3.0 , and d ka = 5.0 . The arrows represent the plane wave direction
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still in good agreement with these solutions, a result that 
supports the validity of this research. A noteworthy phe-
nomenon is the greater disparity at higher frequencies, 
especially at sidelobe peaks.

3.2  Simulation of Phased Arrays
Ultrasonic phased arrays are playing an increasingly 
important role in acoustic detection. Detection accuracy 
and image visibility are sought after by researchers. Con-
sidering the complexity of the scattered field when the 
acoustic wave encounters obstacles in solids, it is neces-
sary to apply the phased array principle to observe the 

sound fields of cylindrical scatterers in solids. Formulat-
ing an array plane wave as an incident wave is the first 
step in the simulations described below. Then, a Gauss-
ian signal takes the place of the plane wave to simulate 
the phased array function and enable observation of 
the sound field. Each array element here is set linearly 
and equidistantly in the 2D model. In practical applica-
tions, the launch of a phased array system normally uses 
a pulse signal, and therefore a Gaussian signal is chosen 
because of the convenience of reducing interference and 
post-processing the imaging. A Gaussian wave is actually 
a Gaussian pulse signal. In this paper, a Gaussian wave 
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Figure 3 Angular distribution of scattered pressure of array plane wave versus ka ( f = 235 kHz, 850 kHz, 1109 kHz, and 2348 kHz ) incident pressure 
amplitude is one, array number is 16, array element width is 2.8 mm, and array element interspace is 0.7 mm): a ka = 0.5 , b ka = 1.8 , c ka = 3.0 , and 
d ka = 5.0
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consists of a sine signal and a pulse, which are subject to 
Gaussian distributions. Using the Gaussian pulse signal 
instead of a plane wave avoids confusion between scat-
tered signals and input signals.

Figure  3 describes the angular scattered pressure dis-
tribution of the incident array plane wave with the same 
frequency as in Figure 2. The array plane wave is used as 
the incident wave, mainly to simulate the phased array, 
but there is no time delay among the transmitted array 
waves. The results shown in Figure 2 are verified in Fig-
ure  3 because the two shapes are very similar. Remark-
ably, the two sets of scattered pressure values are very 
close, except that they obviously differ at ka = 0.1 . A rea-
sonable explanation for this phenomenon is that when 
the frequency is fairly low, the backscattering wave takes 
up a very small proportion of the space, and most of the 
waves propagate through the cylinder and are superim-
posed, leading to a greater scattered pressure amplitude 
in Figure 3a.

The transmitting array in a phased array has deflec-
tion and focusing functions, which ensure correct object 
imaging and positioning. Deflection can be achieved by 
changing the incident array wave. The matrix medium is 
excited on the top at 16 array locations using the same 
plane wave as the inclined pressure input, but with no 
time delay due to limited simulation conditions. The 
angular scattered pressure distributions of array plane 
waves with different deflection angles are shown in Fig-
ure 4a–d at different frequencies during numerical wave 
propagation in the proposed 2D model. When the fre-
quency is fairly low, the scattered field appears the same 
as before, and the influence of the incident wave angle 
is almost negligible (as shown in Figure 4a). The behav-
ior of the scattered fields becomes distinctly asymmet-
ric on both sides of the incident angle as the frequency 
rises. The scattered pressure amplitudes and the number 
of sidelobes in Figure 4d show no clear relationship, and 
this situation becomes worse as the frequency or inci-
dent angle increases. In fact, this phenomenon may be 
explained by the fact that acoustic propagation attenua-
tion in media for different incident angles is ignored. For 
similar reasons, the phased array detection results are 
more reliable when the sample deviation is not far from 
the detection center.

To perform deflection and focusing simultaneously 
for a phased array, a Gaussian wave can be used as the 
transmitted signal instead of a plane wave. Previous stud-
ies indicate that when the incident wave frequency is 850 
kHz, the scattered pressure amplitude from the forward 
and backward directions is exactly the same (Figure 2b). 
The frequency of the Gaussian signal is 850 kHz, and the 
number of arrays is 16. The focal point of the array beam 
is located at the center of the cylinder. The delay time of 

each transmitted signal can be calculated by the positions 
of the transmitted signals and the cylindrical scatterer 
and the signal velocity in the matrix material. Figure  5 
shows the angular scattered pressure distribution of a 
Gaussian wave array at various instants when the Gauss-
ian waves are deflected and focused on the surface of the 
cylinder.

Figure 5 shows the behavior of sound pressure ampli-
tude when blocked by the medium. This figure provides 
a clearer description of the scattered field distribution 
on the cylinder surface from both forward and back-
ward directions due to the time delay for Gaussian waves 
to propagate in the medium. The pressure distributions 
are clearly biased at different moments, so the directiv-
ity is therefore used to verify the correctness of using the 
Gaussian wave as a phased array signal. Figure  6 shows 
a series of collection points that are set up around the 
cylinder to measure sound wave directivity for a single 
cylinder under phased array launching. Compared with 
plane wave incidence, the phased array technique makes 
the directivity smoother, which may result from beam 
focusing and may be useful for contour recognition of 
defects.

Another noteworthy phenomenon is the mode con-
version of incident longitudinal waves in solids. Figure 7 
illustrates a group of numerical simulations that describe 
acoustic wave scattering at different moments as the inci-
dent longitudinal wave propagates into the medium with 
structural steel as a matrix material and aluminum as a 
scatterer material. The longitudinal wave field arrives at 
the damaged top with no interaction occurring between 
the two solids (as shown in Figure 7a). When the sound 
wave continues to travel forward and is blocked by the 
cylinder, interaction between the two solids occurs (as 
shown in Figure  7b) on the interface, resulting in com-
plex changes in the surrounding sound field. Because of 
the cylinder, the incident longitudinal wave is partially 
scattered in the form of longitudinal waves (as shown in 
Figure  7c). Waveform conversion appears weak at this 
moment, and the wave field therefore carries the highest 
energy, as can be seen from the color scales representing 
pressure amplitude. In Figure 2d, there are obviously two 
kinds of waves, with the one further from the cylinder 
being a scattered longitudinal wave and the closer one 
being a scattered transverse wave that is converted by 
the longitudinal wave. This can be calculated and verified 
based on the speeds of the two kinds of waves and the 
time delay.

The scattering theory of a double cylinder is much 
more complex than that of a single cylinder. The con-
sistency between the theoretical solution and the simu-
lated scattered field for a single cylinder, as shown above, 
provides a feasible way to simulate the scattered field of 
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a double cylinder. The frequency of the Gaussian signal 
is 850 kHz, but the focal point of the array beam is not 
located at the center of the cylinder, but rather at the geo-
metric center of the two cylinders. Figure  8 shows the 
results for the angular scattered pressure distribution of 
a Gaussian wave array for a double cylinder according to 
the distance between the two cylinders for four instants: 
4.8 μs, 5.9 μs, 6.4 μs, and 7.0 μs.

Four sets of simulations were carried out in this 
research, with the distances between the centers of the 
two cylinders being 2, 3, 4, and 6 mm, corresponding to 
one to three times the radius of each cylinder. A distance 
of 2  mm means that the two cylinders are tangent and 

that the point of tangency is the focal point of the sound 
waves. When the incident waves propagate through the 
focal point, a portion of the scattered waves is gener-
ated near the upper half-surface of the cylinders. As the 
distance between the cylinders increases, backscatter-
ing becomes weaker, and the sidelobe amplitude tends 
to decrease (Figure  8a). As the backscattering of the 
scattered waves becomes weaker and the sidelobes fade, 
forward scattering becomes stronger (Figure  8b and c). 
Scattered waves with low amplitudes then form around 
the cylinders (Figure 8d). Note that the angular scattered 
pressure distributions become increasingly complex 
with increasing distance and that this interaction can be 
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neglected when the distance is over three times the cylin-
der radius.

Figure  9a shows the relative distances between two 
cylinders and the phase array, and a conclusion can be 
drawn from Figure 9b that the directivity becomes more 
concentrated, and the intensity of backscattering is 

stronger than that of forward scattering. Unlike the situa-
tion shown in Figure 7 and Figure 2b, directivity becomes 
sharper, and backscattering becomes stronger than for-
ward scattering in the case of a double cylinder. As the 
distance between cylinders increases, scattering becomes 
stronger, but the magnitude of the increase is finite, espe-
cially for backscattering.

4  Conclusions
The investigations reported in this paper led to the fol-
lowing conclusions:

The theoretical solutions based on scattering theory by 
a plane wave were elucidated, especially in Figure 2, and 
they are in good agreement with the simulation results 
obtained here. Similar results were also obtained using 
Gaussian wave incidence. All these observations illustrate 
that the proposed mechanism is correct and meaningful.

The angular scattered pressure distributions for sin-
gle and double cylinders were studied using the phased 
array method. For a single cylinder, the scattered field 
directivity is relatively uniform in the circumferential 
direction. For a double cylinder, the scattered field dis-
tribution has particular shapes at different moments 
or distances, and the directivity becomes intense along 
the incident direction. Outside a certain distance, the 
waveform is very complex, and the interaction between 
cylinders becomes weaker.
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Figure 6 Directivity of sound wave for a single cylinder with phased 
array technique ( f = 850 kHz , and ka = 1.8)

Figure 7 Snapshots of the scattered wave filed at different moments using Gaussian waves, and mode conversion occurs when acoustic waves are 
scattered by a cylinder: a t = 4.4 µs , b t = 4.9 µs , c t = 5.3 µs , and d t = 6.0 µs
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Figure 8 Pressure distributions of the ultrasonic wave propagating at various instants, which show the scattered filed amplitude behavior when 
the distances between two cylinders are 2, 3, 4, and 6 mm: a t = 4.8 μs, b t = 5.9 μs, c t = 6.4 μs, and d t = 7.0 μs, respectively

0

30

60

90

120

150

180

210

240

270

300

330

0

1

2

3

4

5

 d=2mm
 d=3mm
 d=4mm
 d=6mm

a b
Figure 9 Location and directivity of sound wave with phased array technique versus different distances for cylinders ( f = 850 kHz , and ka = 1.8)
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Future work will be oriented towards investigating 
the scattered field of double cylinders under various 
conditions, continuing the work reported in this paper. 
In fact, many factors affect the accuracy and imaging 
quality of phased array synthetic acoustic field experi-
ments, such as inhomogeneous sample material or 
complex defect shape. These factors will bring more 
challenges to the research. Experimentally combining 
a phased array imaging system with data processing of 
the scattered field distribution will promote quantita-
tive analysis of defects and uniform imaging quality.
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