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Abstract 

Achieving accurate speed prediction provides the most critical support parameter for high-level energy manage-
ment of plug-in hybrid electric vehicles. Nowadays, people often drive a vehicle on fixed routes in their daily travels 
and accurate speed predictions of these routes are possible with random prediction and machine learning, but 
the prediction accuracy still needs to be improved. The prediction accuracy of traditional prediction algorithms is 
difficult to further improve after reaching a certain accuracy; problems, such as over fitting, occur in the process 
of improving prediction accuracy. The combined prediction model proposed in this paper can abandon the tran-
sitional dependence on a single prediction. By combining the two prediction algorithms, the fusion of prediction 
performance is achieved, the limit of the single prediction performance is crossed, and the goal of improving vehicle 
speed prediction performance is achieved. In this paper, an extraction method suitable for fixed route vehicle speed 
is designed. The application of Markov and back propagation (BP) neural network in predictions is introduced. Three 
new combined prediction methods, all named Markov and BP Neural Network (MBNN) combined prediction algo-
rithm, are proposed, which make full use of the advantages of Markov and BP neural network algorithms. Finally, the 
comparison among the prediction methods has been carried out. The results show that the three MBNN models have 
improved by about 19%, 28%, and 29% compared with the Markov prediction model, which has better performance 
in the single prediction models. Overall, the MBNN combined prediction models can improve the prediction accu-
racy by 25.3% on average, which provides important support for the possible optimization of plug-in hybrid electric 
vehicle energy consumption.

Keywords:  Plug-in hybrid electric vehicles, Energy consumption, Vehicle speed prediction, Markov, BP neural 
networks, Combined prediction model
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1  Introduction
Plug-in hybrid electric vehicles (PHEVs) are gradually 
becoming the main mode of transportation to replace 
fuel vehicles. Energy-saving and emission reduction has 
received increased attention [1, 2]. Energy management is 
a key technology, necessary to improve PHEVs fuel econ-
omy [3, 4]. The rule-based energy management strategy is 
mature [5, 6]; however, it has a lot of restrictions, such as 
the changes in vehicle parameters, driving conditions and 
driver habits [7, 8], and difficulty achieving significant 

optimization results. The optimized energy management 
strategy can achieve better control effects for improving 
vehicle fuel economy [9], but the real-time performance 
of the strategy is poor. For example, the global optimi-
zation control can optimize the most reasonable energy 
management strategy under the condition of grasping the 
overall driving conditions [10]. However, the actual driv-
ing conditions cannot be obtained during vehicle travel; 
therefore, the application of the optimized energy man-
agement strategy is limited. The development of intelli-
gent transportation systems has provided opportunities 
for improving the performance of energy management 
strategies for PHEV [11]. Considering the characteris-
tics of the abovementioned energy management strate-
gies, a predictive control [12, 13], with both optimization 
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and real-time, is presented and widely followed, which 
is based on the predictive energy management strategy 
[14, 15]. Furthermore, the vehicle speed prediction model 
becomes a necessary module.

The vehicle speed prediction model can be divided into 
real-time learning and offline learning. Each model is 
most suitable for different types of problems. Real-time 
learning [16] is a data prediction model for online learn-
ing. Offline learning [17] is a data prediction model based 
on historical data. Real-time learning is more varied and 
offline learning is simple to use, but the real-time learn-
ing build environment is more complex when developing 
energy management strategies. Nowadays, people’s lives 
are gradually regularized. Vehicles, as a means of trans-
portation for people’s daily travel, are on a fixed route. 
With the passage of time, the vehicle speed data on the 
fixed route begins to reflect the characteristics of the 
fixed driving cycle. The offline learning model perfectly 
reflects these inherent characteristics after incorporating 
this feature. Therefore, it is not necessary to repeat real-
time learning of vehicle speed data on the fixed route. In 
this case, offline learning is more appropriate than real-
time learning.

For the study of offline learning models, two commonly 
used models are utilized, namely, random prediction 
represented by Markov [18] and machine learning rep-
resented by a neural network [19]. Ref. [20] proposed a 
vehicle speed prediction method based on driving data, 
using deep learning of a neural network to predict future 
short-term vehicle speed. However, deep learning relies 
heavily on driving data, and the prediction accuracy will 
drop sharply because of driving data that occurs outside 
of learning. Ref. [21] proposed three methods for vehi-
cle speed prediction based on neural networks, BP, layer 
recurrent (LR), and radial basis function (RBF). However, 
the prediction power of neural networks is limited by fit-
ting, and the prediction error is a little large, such that 
the RMSE is about 2.28 km/h. Ref. [22] designed a high-
order Markov velocity predictor combined with a linear 
programming algorithm, and the speed prediction accu-
racy was significantly improved compared with the first-
order Markov. Although the predicting vehicle speed 
within the training speed can ensure high accuracy, the 
predicted vehicle speed outside the training speed can-
not be followed well. In this case, the prediction accuracy 
is 4.47 km/h, which is relatively large. Ref. [23] designed 
an algorithm based on the velocity constrained Markov 
stochastic model to predict vehicle speed. The generated 
velocity trajectory was used to predict the speed of each 
cycle on the fixed route ahead, but the predicted veloc-
ity error is large, such that the RMSE is about 3.8 km/h. 
Ultimately, prediction accuracy has become a key issue in 

predictive models. In a word, achieving accurate vehicle 
speed prediction is a challenge.

From the above research, it can be found that many 
vehicle speed prediction models have their advantages, 
but also reflect their shortcomings. For example, con-
tradiction between the high accuracy and generalization 
exists in the vehicle speed prediction model of the neural 
network structure; Markov is good at grasping the global 
speed change state, but the prediction accuracy is poor. 
Therefore, the research can proceed toward the direction 
of exploring the advantages of each prediction model to 
form a new combined prediction algorithm. However, 
in recent years of research on vehicle speed prediction, 
the combined prediction model has been rarely studied. 
Ref. [24] uses a neural network model based on histori-
cal speed to predict the average traffic speed of a road 
segment. Then, the Hidden Markov models (HMMs) are 
used to represent the statistical relationship between the 
average vehicle speed and the vehicle speed. However, 
the prediction curve derived from the combination is not 
very good.

This paper intends to make full use of the characteris-
tics of Markov and BP neural network prediction mod-
els to form a combined prediction model. The predicted 
vehicle speed obtained from Markov with the charac-
teristics of the following state of speed change, and then 
local high-accuracy fitting through the BP neural net-
work, will be utilized to obtain better prediction results 
of the vehicle speed than the two prediction methods. 
The arrangement of this article is as follows: The sec-
ond part introduces the source of road driving cycle data 
used by the prediction model. The third part describes 
the vehicle speed combined prediction model and the 
Markov speed prediction model, as well as the BP neural 
network model used in the model. The fourth part shows 
the effect of the vehicle speed prediction model and ana-
lyzes the characteristics of the prediction model. Finally, 
the fifth part draws conclusions.

2 � Driving Cycle Data Acquisition
The data acquisition experiment of road driving cycle 
needs to be carried out in the actual traffic environment. 
Nowadays, people’s lives are relatively regular, and it is 
more common to travel on a fixed route in daily life. The 
paper decides to select the driving condition information 
extracted by a fixed route as the data foundation of the 
research [25], which can reduce the amount of data used 
by the model and improve work efficiency. Vehicle speed 
data with multiple features is not the focus of this paper. 
According to the research needs, a modified vehicle 
equipped with a global positioning system (GPS) is used 
to obtain road driving cycle.
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The route selected in the paper is the travel route 
commonly used by the population in the region. In 
order to facilitate the extraction of experimental data, 
the one-way travel plan is replaced by a round-trip 
cycle plan, which can also reflect the vehicle speed 
characteristics of the route. The characteristics of the 
route selected by the experiment are that there are 
many pedestrians and deceleration zones on the road, 
the traffic volume is small, and the driving speed of 
the vehicle is not allowed to exceed 60 km/h. Because 
the modified test car is not allowed to drive on the city 
road, a section of road in Yanshan University is selected 
as the test route. Experimental equipment is used to 
extract vehicle speed and GPS location information 
on this test route, as shown in Figure  1. The vehicle 
is traveling from the starting point and drives around 
until reaching the initial position, while the driving tra-
jectory will be generated and the vehicle speed can be 
collected. In the experiment, it should be noted that the 
vehicle speed with a fixed step size is extracted within 
a fixed time interval, which is beneficial to reduce the 
complexity of the data. Elimination of duplicate data 
can improve subsequent prediction efficiency, and it 
paves the way for the construction of the prediction 
model.

On the basis of the above experimental methods, it is 
also necessary to repeat the experiment several times at 
a fixed time every day to obtain sufficient speed char-
acteristics of the route. Some of the vehicle speed data 
is plotted as shown in Figure  2. It can be seen from 
the figure that it takes about 10 minutes to perform a 
driving cycle on this section, and the maximum speed 
during the driving cycle does not exceed 45 km/h. 
The speed-distance relationship curve after integra-
tion processing is shown in Figure 3. Different sections 
will begin to show a fixed speed characteristic, which 
is the characteristic of the road driving cycle. Finally, 
the received vehicle speed data is collated, combined, 

and segmented for use in predictive models. The road 
condition data obtained will become the basis of the 
prediction model and support the verification of the 
accuracy of the prediction model.

Figure 1  Experimental section and driving route

Figure 2  Driving speeds under the fixed route

Figure 3  Fixed route driving speed-distance curves
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3 � Vehicle Speed Prediction Algorithm
For vehicles on a given route, mathematical statistics and 
machine learning methods, based on historical driving 
data, can be used to predict future speeds, such as neu-
ral networks [26, 27]. It is also possible to predict future 
speeds by means of random prediction, such as Markov 
[28]. The following discusses research on the vehicle 
speed prediction model.

3.1 � Markov Prediction Algorithm
Markov is a stochastic process that is widely used as an 
effective predictor in engineering [29]. The Markov pre-
diction process is as shown in Eq. (1), where X(tm) = xm 
indicates the current state value, P{} indicates the state 
set, X

(

tm+h

)

= xm+h indicates the future state value, and 
X(t1) = x1, X(t2) = x2, . . . , indicates the historical state 
value. The formula illustrates the non-positive nature 
of the process, that is, inferring any state in the future 
based on the current state, and is not directly related to 
past historical states. The future state of the vehicle has 
a strong randomness and non-aftereffects. For exam-
ple, the previous driving state has no direct influence on 
the current driving state, so the vehicle driving state has 
Markov characteristics [30].

The steps of Markov prediction can be divided into 
state division, calculation of transition probability, deci-
sion transfer, and prediction [31]. First, according to the 
multiple sets of vehicle speeds of the fixed route, the 
speed and acceleration state distribution of the vehicle 
per second are shown in Figure 4. The vehicle state under 
this route is basically distributed between 0‒45 km/h and 
the acceleration is distributed at −3~3 m/s2.

According to the distribution characteristics of vehi-
cle speed and acceleration, the vehicle state in this 

(1)

p
{

X
(

tm+h

)

= j|X(t1) = x1, X(t2) = x2, . . . , X(tm) = xm
}

= P
{

X
(

tm+h

)

= j|X(tm) = xm
}

, j ∈ I , ∀h > 0.

range is meshed. After obtaining the vehicle status grid, 
the grid without state points is removed. The remaining 
meshes are encoded as shown in Figure 5.

In the process of calculating the transition prob-
ability, because Markov’s multi-step prediction leads 
to error accumulation and the prediction time of this 
paper is set to 5 s, the prediction time is relatively 
short, so the single-step Markov prediction technique 
is used to reduce the prediction error. Then, the state 
transition probability matrix of the road driving cycle is 
calculated according to the expression of the state tran-
sition probability, and the predicted steps are 1 s, 2 s, 3 
s, 4 s, 5 s, respectively, as shown in Eq. (2):

where Nij is the number of state transitions from state i to 
state j; Ni represents the number of state transitions from 
state i to all states; Pij represents the transition probabil-
ity from state i to state j.

The predicted state S1 is determined based on the 
current state S0, and the state transition satisfies the 
condition shown as

where r is a random number in the range 0‒1. It can be 
seen from the inequality shown by Eq. (3), that when the 
state transition probability Ps0j is large, the state j is more 
likely to be the prediction state.

According to the state transition probability calcu-
lated by Eq. (2) and satisfying the constraint charac-
teristics of Eq. (3), an accurate Markov state transition 
matrix can be obtained. The state transition probabil-
ity distribution is summarized in the next 5 prediction 
time intervals, as shown in Figure  6 , where the area 
size of the circle represents the transition probability of 

(2)Pij = Nij

/

Ni,

(3)
S1−1
∑

j=1

PS0j < r <

S1
∑

j=1

PS0j ,

Figure 4  Distribution of vehicle speed and acceleration

Figure 5  Vehicle speed status code map
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the state i to the next state j. The larger the area, the 
greater the transition probability.

In the final step of decision transfer and prediction, we 
can use the transition probability and current state of the 
future 1‒5 s state transition matrix to complete Markov’s 
future 1‒5 s speed prediction, which is one of the predic-
tion models used in the combined prediction algorithm 
of vehicle speed. The next prediction model used in the 
combined prediction algorithm of vehicle speed will be 
described later.

3.2 � BP Neural Network Prediction Algorithm
BP neural network is a feed forward neural network 
based on error correction [32]. It generally has three or 
more layers of structure, including one or more input lay-
ers and an output layer; whereas, the neurons between 
the layers are fully correlated. There are no correlations 
between various neurons in the layer. The state vector 
X = (x1, x2, . . . , xn)

T is passed from the input layer to 
the hidden layer, and its output is calculated by Eq. (4). 
Where wij is the weight between the input layer and the 
hidden layer, aj is the network hidden layer node thresh-
old, and f (·) is the activation function. The hidden layer 
output H is passed to the output layer, and the state vec-
tor O of its output is calculated by Eq. (5). Where wjk is 
the weight between the hidden layer and the output layer, 
and bk is the network output layer node threshold. The 
error e is obtained by comparing the actual output with 
the expected output from Eq. (6).

The error back-transfer reuses the weights and thresh-
old updates layer-by-layer using Eqs. (7) and (8), where 
the learning rate η is expressed. This process is repeated 

(4)Hj = f

(

n
∑

i=1

wijxi − aj

)

, j = 1, 2, . . . , l,

(5)Ok = f





l
�

j=1

Hjwjk − bk



, k = 1, 2, . . . , m,

(6)ek = Yk − Ok , k = 1, 2, . . . , m,

(7)







wij = wij + ηHj

�

1−Hj

�

xi
m
�

k=1

wjkek , i = 1, 2, . . . , n; j = 1, 2, . . . , l,

wjk = wjk + ηHjek , j = 1, 2, . . . , l; k = 1, 2, . . . , m,

(8)











aj = aj + ηHj

�

1−Hj

�

xi

m
�

k=1

wjkek , j = 1, 2, . . . , l,

bk = bk + ek , k = 1, 2, . . . , m.

Figure 6  Future 1‒5 s state transition probability map
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until the error falls within an acceptable range. As shown 
in Figure  7, the established neural network model out-
puts the speed of the next 1‒5 s.

By changing the network parameters, such as the num-
ber of neurons, the number of hidden layers, and the 
learning algorithm, the BP neural network model can 
obtain the network model that is most suitable for solving 
the problem [33]. To predict vehicle speed, it is necessary 
to adjust the input neuron types of the neural network 
model according to the range of vehicle speed fluctuation 
and the structure of the prediction model [34]. Appro-
priate input parameters for the predictive model can be 
obtained by correlation analysis or repeated testing. The 
selected parameters are meaningful for the differen-
tiation of the vehicle’s driving cycle. The combination of 
historical vehicle speed, average vehicle speed, idle time 
ratio, speed multiplied acceleration variance, speed vari-
ance, and positive acceleration mean can lead to a better 
prediction outcome.

The number of neurons and the number of layers in the 
hidden layer need to be selected within the appropriate 
range [35]. The hidden layer usually does not exceed two 
layers, and the BP neural network can realize the map-
ping from n-dimensional to l-dimensional. If the hidden 
layer neurons are too small, the convergence speed of the 
whole network may be lowered, and the convergence will 
not be easy to implement. Conversely, if there are too 
many neurons in the hidden layer, the network topology 
will be more complicated. The computational tasks will 
increase continuously during the iterative process, and 
the error may not be optimal [36]. Eq. (9) is two empiri-
cal formulas for estimating the number of hidden layer 
neurons:

where l is the number of the neurons in the hidden layer, 
n is the number of the neurons in the input layer, m is 

(9)
{

l =
√
n+m+ a,

l = 2n+ a,

the number of the neurons in the output layer, and a is a 
random number.

In fact, the method of determining the number of the 
hidden layer neurons based solely on the input and the 
output is inaccurate in many cases [37]. This is because 
the factors affecting the network structure are mainly 
the number of the training samples, the size of the sam-
ple noise, and the complexity of the function or clas-
sification problem to be simulated. Although the above 
method is lacking in accuracy in practical applications, 
we can use the above formula to determine the initial 
value of the hidden layer of the neural network. In most 
cases, it is still based on experimental methods used to 
gradually change the number of the hidden layer nodes. 
When the network error is the smallest, the optimal 
number of the hidden layer nodes is selected.

The three commonly used activation functions are 
shown in Eq. (10):

In the formula, the input range of x is real, and the 
three formulas are “purelin”, “logsig”, and “tansig”. 
After the simulation tests, it is found that the hidden 
layer tends to use “logsig” and “tansig”, while the out-
put layer is more suitable for “purelin”.

The learning algorithm has many types. There is no 
perfect theoretical guidance on the selection of training 
functions: it needs to be verified by practice. The result 
is that the elastic BP algorithm “trainrp” and the fixed-
ratio variable gradient algorithm “trainscg” have bet-
ter effects. In the training of the network, it is selected 
according to the actual situation. Finally, some param-
eters of the BP neural network model used in this paper 
are shown in Table 1.

(10)























y = f (x) = x,

y = f (x) =
1

1+ e−x
, y ∈ (0, 1),

y = f (x) =
1− e−2x

1+ e−2x
, y ∈ (−1, 1).

Figure 7  BP neural network model

Table 1  BP neural network model parameters

Parameter name Value or option

Hidden layer nodes 35

Hidden layer nodes transfer function type Tansig

Output layer neuron excitation function Purelin

Training function type Trainlm

Learning function type Trainrp

The max iteration number 20000

The network learning rate 0.05

Network training goal error 1 × 10−5
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3.3 � Combined Prediction Algorithm
Both of the above prediction models can predict the road 
driving cycle, but the accuracy of the single prediction 
model needs to be improved. It is an inefficient method 
for repeatedly debugging the parameters of a single 
prediction model on the way to pursue higher predic-
tion accuracy. These two models have their own unique 
advantages, so the paper attempts to improve the predic-
tion accuracy of the prediction model from the perspec-
tive of combined prediction. In the idea of combined 
prediction, the paper designs three combined methods 
of Markov and BP Neural Network (MBNN) to form 
combined prediction models. The three combinations of 
MBNN are described below.

The first combined prediction model, MBNN1, is 
shown in Figure  8. The road driving cycle V_MI is an 
input to the Markov prediction module, and the pre-
dicted 1‒5 s vehicle speed of the Markov output is 
transmitted to the BP neural network module via the 
characteristic parameter extraction module of the 
vehicle speed. In this figure, the meaning of some vari-
ables has been expressed, the other parts, such as n 
and T, are the number of calculated vehicle speed, m 
is the number of calculated positive acceleration, vi 
is the vehicle speed at time i, ti is the duration of idle 
time, ai+ is the positive acceleration at time i, vai is the 
product of velocity and acceleration at time i, and vam 
is the product of the average velocity and the average 

acceleration in n dimensions. At the same time, the BP 
module accepts the current vehicle speed V_current 
from the previous module and the future 1‒5 s vehicle 
speed V_MO predicted by the Markov module. Finally, 
the BP neural network module outputs the future 1‒5 s 
vehicle speed V_BO. The combination of the prediction 
model is mainly to use Markov to grasp the character-
istics of the overall state of change and the high-accu-
racy local fitting of the BP neural network. The Markov 
model should first predict the change state of the future 
1‒5 s vehicle speed and then the BP neural network can 
fit this state with high precision.

The second combined prediction model, MBNN2, 
is shown in Figure  9. The method is similar to the 
first method. The main difference is that the BP net-
work module increases the parameter of the historical 
approaching vehicle speed, called V_history.

The third combined prediction model MBNN3 is 
shown in Figure  10. The method is different from the 
first two methods, and the input of the vehicle speed 
characteristic parameter extraction module is a histori-
cal approaching vehicle speed. This type of parameter 
extraction method is the same one used in the BP neu-
ral network prediction model, except that the former 
has the input of Markov predicted vehicle speed. The 
main feature of the three MBNN combined predic-
tion models is that the Markov predicted vehicle speed 
factor is added to the BP neural network prediction 

Figure 8  MBNN1 combined prediction model

Figure 9  MBNN2 combined prediction model
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module, and the final predicted vehicle speed is output 
by the BP neural network prediction module.

According to the combined prediction models pro-
posed in this paper, the combined prediction flow chart is 
summarized in detail, as shown in Figure 11. The vehicle 
speed data sequence is divided into two parts: the former 
part is used as the training data of the Markov prediction 
model and the BP neural network model and the latter 
part is used as the comparison data of the test combined 
prediction model. The specific process of combination is 
divided into the following four steps.

Step 1: Based on the training vehicle speed data, the 
Markov state transition matrix is calculated and the 
Markov speed prediction is performed.
Step 2: The characteristic parameters of the Markov 
predicted vehicle speed is extracted. The red font in 
the figure is the characteristic parameters extraction 
of the historical near-vehicle speed used by MBNN3. 
The black font is the characteristic parameters 
extraction method used in MBNN1 and MBNN2.
Step 3: BP neural network is trained according to the 
BP neural network input variable requirements of 
the three combined prediction models. From here, 
the training of the combined prediction model has 
been completed.
Step 4: The prediction effect test of the combined 
prediction model is carried out. The other three 
sets of road driving cycles on the route is selected, 
and the Markov state transition matrix calculated in 
step 1 is used to obtain the Markov predicted vehi-
cle speed for the future 1~5 s. Then, the character-
istic parameters are extracted according to the com-
bined prediction model requirements. Next, the BP 
neural network module input variables are imported 
to complete the prediction. At last, the contrast 
between the predicted vehicle speed and the actual 
vehicle speed is completed. The red font and line at 

step 4 still indicate different methods of characteris-
tic parameters extraction. The dotted line indicates 
the equivalent use of the functional module.

4 � Prediction Results Analysis
The simulation analysis of this paper is based on the fixed 
route speed data and selects the other three sets of road 
driving cycles on the fixed route to verify the prediction 
effects of BP, Markov, MBNN1, MBNN2, and MBNN3. 
The following is a comparative analysis with a set of 
results data.

Figures 12 and 13 are the prediction effect diagrams of 
single prediction models. The initial 90 s is mainly influ-
enced by the parameter of the historical vehicle speed, 
so the initial time of the prediction is selected at 89 s. 
In order to verify the prediction effect of the model, the 
speed prediction of the future 1‒5 s is performed every 
second.

The final predicted speed curves overlap together 
with the actual vehicle speed curves to form the com-
parison figures of vehicle speed prediction. From these 
two figures, we can see the predicted characteristics of 
the Markov and BP neural network. The BP neural net-
work has a slower response to the change state, but the 
local variation trend has a good fitting effect. It is often 
fitted to the trend of the speed of the next few seconds, 
but there is no actual follow-up to the actual speed curve. 
Therefore, the speed predicted by the BP neural network 
in Figure 13 is mostly attached to the surface of the actual 
speed curve. On the contrary, in Figure 12 Markov bet-
ter follows the global speed change state. Most of the pre-
dicted vehicle speeds can coincide with the actual vehicle 
speed curve, but the local variation trend fitting effect is 
poor, resulting in large error.

The initial conditions of MBNN are the same as for a 
single prediction model. Figures  14, 15 and 16 are the 
diagrams showing the speed prediction effects of the 

Figure 10  MBNN3 combined prediction mode
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three MBNNs. It can be seen from the figure that MBNN 
better combines the advantages of the Markov model and 
BP neural network model. The predicted speed curve 
better follows the change state of the actual speed curve, 
and can overlap better than the BP neural network speed 
prediction. Furthermore, the fluctuation of the locally 
fitted speed curve is smaller than that of the Markov 
prediction.

In order to see the above predicted performance more 
clearly, these images are partially enlarged, as shown in 
Figure  17. The results are consistent with the charac-
teristics of the single prediction model analyzed above. 
The results of the neural network perform well linearly, 
while Markov fluctuates greatly. The use of the combi-
nation method balances the predicted performance of 
the two models and the predicted performance is better. 

Figure 11  Combined prediction process diagram
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Intuitively, the predictions of the three MBNN are not 
very different. The following analysis is based on the data.

Figure  18 compares the vehicle speed prediction 
errors of the five prediction algorithm models. The pre-
diction error is calculated from the mean of the predic-
tion bias within the 5 s prediction duration recorded 

every second. As can be seen from the figure, MBNN 
can reduce the fluctuation range of error compared to a 
single prediction model. At the moments of large error, 
the prediction error of MBNN is smaller than that of a 
single prediction model, and other times can be kept at 
an average level.

The paper uses Root Mean Square Error (RMSE) to 
further evaluate the accuracy of speed prediction [38]. 
The expression of RMSE is as shown in Eq. (11), and the 
evaluation time of RMSE can be adjusted by changing the 
value of n:

where vp,i is the predicted speed of the i seconds after 
time p, vr,i is the actual speed of the i seconds after time 
r, time r, and time p are the same time point. In order to 
distinguish between predicted and actual values, differ-
ent symbols are used: n represents the RMSE evaluation 
steps.

(11)
RMSE =

√

√

√

√

√

n
∑

i=1

(

vp,i − vr,i
)2

n
,

Figure 12  Markov speed prediction

Figure 13  BP neural network speed prediction

Figure 14  MBNN1 speed prediction

Figure 15  MBNN2 speed prediction

Figure 16  MBNN3 speed prediction
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The vehicle speed prediction evaluation results obtained 
by Eq. (11) are listed in Table 2, which summarizes the pre-
diction accuracy of the five prediction models in the fixed 
route and the three groups of 5 s within the vehicle speed 
prediction simulation. Taking the first set of predictions as 
an example, the RMSE in a single BP prediction model and 
a Markov prediction model within 5 s is 2.3775 m/s and 
2.2123 m/s, while the RMSE performances in the three 
MBNN combined prediction models within 5 s are 1.7880 
m/s, 1.5420 m/s, and 1.5366 m/s, respectively. Compared 
to the better performing Markov prediction model, the 
improvement ratios of the combined prediction models 
are about 19%, 30%, and 31%, respectively. Furthermore, 
in the other two groups of speed prediction, the improve-
ment ratios are 17%, 26%, 27% and 20%, 28%, and 28%. 
On the whole, the performance improvement ratios of 
the three combined prediction algorithms are 19%, 28%, 
and 29%. Among them, MBNN2 and MBNN3 performed 
better, and MBNN3 performed best in most cases. Sum-
marizing the performance of the combined prediction 
algorithms, the MBNN prediction models can improve the 
accuracy by 25.3% on average. Furthermore, it can be seen 
from the law of Table 2 that within a small prediction step, 

Figure 17  Enlarged figures of vehicle speed prediction result

Figure 18  Vehicle speed prediction error for 5s prediction duration
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the accuracy of the prediction model is not much different 
because the prediction accuracy is high. However, as the 
prediction step length is extended, the accuracy advantage 
of MBNN will become larger and larger.

5 � Conclusions
In order to improve the energy management effect of 
plug-in hybrid vehicles, this paper studies the prob-
lem of vehicle speed prediction in the control strategy. 
An experiment on a fixed route was conducted and 
a set of road driving cycle extraction methods were 
designed. The BP neural network and Markov predic-
tion model were adopted and analyzed. Although the 
speed prediction of the fixed route can be realized by 
a single prediction model, the prediction accuracy of a 
single prediction model reaches a certain range; there-
fore, it is difficult to obtain an improvement in predic-
tion effect by only debugging a single prediction model. 
Better speed prediction accuracy has an impact on the 
energy management effect of plug-in hybrid vehicles. 
Therefore, this paper proposes a combined prediction 
algorithm that can efficiently improve prediction accu-
racy. Based on the advantages of a BP neural network 
and Markov prediction algorithm, the prediction model 
is improved, and three combined prediction models, 
MBNN1, MBNN2, and MBNN3, are designed. The pre-
diction results show that the predicted speed curves 
obtained by the three MBNN models follow the change 
state of the actual speed curve better, and the fluctua-
tion of the prediction error is reduced. Finally, the pre-
dictive value of MBNN is evaluated via RMSE from 
the perspective of generalization ability and accuracy. 
The RMSE performance in 5 s is distributed between 

1‒2 m/s. Compared with the preferred single predic-
tion model adopted in this paper, the MBNN prediction 
models can improve accuracy by 25.3% on an average. 
This proves that the MBNN prediction models have 
obvious advantages. In summary, the designed com-
bined prediction model can give full play to the predic-
tion advantages of a Markov and BP neural network, 
which will play an important role in speed prediction 
and energy optimization of plug-in hybrid vehicles.
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4 s 1.9981 1.8147 1.5356 1.3260 1.3337

5 s 2.3775 2.2123 1.7880 1.5420 1.5366
Speed 2 1 s 0.8198 0.6989 0.6939 0.6680 0.6524

2 s 1.3068 1.0152 0.9849 0.9068 0.8888

3 s 1.7284 1.3613 1.2417 1.1173 1.0913
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3 s 1.4581 1.2219 1.0866 0.9743 0.9884

4 s 1.8283 1.5621 1.3005 1.1610 1.1769
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