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A New Method to Calculate Water Film 
Stiffness and Damping for Water Lubricated 
Bearing with Multiple Axial Grooves
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Abstract 

Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial 
grooves to provide effectively cooling and flushing away abrasives. Due to the variety of groove configuration in 
terms of number and size, a predication of their performance is difficult. This paper deals with an analytical procedure 
to investigate groove effect on load capacity, stiffness and damping for this type of bearing where it is considered as 
an assembly of many inclined slide bearings. The result can be applied to bearings made of hard materials combined 
with low bearing pressure.
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1  Introduction
As we all  known, water-lubricated guide bearings for 
hydro turbines and pumps are conventionally designed 
with multi-axial grooves. These grooves are provided 
for purpose of effectively cooling the bearing and flush-
ing away abrasives. However, due to the variety of groove 
design in terms of its number and size, a prediction of 
bearing performance in terms of load capacity, stiff-
ness and damping characteristics is very difficult. The 
author of this paper [1] introduced an analytical method 
to investigate groove effect on the Sommerfeld Num-
ber and coefficients of stiffness and damping based on 
inclined slide bearing solutions for bearings with rigid 
surface. However, the quality and accuracy of the solu-
tion depends on how close the geometry of the inclined 
slide bearing to represent the actual wedge shape at indi-
vidual pads of the grooved bearing, especially the wedge 
shape of those pads which are loaded most. This paper 
examined three different geometric shapes of inclined 
slide bearings and provided a solution that would have 
satisfactory accuracy.

A brief review of available literature is useful to under-
stand the development of this method. For rigid surface 
plain bearings with no grooves, in terms of steady opera-
tion, besides the classic solution of long bearing theory 
by Sommerfeld [2] and short bearing theory by DuBois 
and Ocvirk [3], there are several excellent analytical solu-
tions for finite length bearings. The finite length bearing 
theory by Childs et al. [4, 5] is one of the excellent solu-
tions. Another good analytical solution is proposed by 
Capone et  al. [6]. Numerical solutions with using finite 
difference and finite element methods are abundant. 
The evaluation of them is not the focus of this paper. For 
bearings designed with multi-axial grooves, Pai et al. [7] 
published a number of works on steady performance 
and dynamic stability of simple rotor. Ren [8] published 
a paper on calculation of water film thickness of water 
lubricated bearing with multi-axial grooves for steady 
state operation. On stiffness and damping coefficients of 
non-grooved plain bearings, classical short bearing solu-
tion is the most popular one. The solution by Childs et al. 
[4, 5] is strongly recommended for finite length bearings. 
It needs to mention that above works are related to rigid 
surface bearings. For deformable surface bearings, the 
effect of surface deformation is considered. Lahmar et al. 
[9] provides a procedure to simultaneously evaluate both 
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static and dynamic performance with small perturba-
tion method. Recent development was focused on CFD 
and FSI (fluid structure interaction) [10–17]. The effect of 
turbulence on stiffness and damping was investigated in 
Refs. [18, 19]. In review on available information, meth-
ods to determine stiffness and damping are mainly rely-
ing on numerical simulation for bearings with multiple 
axial grooves. The objective of this paper was to provide 
a semi-analytical method to investigate the groove effect 
on load capacity, stiffness and damping based on infinite 
length and rigid surface which is approximately valid for 
bearings made of hard polymers under relatively low 
bearing pressure [10].

For the calculation results to be useful, certain condi-
tions for bearings have to be applied. First of all, the ratio 
of bearing length to the width of bearing pad must be 
greater than 3.0 or higher. Secondly, the bearing pres-
sure shall be relatively low so that the surface deforma-
tion effect doesn’t overwhelmingly change the result. In 
spite of this paper doesn’t include the effect of elastic 
deformation of bearing surface in terms of elastohydro-
dynamic lubrication, the results are valid approximately 
for polymer bearings with higher hardness and lower 
pressure that most pump and turbine guide bearings are 
the case. The result is not suitable to water lubricated 
bearings with rubber staves that needs special treatment 
either through experiment [20–29] or numerical analy-
sis. Experimental study on bearings with multiple axial 
grooves demonstrates that a relatively rigid surface of 
bearing pad more easily forms hydrodynamic pressure 
than soft surface [22]. This has been demonstrated in 
the elastohydrodynamic study on sliding bearings [30]. A 
practice engineering application of stiffness and damping 
was shown in Ref. [31].

2 � Stiffness and Damping of Inclined Slide Bearings 
with Different Geometries

The idea to evaluate the load capacity (Sommerfeld Num-
ber), the stiffness and damping coefficients of a circular 
bearing with multiple axial grooves is that the circular 
journal bearing can be considered as an assembly of many 
simple inclined slide bearings (Figure 1), so that the ana-
lytical results for an inclined slide bearing (Figure 2) can 
be used as building blocks to form a calculation method. 
Without loss of generality, Figure  1 demonstrates pres-
sure created by bearing pad only. In reality, water pres-
sure in grooves varies from negligible to significant. Since 
this procedure works with non-dimensional functions, 
the water pressure in grooves can be easily added back 
to dimensional pressure. The implementation of this idea 
starts from evaluating the dynamic characteristics of the 
sliding bearing shown in Figure 2. To avoid of confusion, 
an inclined slider is also called inclined slide bearing. A 

sliding pad or bearing pads are always referring to the 
bearing surface between two neighboring grooves. 

As indicated in the introduction, the load capacity of 
the entire bearing depends on the load capacity of the 
individual inclined sliding pads. The accuracy of the 
solution is a direct function of how the geometry of the 
inclined sliding bearing to represent the wedge shape of 
the individual pads of the circular bearing. In following 
sections, three useful geometries of inclined slide bearing 
are examined, the proximity to the wedge shape of the 
main bearing is compared.

2.1 � Linear Inclined Slide Bearing
The linear inclined slider was used in previous work [1]. 
The water film is presented with a linear function as 
follows:

The main functions of the solution are:

1.	 Load capacity (non-dimensional force) 

(1)h(x∗) = hTo ·
[

1− x∗ · (η − 1)
]

.

(2)ΠL(η) =
Wo · h2T0

µ · V · B2 · L
=

6 · [(η + 1) · ln η − 2 · (η − 1)]

(η − 1)2 · (η + 1)

Figure 1  Grooved bearing as an assembly of sliding pads
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2.	 Location of static load center (non-dimensional dis-
tance) 

3.	 Stiffness function (non-dimensional) 

4.	 Damping function (non-dimensional) 

It is noticed that the right side of Eqs. (2)‒(5) is a func-
tion of the ratio of film thickness at leading edge to the 
film thickness at trailing edge only. For the purpose of 
evaluating stiffness and damping, the film thickness at 
leading and trailing edges is considered as a function of 
time. This is shown in Figure 3.

The non-dimensional dynamic load is expressed by 
stiffness and damping function:

According to Ref. [1], the final load on the linear 
inclined slide bearing is expressed with

(3)

AL(η) =
xC

B
=

η ·
(

η+2
η−1

)

· ln η − 5
2 · (η − 1)− 3

(η + 1) · ln η − 2(η − 1)

(4)

KL(η) = 6 ·
2 · η · ln η − η + 1

η · (η − 1)2
−

6

η · (η + 1)
+

12

1− η2

(5)

CL(η) = −6 ·
η · ln η − η + 1

(η − 1)3
+ 6

η · ln η
(η2 − 1) · (η − 1)

.

(6)
W1 · h2T0

µ · V · B2 · L
= −[KL(η)+ i · CL(η)].

(7)

W = W0 −
µ · V · B2 · L

h3T0

· KL(η) ·�hT (t)

−
µ · B3 · L

h3T0

· CL(η) ·�ḣT (t).

Eq. (7) is the force of the individual slider under 
dynamic motion. It is the fundamental relation-
ship between the slider force and slider displacement 
and squeeze velocity. As long as the four functions 
expressed from Eqs. (2)‒(5) are known, the load capac-
ity of the inclined slide bearing is fully defined. There-
fore, the whole subject turns to finding a set of functions 
expressed in Eqs. (2)‒(5) for different geometric shape of 
the slider.

2.2 � Exponential Gap Slide Bearing
The shape of exponential gap slide bearing is expressed 
with following equation:

The four functions of result are as follows:

1.	 Non-dimensional load capacity 

2.	 Location of static load center (non-dimensional dis-
tance) 

3.	 Stiffness function (non-dimensional) 

4.	 Damping function (non-dimensional) 

2.3 � Parabolic Gap Slide Bearing
The author of this paper derived the four functions for a 
parabolic gap slider (see Appendix). The film thickness 
expression is presented by:

The resulting functions are as follows.

1.	 Non-dimensional load capacity 

(8)h(x∗) = hTo · exp(−x∗ · ln η).

(9)

ΠE(η) =
Wo · h2T0

µ · V · B2 · L
=

η2 − 1

2η2 · (ln η)2
−

3

(η2 + η + 1) · ln η
,

(10)

AE(η) =
xC

B
=

(η2 + η + 3) · η2 − 5(η+1)(η3−1)
6 ln η

− 3η2 ln η

(η + 1)(η3 − 1)− 6η2 · ln η
,

(11)

KE(η) =
η2 − 1

η2 · (ln η)2
−

6

(η2 + η + 1) · ln η
,

(12)

CE(η) =
η2 − 1

η2(ln η)3
−

6

(η2 + η + 1) · (ln η)2
.

(13)h(x∗) = hTo ·
[

1+ x∗2 · (η − 1)
]

.

Figure 2  Infinite length inclined linear slide bearing
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2.	 Location of static load center (non-dimensional dis-
tance) 

3.	 Stiffness function (non-dimensional) 

4.	 Damping function (non-dimensional) 

Figure  4 shows the basic functions for these three 
inclined slide bearings. Since the non-dimensional load 
capacity function is exactly the half of the stiffness func-
tion for all type of geometries, it was not repeated in 
Figure 4.

(14)ΠP(η) =
Wo · h2T0

µ · V · B2 · L
=

√
η − 1+ (η − 2) · tan−1

√
η − 1

η2 · tan−1
√
η − 1+ (η + 2

3 ) ·
√
η − 1

.

(15)
AP(η) =

xC

B
= 1+

0
∫

−1

x · p∗o(x, η)dx

Πp(η)
,

p∗o(x
∗, η) =

2

η2tan−1
√
η − 1+ (η + 2

3 )
√
η − 1

×
[

tan−1(x∗ ·
√

η − 1)+
x∗(x∗

2 − 1)(η − 1)
3
2 − η2 · x∗ · tan−1

√
η − 1

(1+ (η − 1) · x∗2)2

]

.

(16)

KP(η) = 2

√
η − 1+ (η − 2) · tan−1

√
η − 1

η2 · tan−1
√
η − 1+ (η + 2

3 ) ·
√
η − 1

.

(17)

CP(η) =
2 · (2η + 1)

3η + 2+ 3η2√
η−1

· tan−1
√
η − 1

×
[

1

η
+

3 · tan−1
√
η − 1√

η − 1

]

−
4η − 1

η · (η − 1)
+

3 · tan−1
√
η − 1

(η − 1)
3
2

.

It is to notice that the stiffness function of the parabolic 
gap and exponential gap is higher than the linear gap 
for all leading to trailing edge film ratios. This implied 
if the parabolic function is in good agreement with the 
actual bearing clearance (pads), a circular bearing simu-
lated with the parabolic function will have a higher load 
capacity. The dynamic load center is slightly different 
from static load center Figure  4(d). Appendix provides 
the definition of load center ratio R(η). This paper used 
static load center for Sommerfeld number evaluation and 
dynamic load center for stiffness and damping evaluation 
for all three types of sliding bearings.

3 � Assembly Procedure
To evaluate which type of slider geometry best suitable 

for building the circular bearing, the assembly proce-
dure must be presented first. The first step of the assem-
bly procedure is to define the location angles of each pad 
relative to a rotating co-ordinate frame r-φ [8]. Figure 5 
shows a circular journal bearing with multiple axial 
grooves under a steady operational condition. By given 
load and shaft speed, the shaft center is offset from bear-

ing center with an eccentricity of “e”. The connecting line 
between bearing center and shaft center is in-line with 
r-axis of the rotating coordinate system r-φ. Assuming 
the bearing is fixed in position and the load is vertical as 
shown on the figure, the r-φ coordinate system has an 
attitude angle “Φ” with respect to the loading direction, 
namely, the y-axis. The attitude angle changes depending 

on load, shaft speed and groove numbers.
A second co-ordinate frame x-y is defined in line with 

load direction. In this system, y-axis is in load direction 
and x-axis is perpendicular to the load direction.

In Figure  5, the r-axis divides the entire bearing into 
two equal halves. All pads underneath r-axis (in the sense 

Figure 3  Inclined linear slide bearing in dynamic motion
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of Figure  5) have convergent angles in shaft rotating 
direction and therefore are able to create hydrodynamic 
lifting forces. All pads above r-axis have divergent angles 
in shaft rotating direction and are therefore not able to 
create hydrodynamic lifting forces. In theory, the diver-
gent bearing half could create a vacuum and therefore a 
negative pressure. However, since in practice, almost in 
all the cases, outside source of lubricant will be supplied 
to the bearing grooves, the divergent half will not create a 
negative pressure, but keep the same level of pressure as 
supplied lubricant as in grooves. It is therefore acceptable 
to assume the pressure on that half of bearing as zero. 
This assumption is corresponding to half Sommerfeld or 
Gumbel boundary condition.

Since the bearing is assumed to be fixed, all angles ( αLi , 
αTi =  1, 2, 3, …, N/2) defining the positions of grooves 
will change with attitude angle which is an unknown 
parameter. One set of groove location angles only defines 
a particular equilibrium of steady operation. For calcula-
tion purpose, a set of “floating numbers” are assigned to 
the pads underneath the r-axis. As a rule, no matter how 
the attitude angle to change, it is always the first conver-
gent pad underneath r-axis at the minimum water film 
location is assigned number “1”. Other pads are enumer-
ated clockwise with number 2, 3, 4,… in sequence.

After having defined the pad location angles, the film 
thickness ratio of leading to trailing edge under steady 
operation condition is

The film thickness at any leading and trailing edge is

The second step of the assembly procedure is to cal-
culate the force contribution of each pad to support the 
entire bearing load. Figure  6 illustrates the supporting 
force from one pad with location angles αLi and αTi . Con-
sidering Eqs. (19) and (20), the force by each individual 
pad can be calculated with using Eq. (7) obtained from 
previous section. All terms in Eq. (21) are referred to pad 
number “i”:

with c1 = µ·V ·B2·L
c3

; c2 = µ·B3·L
c3

.
In Figure 6, the pad load is considered to be in direc-

tion pointing to bearing center. The projection of bearing 
load to r-φ co-ordinate system is then

(18)ηi =
1+ ε · cosαLi
1+ ε · cosαTi

, i = 1, 2, . . . ,N/2.

(19)hL0,i = c · (1+ ε · cosαLi), i = 1, 2, . . . ,N/2,

(20)hT0,i = c · (1+ ε · cosαTi) i = 1, 2, . . . ,N/2.

(21)
Wi = W0i −

c1 · K (ηi)

(1+ ε · cosαTi)3
·�hTi(t)−

c2 · C(ηi)
(1+ ε · cosαTi)3

·�ḣTi(t),

Figure 4  Functions of different basic slide bearings
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In Eqs. (22), (23), the function K (η) is one of the func-
tion KL(η) , KE(η) or KP(η) depending on which one is 
chosen. The same applied to function C(η) . For the entire 
circular bearing, the dynamic part of pad force is only 
caused by a very small change of bearing eccentricity Δe 
and attitude angle ΔΦ, the film thickness at trailing edge 

(22)
−Wi,r = W0i cos(π−Θi)

−
(

c1 · K (ηi)

(1+ ε · cosαTi)3
·�hTi(t)+

c2 · C(ηi)
(1+ ε · cosαTi)3

·�ḣTi(t)

)

· cos(π− ϑi),

(23)
Wi,ϕ = W0i sin(π−Θi)

−
(

c1 · K (ηi)

(1+ ε · cosαTi)3
·�hTi(t)+

c2 · C(ηi)
(1+ ε · cosαTi)3

·�ḣTi(t)

)

· sin(π− ϑi),

Figure 5  Definition of pad location angles

can be correlated to these small eccentricity and attitude 
angle change as follows

The same can be applied to the pad velocity. However, 
the velocity must refer to the entire pad, not just the 

(24)�hTi = cosαTi ·�e + sin αTi · e ·�Φ .
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trailing edge. This implies that the pad has no rotation 
about its load center at any instant of dynamic motion. 
Therefore the velocity becomes:

The function A(η) is one of the AL(η), AE(η) or AP(η) 
depending on which type of sliding bearing chosen and 
Ad(η)  is one of the ALd(η), AEd(η) or APd(η) depending 
on which type of sliding bearing chosen. Inserting Eqs. 
(24) and (25) into Eqs. (22) and (23), their matrix form 
can be expressed as

The coefficients of stiffness and damping for the pad 
with index “i” are:

(25)
�ḣTi = cos(π−Θi) ·�ė + sin(π− ϑi) · e ·�Φ̇ ,

θi = Ad(ηi)·αTi+[1− Ad(ηi)]·αLi, Θi = A(ηi)·αTi+[1− A(ηi)]·αLi, i = 1, 2, 3, . . . ,N/2.

(26)

(

−Wi,r

Wi,φ

)

=
(

Woi · cos(π−Θi)

W0i · sin(π−Θi)

)

− c1

[

Krr,i Krφ,i

Kφr,i Kφφ,i

](

�e
e ·�φ

)

− c2

[

Crr,i Crφ,i

Cφr,i Cφφ,i

](

�ė

e�φ̇

)

.

Krr,i =
cosαTi

(1+ ε · cosαTi)3
· K (ηi) · cos(π− ϑi),

Krφ,i =
sin αTi

(1+ ε · cosαTi)3
· K (ηi) · cos(π− ϑi),

4 � Quality Comparison of Slide Bearing Geometry
Above section proposed an idea of using an array of 
inclined slide bearings to build a circular journal bearing 
with multiple axial grooves. However, the quality of this 
approach depends on how closely the individual slider 
represents the shape of individual pad at any given loca-
tion and eccentricity ratio.

In true sense of grooved bearing, the non-dimensional 
form of water film thickness at any given location angle 
“α” (Figure 7) is

When evaluating the individual inclined slide bearing, 
the non-dimensional water film thickness is expressed as 

a function of the film thickness ratio of leading edge to 
trailing edge as well as the local coordinate “s” (Figure 7). 
Therefore, the non-dimensional water film thickness for 
the pad number “i” in terms of above mentioned water 
film thickness ratio and local coordinate can be presented 
in following form:

Kφr,i =
cosαTi

(1+ ε · cosαTi)3
· K (ηi) · sin(π− ϑi),

Kφφ,i =
sin αTi

(1+ ε · cosαTi)3
· K (ηi) · sin(π− ϑi),

Crr,i =
C(ηi)

(1+ ε · cosαTi)3
· cos2(π− ϑi),

Crφ,i = Cφr,i =
C(ηi)

(1+ ε · cosαTi)3
· cos(π− ϑi) · sin(π− ϑi),

Cφφ,i =
C(ηi)

(1+ ε · cosαTi)3
· sin2(π− ϑi).

(27)h =
h

c
= (1+ ε · cosα).

Figure 6  Contribution of pad load to bearing
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Where s = s/B is non-dimensional local coordinate. The 
true bearing may have grooves with chamfer or round 
fillet. Since any chamfer and fillet will be too large for 
water film formation. Therefore, chamfer and fillet must 
be considered as part of grooves, not surface of pads. All 
other expression of water film thickness for bearing pad 
“i” can also expressed with local coordinate and the water 
film thickness ratio at leading and trailing edge.

For linear inclined slide bearing

For exponential inclined slide bearing

For parabolic inclined slide bearing

Eqs. (29)‒(31) presents the water film thickness that are 
intended to be used to replace Eq. (28). The purpose of 
doing so is to simplify the problem by solving Reynold’s 
Equation at the inclined slide bearing level rather than at 
the full bearing level. It is to notice that all these equa-
tions return the film thickness at trailing edge of pad “i” 
which is (1+ ε · cosαTi) when s = 0 . By the same token, 
they return the film thickness at leading edge which 

(28)h̄(s̄, i) =
{

1+ ε · cos
[

s̄ ·
(

αTi − cos−1 (1+ ε · cosαTi) · ηi − 1

ε

)

+ αTi

]}

,

(29)h̄L(s̄, i) = (1+ ε · cosαTi) · [1− s̄ · (ηi − 1)].

(30)h̄E(s̄, i) = (1+ ε · cosαTi) · exp [−s̄ · ln ηi].

(31)h̄P(s̄, i) = (1+ ε · cosαTi) ·
[

1+ s̄2 · (ηi − 1)
]

.

is  (1+ ε · cosαTi) · ηi when s = −1 . To evaluate which 
function from Eqs. (29)‒(31) is the best approach to Eq. 
(28), one set of square root errors was defined. These are:

Eqs. (32)‒(34) were derived from non-dimensional 
water film thickness and are function of eccentricity 
ratio, number and distribution of grooves. They are valid 
for any size bearings with any number of grooves. In fol-
lowing, a 12-groove bearing is examined for the square 
root errors. This bearing will have six bearing pads tak-
ing load. Assuming the location of the minimum film 
thickness falls into the very center of a groove, so that the 
first pad named with one will have the entire pad being 
loaded.

Figure  8 shows the result for the bearing with 12 
grooves. It showed that the parabolic inclined slider has 
the least error for the first pad for eccentricity ratio from 
0.9 to 0.999 which is the range of most interest for water 
lubricated guide bearings. The linear slider seems to be 
best suitable for second pad at high eccentricity ratio and 
rest of other pads. The exponential slider seems to be 
suitable for pads except for first one at lower eccentric-
ity ratio. However, this is only observations from a bear-
ing with 12 grooves. Investigation on different number 
of grooves showed that the error for exponential slider 
changes rapidly with increasing eccentricity ratio, mean-
ing that for small eccentricity ratio, errors are small, for 
large eccentricity ratio, errors are big. This is especially 
true for first and second pad. The linear slide bearing is 
insensitive to eccentricity ratio. Therefore, in following 
evaluation, a scheme that parabolic slider to first pad and 

(32)SL(i, ε) =

√

0
∫

−1

[h̄(s, i)− h̄L(s, i)]2ds

0
∫

−1

h̄(s, i) · ds
,

(33)SE(i, ε) =

√

0
∫

−1

[h̄(s, i)− h̄E(s, i)]2ds

0
∫

−1

h̄(s, i) · ds
,

(34)SP(i, ε) =

√

0
∫

−1

[h̄(s, i)− h̄P(s, i)]2ds

0
∫

−1

h̄(s, i) · ds
.Figure 7  Definition of local coordinate
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linear slider to rest of pads is applied. This paper investi-
gated only three types of sliding bearings. It is certainly 
there must be other types of sliding bearings that would 
fit for the purpose. As demonstrated in Ref. [8], the first 
pad takes the most load of entire bearing. Even though 
the parabolic slider is only able to simulate the first 
loaded pad, it is still a significant improvement of load 
capacity in comparison to the approach with all linear 
sliders.

5 � Steady Operation and Sommerfeld Number
5.1 � Effect of Groove Number
Ref. [8] provides a procedure to calculate the load capac-
ity and water film under steady operational condition. 
The non-dimensional load capacity of bearing was deter-
mined as follows:

where

The total non-dimensional supporting force contrib-
uted by all pads underneath r-axis is then the sum of all 
components above:

where λ is a number less than 1.0. In Figure 5, if the posi-
tion of minimum film thickness is located within the 
pad number 1, only a part of this pad will take load. The 
number “λ” gives the percentage of the pad that takes 
load. Its value is unknown at beginning of a calculation. 
It depends on attitude angle “Φ”, width of bearing pads 
“B”, width of grooves as well as the relationship between 
bearing loading direction and the pad position to which 
the load pointing to. For vertical bearings, such as hydro 
turbine guide bearing and vertical pump bearing, loading 
direction is undefined. In this case, practical calculation 
can be done by assuming λ = 0.5 which presents a con-
dition with least load capacity. For horizontal bearings, 
load direction can be easily defined. Parameter  λ can be 
determined by an iteration. At beginning, first to assume 

(35)W0r,i =
Π(ηi)

(1+ ε · cosαTi)2
· cos {π−Θi},

(36)W0ϕ,i =
Π(ηi)

(1+ ε · cosαTi)2
· sin {π−Θi},

Π(ηi) =
{

ΠL(ηi), for linear slider,
ΠP(ηi), for parabolic slider.

(37)W0ϕ =
N/2
∑

i=2

W0ϕ,i + �
2 ·W0ϕ,1,

(38)W0r =
N/2
∑

i=2

W0r,i + �
2 ·W0r,1,

an initial value, for example 0.5, then calculate the atti-
tude angle according to Eq. (40) below and subsequently 
calculate the new λ-value. With new value run calcula-
tion again, get another attitude angle. Repeating the same 
procedure until a satisfactory result obtained. In evalua-
tion on Figures 9, 10, 11 and 12, λ = 1.0 was used. A full 
analysis of effect of λ-value on Sommerfeld Number is 
worth of a full separate paper to discuss.   

The resultant force in dimensional form is then

The attitude angle is:

According to conventional definition of Sommerfeld 
Number for circular bearings, it is

The Sommerfeld Number for grooved bearings can be 
derived with using Eq. (39):

The Sommerfeld Number, defined by Eq. (42) is a func-
tion of number of grooves and eccentricity ratio. Its 
reciprocal defines the load capacity of a bearing while 
the reciprocal of Eq. (41) is the actual load to the bear-
ing. It is evident that for low eccentricity ratio (less than 
0.9), there is no significant difference between the mod-
eling with all linear sliders and the one with mixed slid-
ers, namely, the first one using parabolic slider and rest 
of them linear sliders. However, for high eccentricity 
ratio (ε > 0.9), this reflects the case of high loading, the 
difference can be significant, Figure  9. The Sommerfeld 
Number simulated with all linear pads can be up to 5 
times higher than the Sommerfeld Number with mixed 
pad geometry for the example investigated. By definition, 
higher Sommerfeld Number means lower load capacity. 
This is reflected in Figure 10.

The Sommerfeld Number ratio shown in Figure  10 is 
the Sommerfeld Number with all linear sliders divided by 
the Sommerfeld Number with mixed pads in which the 
first pad is parabolic and rest of them linear. Water lubri-
cated guide bearings can be subject to eccentricity ratio 
as high as 0.999. In this case, an all linear modeling defi-
nitely under estimate the bearing loading capacity. Based 
on the quality comparison of sliding bearing geometries 

(39)W0 =
µ · V · B2 · L

c2

√

W 2
0ϕ +W 2

0r .

(40)Φ = − tan−1 W0φ

W0r
.

(41)S =
µ · Ns · d · L

W0
·
(

d

2c

)2

.

(42)S =
d2

4 · π · B2 ·
√

W 2
0ϕ +W 2

0r

.
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in previous section, the parabolic gap is more closed to 
true shape of bearing clearance of the first pad. There-
fore, the mixed scheme must more closely present the 
true bearing performance. It is an improvement of all lin-
ear slider modeling, especially for large eccentricity ratio.

Ren et  al. [1] in their previous paper quantitatively 
demonstrated that the load capacity of grooved bearing 
is lower than that of non-grooved bearings. The Som-
merfeld Number of grooved bearing modeled with all 
linear pads was compared with the bench mark Sommer-
feld Number, namely the formulation from Refs. [4, 5]. A 
similar comparison is made here for the grooved bearing 
with mixed type of inclined sliders to the non-grooved 
bearings. The Sommerfeld Number of the solution by 
Childs is again used as bench mark for the comparison.

The massive curve on Figure  11 is the Sommerfeld 
Number of non-grooved bearing. Other curves are for 
grooved bearing with different number of grooves. Defi-
nitely, the grooves reduce the load capacity of a bear-
ing. The more grooves, the bigger is the load capacity 
reduction.

The ratio of Sommerfeld Number for grooved to non-
grooved bearing is shown in Figure  12. This provides a 
better visualization as how much the load capacity reduc-
tion can be expected. From Figure 12 is to see reducing 
the number of grooves is an effective way to increase load 
capacity of a grooved bearing.

5.2 � Effect of Groove Size
From the defining equation of Sommerfeld Number of 
grooved bearing Eq. (42), it is a function of ratio d/B. 
For a fixed number of grooves, the size (width) of groove 
will take away a part of bearing surface which results 
in a narrower bearing pad. This increases the d/B ratio. 
Therefore, for a real load capacity of a practice design, 
groove effect must be taken into consideration, especially 
grooves with round or fillet corners.

6 � Stiffness and Damping Coefficients
Following the similar procedure in Refs. [1, 8], the non-
dimensional stiffness and damping coefficients for a cir-
cular bearing with multi-axial grooves were obtained by 
summarizing the coefficients of stiffness and damping 
over all supporting pads and are expressed as

Krr =
N/2
∑

i=2

cosαTi

(1+ ε · cosαTi)3
· KL(ηi) · cos(π− ϑi)

+
�
2 · cosαT1

(1+ ε · cosαT1)3
· KP(η1) · cos(π− ϑ1),

Figure 8  Square root error of different slider
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Krφ =
N/2
∑

i=2

sin αTi

(1+ ε · cosαTi)3
· KL(ηi) · cos(π− ϑi)

+
�
2 · sin αT1

(1+ ε · cosαT1)
3
· KP(η1) · cos(π− ϑ1),

Kφr =
N/2
∑

i=2

cosαTi

(1+ ε · cosαTi)3
· KL(ηi) · sin(π− ϑi)

+
�
2 · cosαT1

(1+ ε · cosαT1)
3
· KP(η1) · sin(π− ϑ1),

Figure 9  Sommerfeld Number comparison

Figure 10  Ratio of Sommerfeld Number

Translate them from r-φ coordinate frame into x-y 
coordinate frame, these are

The coefficients of stiffness KYY, KYX, KXY and KXX 
are non-dimensional. From equation group Eqs. (43) 
and (44), it can be seen that they only depend on loca-
tion angles and the number of grooves. This means they 
are changing with different groove configurations. The 
same is applied to the damping coefficients. For purpose 
to make comparison with other available methods, here 
a new group of non-dimensional coefficients of stiffness 
and damping is defined as follows:

(43)

Kφφ =
N/2
∑

i=2

sin αTi

(1+ ε · cosαTi)3
· KL(ηi) · sin(π− ϑi)

+
�
2 · sin αT1

(1+ ε · cosαT1)
3
· KP(η1) · sin(π− ϑ1),

Crr =
N/2
∑

i=2

CL(ηi)

(1+ ε · cosαTi)3
· cos2(π− ϑi)

+
�
3 · CP(η1)

(1+ ε · cosαT1)
3
· cos2(π− ϑ1),

Crφ = Cφr =
N/2
∑

i=2

CL(ηi)

(1+ ε · cosαTi)3
· cos(π− ϑi) · sin(π− ϑi)

+
�
3 · CP(η1)

(1+ ε · cosαT1)
3
· cos(π− ϑ1) · sin(π− ϑ1),

(44)
Cφφ =

N/2
∑

i=2

CL(ηi)

(1+ ε · cosαTi)3
· sin2(π− ϑi)

+
�
3 · CP(η1)

(1+ ε · cosαT1)
3
· sin2(π− ϑ1).

(45)
[

KYY KYX
KXY KXX

]

=
[

cosΦ − sinΦ
sinΦ cosΦ

]

·
[

Krr Krϕ

Kϕr Kϕι

]

·
[

cosΦ sinΦ
− sinΦ cosΦ

]

,

(46)
[

CYY CYX
CXY CXX

]

=
[

cosΦ − sinΦ
sinΦ cosΦ

]

·
[

Crr Crϕ

Cϕr Cϕι

]

·
[

cosΦ sinΦ
− sinΦ cosΦ

]

.

(47)
[

Kyy Kyx

Kxy Kxx

]

=
(

2B

d

)2

· S · π ·
[

KYY KYX
KXY KXX

]

,
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The Sommerfeld number in Eqs. (47) and (48) is the 
one defined by Eq. (42). The final dimensional coefficients 
of stiffness and damping are as follows:

The non-dimensional stiffness group in Eq. (47) and 
non-dimensional damping group in Eq. (48) is directly 
comparable with existing circular bearing results such as 
long and short bearing theory and others. In this paper, 
the stiffness and damping coefficients from Childs and 
Moes [4, 5] are of particular interest. They are considered 

(48)
[

Cyy Cyx

Cxy Cxx

]

=
(

2B

d

)3

· S · π ·
[

CYY CYX
CXY CXX

]

.

(49)

[

kyy kyx
kxy kxx

]

=
Wo

c
·
[

Kyy Kyx

Kxy Kxx

]

=
µ · V · B2 · L

c3

[

KYY KYX
KXY KXX

]

,

(50)

[

cyy cyx
cxy cxx

]

=
Wo

c ·Ω
·
[

Cyy Cyx

Cxy Cxx

]

=
µ · B3 · L

c3

[

CYY CYX
CXY CXX

]

.

to be accurate for non-grooved plain bearings and used 
for verifying the correctness of Eqs. (47) and (48).

Same as for non-dimensional coefficients of stiffness, 
the coefficients of damping have also been compared at 
same groove number and L/D ratio. In Figures  13 and 
14, the stiffness and damping coefficients by Childs and 
Moes was based on L/D = 2.0 and for grooved bearings 
was based on groove number = 8.

It is understandable that stiffness coefficient Kyy for 
grooved bearing is slightly greater than that for non-
grooved bearing. This is because the pressure is more 
concentrated on the area around of loading center due 
to grooves. The same reason may explain why the coef-
ficient of stiffness Kxx is lower than that of non-grooved 
bearing. The cross coefficient of stiffness Kyx shows a 
different behavior from non-grooved bearing. Another 
noticeable characteristic is that the turning point of the 
cross-stiffness coefficient Kxy into negative is shifted to 
lower eccentricity ratio.

The damping coefficient Cyy  is almost identical for 
both non-grooved bearing and grooved bearing in this 
particular geometrical condition. The coefficient Cxx of 
grooved bearing is lower than that of non-grooved bear-
ing. The cross-damping coefficient Cxy = Cyx has larger 
difference for low and high eccentricity ratio and small 
difference for intermediate eccentricity ratio.

7 � Influence of the Number of Grooves
As stated in previous section, the coefficients of stiff-
ness and damping are not only a function of eccentric-
ity ratio, but also the number of grooves. Figure 15 is a 
comparison between two bearings with 8 grooves and 
12 grooves, respectively. The effect on the coefficients of 
stiffness is different. An increased groove number has an 
insignificant effect on Kyy while it reduces Kyx . For cross-
coefficient of stiffness Kxy , the increase of groove number 
shifts the turning point to negative to lower eccentricity 
ratio.

Figure  16 presents a comparison between the coef-
ficients of damping for two bearings with 8 grooves 
and 12 grooves respectively. Again, the groove number 
has less effect on Cyy while affecting other coefficients 
significantly.

8 � Conclusions
This paper provides a new method to calculate the load 
capacity, the coefficients of stiffness and damping for 
water lubricated guide bearings with multi-axial grooves. 
The focus is on the effect of grooves and groove number. 
The paper doesn’t include the effect of surface deforma-
tion. The result is an approximation and can be applied 
to water lubricated bearings made from hard polymers 
combined with lower pressure or other materials, such as 

Figure 11  Sommerfeld Number of grooved bearings

Figure 12  Ratio of Sommerfeld Number of grooved to non-grooved 
bearing
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Lignum Vitae wood and ceramics. The paper uses a so-
called mixed scheme which means using parabolic slider 
for the first pad only, rest of the pads uses linear slider. 
The stiffness and damping of the grooved bearing was 
investigated considering groove effect. The coefficients of 
stiffness and damping demonstrated different character-
istics from those with no grooves. Since the coefficients 
of stiffness and damping are function of eccentricity ratio 
and number of grooves, the effect of number of grooves 
was studied in great depth. It showed that the number of 
grooves has less effect on the coefficient Kyy and Cyy while 
it has a larger effect on other coefficients of stiffness and 
damping. Further research in considering surface defor-
mation with using similar modeling could be an interest-
ing subject.
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Appendix: Parabolic Gap Sliding Bearing
The procedure proposed by this paper uses a scheme 
by mixing different types of sliding bearings to build 
the entire circular bearing. One of the most important 
components is the parabolic gap sliding bearing. This 
appendix provides a procedure for deriving the four main 
functions, namely the load capacity, the location of load 
center, stiffness and damping.

Without loss of generality, the same coordinate system 
as shown in Figure 3 is used for this procedure. The shape 
of parabolic gap is expressed as

Introducing non-dimensional variables and parameters 
defined as follows:

where p is the pressure over the pad with unit length, pg 
is the pressure in water grooves, t is time.

The Reynolds Equation taking into consideration on 
dynamic squeezing film action is as follows:

Insert non-dimensional variables Eq. (A2) into Eq. 
(A3), the Reynolds equation in non-dimensional form is

(A1)h(x, t) = hT (t) ·
[

1+ (η − 1) ·
( x

B

)2
]

, −B ≤ x ≤ 0, η ≥ 1.

(A2)

x∗ =
x

B
, τ =

V · t
B

, h∗T =
hT (t)

hT0
,

h∗ = h∗T ·
[

1− (η − 1) · x∗
]

, p∗ =
(p− pg ) · h2T0

µ · V · B
,

(A3)
∂

∂x

(

h3 ·
∂p

∂x

)

= 6 · µ · V ·
∂h

∂x
+ 12µ ·

∂h

∂t
.

Non-dimensional coordinate of sliding bearings, x∗ = x/B; N: number of 
bearing grooves, always designed with even number without loss of general-
ity; Ns: Shaft rotating speed in (r/s); V: Surface velocity of shaft (m/s); Wo: 
Loading force of the slide bearing under steady operation condition (N); Wo,i: 
Wo (Referring to pad “i”); W1: Dynamic part of bearing load on top of Wo (N); 
αLi: Location angle of leading edge of pad “i”; αTi: Location angle of trailing 
edge of pad “i”; ε: Eccentricity ratio of the entire bearing (ε = e/c); Φ: Attitude 
angle of the bearing (rad); η = hL0/hT0: Ratio of film thickness at leading 
edge to trailing edge); ηi: η (Referring to pad “i”); λ: Part of first pad surface 
taking load (0 to 1.0); μ: Viscosity of lubricant, for water it is a constant (P·s); 
Ω: Angular velocity of shaft (1/s); Kyy,Kyx,Kxy, Kxx: Non-dimensional 
coefficients of stiffness; kyy, kyx, kxy, kxx: Dimensional coefficients of 
stiffness; Cyy,Cyx,Cxy, Cxx: Non-dimensional coefficients of damping; 
cyy, cyx, cxy, cxx: Dimensional coefficients of damping.
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Small perturbation method means to find a solution of 
Eq. (A4) not far from the steady state solution with a lin-
earization approach. This implies to find a solution, such 
as

where p∗0 is non-dimensional pressure under steady oper-
ation, p∗1 is perturbation amplitude of a dynamic pressure 
on top of the pressure under steady operation. In true 

(A4)
∂

∂x∗

(

h∗3 ·
∂p∗

∂x∗

)

= 6 ·
∂h∗

∂x∗
+ 12 ·

∂h∗

∂τ
.

(A5)p∗ = p∗o + p∗1 · δ · ei·τ ,

(A6)h∗T = 1+ δ · ei·τ ,

sense p∗1 is a coefficient of the non-dimensional dynamic 
pressure. δ is a small perturbation, which is a small num-
ber much less than 1.0. Its physical meaning is the ratio of 
amplitude change of film thickness to the minimum film 
thickness under steady operation. Insert Eqs. (A5) and 
(A6) into Eq. (A4), and equating the coefficients of zero 
order of “δ” on left and right side of Eq. (A4), it is resulted 
in an equation for pressure p∗o

By the same token, by equating the coefficients of first 
order of “δ” on left and right side of Eq. (A4), the coef-
ficient of dynamic pressure p∗1 will fulfill following 
equation

(A7)

∂

∂x∗

(

[

1− (η − 1) · x∗2
] 3

·
∂p∗o
∂x∗

)

= 12 · (η − 1) · x∗.

(A8)∂

∂x∗

(

[

1− (η − 1) · x∗2
] 3

·
∂p∗1
∂x∗

)

= −24·(η−1)·x∗+12·
[

1− (η − 1) · x∗2
]

·i, i =
√
−1.

In this procedure, all other terms with orders equal to 
and higher than δ2 are neglected.

The boundary conditions for the non-dimensional 
pressurep∗ are

To fulfill these conditions, the non-dimensional pres-
sure on steady operation p∗0 as well as the real and 

(A9)p∗ = 0 for x∗ = 0 and x∗ = −1.

imaginary part of non-dimensional dynamic pressure all 
need to be zero on the boundaries. This is expressed as

First is to find the solution of Eq. (A7). By integrat-
ing twice of Eq. (A7), the non-dimensional pressure on 
steady operation is expressed in following form

(A10)
p∗0 = 0; p∗1 = p∗1,r = p∗1,i = 0 for x = 0 and x = −1.

(A11)p∗o =
3

4

{

tan−1x∗
√
η − 1√

η − 1
+

x∗
3
(η − 1)− x∗

[

1+ (η − 1) · x∗2
] 2

}

+
C1

8

{

3tan−1x∗
√
η − 1√

η − 1
+

3x∗
3
(η − 1)+ 5x∗

[

1+ (η − 1) · x∗2
] 2

}

+C2.

The boundary condition for p∗0 requires C2 = 0, and

Insert C1 into Eq. (A11), the final non-dimensional 
pressure on steady operation takes form as below

(A12)C1 = −2
η2 tan−1

√
η − 1+ (η − 2)

√
η − 1

η2 tan−1
√
η − 1+ (η + 2

3 )
√
η − 1

.

(A13)p∗o =
2

η2tan−1
√
η − 1+ (η + 2/3)

√
η − 1

×
{

tan−1x∗
√

η − 1+
x∗(x∗

2 − 1)(η − 1)
3
2 − x∗η2tan−1

√
η − 1

[

1+ (η − 1)x∗2
] 2

}

.

The load capacity function is the integration of the 
non-dimensional pressure (Eq. (A13))

The final result after implementation of the integration 
is

(A14)ΠP(η) =
Wo · h2To

µ · V · B2 · L
=

0
∫

−1

p∗o(x
∗, η) · dx∗.
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Figure 13  Stiffness coefficients comparison

Figure 14  Damping coefficients comparison
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It is interesting to notice that there is a similarity of 
right side of Eq. (A7) and the first term on right side of 
Eq. (A8). Since the solution of Eq. (A7) creates the load 
capacity function Eq. (A15), the first real term on the 
right side of Eq. (A8) must generate the stiffness function. 
This concludes that the stiffness function is just equal 
to two times of the load capacity function by amount, 
therefore

(A15)ΠP(η) =
(η − 2) · tan−1

√
η − 1+

√
η − 1

η2 tan−1
√
η − 1+ (η + 2

3 )
√
η − 1

.

(A16)

KP(η) = 2
(η − 2) · tan−1

√
η − 1+

√
η − 1

η2 tan−1
√
η − 1+ (η + 2

3 )
√
η − 1

.

Figure 15  Influence of number of grooves on stiffness

Figure 16  Influence of number of grooves on damping
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Corresponding real part of non-dimensional dynamic 
pressure coefficient will be

The next task is to find imaginary part of the non-
dimensional dynamic pressure coefficient p∗1 which needs 
to fulfill following equation:

Following similar procedure to solve Eq. (A7), after 
integration twice of Eq. (A18), the imaginary part of non-
dimensional dynamic pressure coefficient is expressed 
with

Utilizing boundary condition to above equation, the 
two constants are

Inserting them into Eq. (A19) and integrating it over 
from x*  =  −1 to x*  =  0, the damping function is as 
following:

The total pad pressure appears as complex function 
which is

The location of load center under steady operation and 
dynamic vibration is slightly different. The location of 
load center for steady operation is calculated with

(A17)p∗1,r =
−4

η2tan−1
√
η − 1+ (η + 2/3)

√
η − 1

×
{

tan−1x∗
√

η − 1+
x∗(x∗

2 − 1)(η − 1)
3
2 − x∗η2tan−1

√
η − 1

[

1+ (η − 1)x∗2
] 2

}

.

(A18)

∂

∂x∗

(

[

1− (η − 1) · x∗2
] 3

·
∂p∗1,i
∂x∗

)

= 12 ·
[

1− (η − 1) · x∗2
]

.

(A19)p∗1,i = −2·
x∗

2
(η − 1)+ 2

[

1+ (η − 1) · x∗2
] 2

(η − 1)
+
C3

8

{

3tan−1x∗
√
η − 1√

η − 1
+

3x∗
3
(η − 1)+ 5x∗

[

1+ (η − 1) · x∗2
] 2

}

+C4.

(A20)C3 =
8
[

4η2 − 2(η + 1)
]

3η2
√
η − 1 · tan−1

√
η − 1+ (η − 1)(3η + 2)

, C4 =
4

η − 1
.

(A21)CP(η) = −
0

∫

−1

p∗1,i(x
∗, η)·dx∗ =

2(2η + 1)

3η + 2+ 3η2√
η−1

tan−1
√
η − 1

·
(

1

η
+

3tan−1
√
η − 1√

η − 1

)

−
4η − 1

η(η − 1)
+
3tan−1

√
η − 1

(η − 1)
3
2

.

(A22)p∗ = p∗o + (p∗1r + i · p∗1i) · δ · eiτ .

(A23)AP(η) = 1+

0
∫

−1

x · p∗odx

0
∫

−1

p∗odx

.

And the location of load center for dynamic load only is 
calculated with

Since p∗1r is two times of static pressure p∗o and has 
dominate amount in comparison to p∗1i , the value of Eq. 
(A24) is not very much different from the value from Eq. 

(A23). A ratio RP(η) = APd(η)/AP(η) was defined for 
comparing the difference between Eqs. (A23) and (A24). 

Similarly this ratio is also defined for exponential and 
linear slider (see Figure  4d). This paper used static load 
center for Sommerfeld Number evaluation and dynamic 

load center for stiffness and damping evaluation for all 
three types of sliding bearings. The notion AEd and ALd 
presents the dynamic load center of exponential and lin-
ear slider respectively.
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