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Abstract 

Given the global lack of effective analysis methods for the impact of design parameter tolerance on performance 
deviation in the vehicle proof-of-concept stage, it is difficult to decompose performance tolerance to design param-
eter tolerance. This study proposes a set of consistency analysis methods for vehicle steering performance. The 
process of consistency analysis and control of automotive performance in the conceptual design phase is proposed 
for the first time. A vehicle dynamics model is constructed, and the multi-objective optimization software Isight is 
used to optimize the steering performance of the car. Sensitivity analysis is used to optimize the design performance 
value. The tolerance interval of the performance is obtained by comparing the original car performance value with 
the optimized value. With the help of layer-by-layer decomposition theory and interval mathematics, automotive 
performance tolerance has been decomposed into design parameter tolerance. Through simulation and real vehicle 
experiments, the validity of the consistency analysis and control method presented in this paper are verified. The 
decomposition from parameter tolerance to performance tolerance can be achieved at the conceptual design stage.
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1  Introduction
Performance consistency refers to the dynamic perfor-
mance consistency of a mass-produced vehicle [1]; this is 
representative of the quality of the vehicle. It is relatively 
easy to ensure the performance of a car; however, ensur-
ing that all cars are simultaneously near the ideal target 
value is difficult, and there are no particularly stringent 
requirements for part manufacturing, which is a major 
challenge for automotive design and performance engi-
neers. At present, multi-objective optimization software 
[2‒6], such as Isight, is used in the industry. The per-
formance of the target vehicle is satisfied by optimizing 
the sensitive parameters. However, ensuring that these 
target performances can be achieved for all benchmark 
cars, i.e., designing the part tolerances to ensure that the 
dynamic performance of the vehicle is within an allow-
able tolerance range, has not previously been addressed. 

Even though this has been studied by various scholars, it 
remains only in a state of research and there is no devel-
oped method for reference.

A domestic car is adopted as an example. First, the 
target steering performance parameters are obtained by 
testing the performance [7‒11]. The performance target 
parameters are optimized to obtain their performance 
tolerance interval. Next, the model is established to 
analyze the sensitivity of the steering, tire, and suspen-
sion characteristic parameters and the steering perfor-
mance of the vehicle [12‒14], and to determine the key 
parameters that affect steering performance. Finally, the 
performance of the vehicle is verified via a consistency 
simulation analysis of the target performance interval 
decomposition method [15‒20] and the deviation inter-
vals of the steering, tire, and suspension characteris-
tic parameters are obtained. The results show that the 
decomposition from vehicle performance tolerance to 
parameter tolerance can be effectively realized during the 
conceptual design stage through the consistency analysis 
and control process established in this study.
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2 � Process of Consistency Research
According to the global investigation and research of 
relevant theories, there is no complete set of process 
methods in the literature that are suitable for determin-
ing how to decompose the performance tolerance to the 
consistency design on the hard points, which means the 
key joint point between body and chassis components, 
assembly features, and functional components. There-
fore, through self-exploration, the three-step process for 
the vehicle performance consistency analysis and control 
is presented below:

(1)	 The target performance is decomposed into the 
hard points and assembly characteristics;

(2)	 Related coupling analysis of the sensitivity param-
eters and performance;

(3)	 The performance tolerance interval is decomposed 
into feature tolerance and hard point deviation of 
the assembly.

3 � Interval Decomposition Theory of Objective 
Performance Tolerance

3.1 � Interval Mathematics Theory—Numerical 
Differentiation Theory

It is very difficult to obtain the derivative of the design 
parameter reference point analytically because of the 

The formula for the center difference quotient is 
expressed as following: If the function y = f (x) is 
continuous in [a, b] the upper third order, it exists 
x − h, x, x + h ∈ [a, b] , which makes

and ξ = ξ(x) ∈ [a, b] , obtaining:

where h(h > 0) is a small increment of the absolute value. 
The truncation error of the first derivative approximation 
of Eq. (2), f ′(x) , is:

Eq. (1) is referred to as the first derivative central differ-
ence formula.

3.2 � Taylor Expansion for Asymmetric Structure
First, assume m target performance functions, 
f1(X), f2(X), f3(X), · · · , fm(X) , and n independ-
ent variables, X=(x1, x2, x3, · · · , xn) . The m 
function is ignored for the higher-order terms. At this 
point X=(x1, x2, x3, · · · , xn) can be expanded into the 
Taylor series:
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i = 1, 2, · · · ,m; j = 1, 2, · · · , n,complexity of the steering performance dynamics model. 
Therefore, a numerical method is adopted to realize the 
derivation of the design parameters at the base point. The 
principle is to use the discrete method to approximate 
the value of the derivative based on the value of the func-
tion at some discrete points.
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This can be rearranged to obtain:

where �fi = fi(X)− fi(X
c) represents the change in func-

tion relative to the deviation point fi(Xc) . �xi = xi − xci  
represents the change in the independent variable, xi , 
relative to the deviation point xci  , and fixj
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Finally, we obtain:
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The equation is deformed and the matrix expression is 
as follows:
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The interval mathematical theory is now introduced, 
assuming the change interval of the independent variable:

The function change interval is:

By substitution, the system can be expressed as:

The above equation is obtained using the following:

(9)Am×nXn×1 = bm×1,

Am×n =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









,

x1 =
[

x1, x1
]

, x2 =
[

x2, x2
]

, · · · , xn =
[

xn, xn
]

.

(10)f1 =
[

f
1
, f 1

]

, f2 =
[

f
2
, f 2

]

, · · · , fm =

[

f
m
, f m

]

.

(11)



























































�

f
1
, f 1

�

− f1
�

xc1, x
c
2, · · · , x

c
n

�

= a11
��

x1, x1
�

− xc1
�

+ · · ·

+a1n
��

xn, xn
�

− xcn
�

,
�

f
2
, f 2

�

− f2
�

xc1, x
c
2, · · · , x

c
n

�

= a21
��

x1, x1
�

− xc1
�

+ · · ·

+a2n
��

xn, xn
�

− xcn
�

,

...
�

f
m
, f m

�

− fm
�

xc1, x
c
2, · · · , x

c
n

�

= am1

��

x1, x1
�

− xc1
�

+ · · ·

+amn

��

xn, xn
�

− xcn
�

.



Page 4 of 12Liu et al. Chin. J. Mech. Eng.           (2021) 34:11 
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The upper and lower deviation values of the design 
parameters A2m×2n can be calculated using the 2m×2n 
order coefficient matrix. The tolerance of the design 
parameters is also obtained. This method is referred to as 
the asymmetric interval Taylor expansion algorithm.

3.3 � Algorithm for the Least‑Squares Generalized Inverse 
Interval

3.3.1 � Generalized Inverse Matrix
Given the matrix A ∈ Cm×n , if the matrix X ∈ Cn×m sat-
isfies some or all of the following [21]:

Then X is referred to as a generalized inverse matrix.

3.3.2 � Generalized Inverse Matrix Theory Used to Solve Linear 
Equations

For a given inhomogeneous linear system,
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where A ∈ Cm×n, b ∈ Cm , and x ∈ Cn are the unknown 
undetermined vectors. If the existence of vector x sets up 
the system of linear equations, they are compatible; oth-
erwise, they are referred to as incompatible or inconsist-
ent equations.

The problem of solving linear equations is commonly 
accompanied by the following situations:

(1)	 Linear Eq. (17) are compatible with an infinite num-
ber of solutions and the general solution of the 
system of linear equations can be obtained. Simul-
taneously, if the system of linear equations is com-
patible, the solution of its extremely small norm can 
be obtained: 

	 where �·� is the Euclidean norm and the solution of 
the minimal norm that satisfies this condition is 
unique.

2	 If the system of linear Eq. (17) are incompatible, there 
is no solution in the usual sense. However, in many 
practical engineering problems, a set of extremum 
solutions is required.

where �·� is the Euclidean norm, referred to as the least-
squares solution of the contradictory linear equations. In 
general, the least-squares solution of a system of contra-
dictory equations is not unique. However, in the set of 
the least-squares solutions, the only solution is that with 
the smallest norm, referred to as the least-squares solu-
tion of the minimal norm:

3.3.3 � Solution of Compatible Equations
The necessary and sufficient condition for a linear system 
of Eq. (17) is
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and its general solution is as follows:

Its minimal norm solution (unique solution) is

among them, A(1,4) ∈ A{1, 4} , y ∈ Cn.

3.3.4 � Solution of Incompatible Linear Equations
If the system of linear Eq. (17) is incompatible, its least-
squares solution is

The least-squares (unique) solution is

among them,

3.3.5 � Algorithm for the Least‑Squares Generalized Inverse 
Interval

After Eq. (21), with the difference between the upper and 
lower deviations of the design parameters and the devia-
tion of the target performance tolerance obtained, the 
least-squares solution is obtained using the generalized 
inverse matrix theory. Thus, the minimal norm solution 
and the least-squares solution are obtained.

(1)	When m = n and detA  = 0 , linear Eq. (21) exist and 
are unique:

(21)AA
(1)b = b,

(22)x = A
(1)b+

(

In − A
(1)
A

)

y.

(23)x = A
(1,4)b,

(24)x = A
(1,3)b.

(25)x = A
+b,

A
(1,3) ∈ A{1, 3}.

2	 When m  = n , there is no ordinary inverse matrix.

When m < n and rank(A|b) = rank(A) , the system is 
compatible. The minimal norm solution is:

where A−
m is the minimum norm generalized inverse, sat-

isfying min
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�x�.
When m < n and rank(A|b) �= rank(A) , the system is 

incompatible. The minimal norm solution is:
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When m > n and rank(A|b) = rank(A) , the system is 
compatible. The minimal norm solution is:
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When m > n and rank(A|b) �= rank(A) , the system is 
in contradiction. The minimal norm solution is:

satisfying min
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�x�.

For a compatible linear system, its minimum norm gen-
eralized inverse A−

m is not unique. However, the minimal 
norm solution A−

mb is unique. The positive inverse matrix 
A
+ is one of the most generalized inverse matrices.
Therefore, the solution of the least-squares solution of 

the linear equations is transformed into the process of 
the positive inverse matrix A+.

The least-squares solution of Eq. (21) is obtained:

The tolerance interval of the design parameters is 
obtained as follows:
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Figure 1  Steering power-assist characteristics
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3.4 � Operation Steps for the Decomposition 
of the Performance Tolerance Interval

The decomposition operation steps of the target perfor-
mance tolerance interval are as follows [22].

3.4.1 � Coefficient Gained
Through the method of the center difference quotient, 
the coefficients of the following Taylor expansion, α11, 
α12,…, αmn, are obtained.

3.4.2 � Matrix Established
The coefficient is obtained by combining the center dif-
ference quotient method and the asymmetric Taylor 
expansion method. The mathematical matrix, required 
for the tolerance calculation, is obtained.

3.4.3 � Matrix Solved
The mathematical matrix is calculated using the least-
squares generalized inverse interval algorithm, obtaining 
the tolerance interval for the steering system assembly or 
hard points.

4 � Validation of Analysis Method for Steering 
Characteristic Consistency

4.1 � Establishment of the Vehicle Model
The following parameters need to be considered when 
the vehicle model is built, with the help of the software 
Carsim.

4.1.1 � Steering System
The parameters of the steering system include steering 
column damping, dry friction, hysteresis; steering gear 
damping; hysteresis of power steering; and the steering 
power characteristic. The steering system parameters are 
shown in Figure 1.

4.1.2 � Positioning Parameters of Left and Right Front Wheel 
Pins

The positioning parameters of the left and right front 
wheel pins include after the main pin, the main pin incli-
nation, the side distance of the wheel center to the main 
pin center, and the longitudinal distance of the wheel 
center to the main pin center.

4.1.3 � Wheel Alignment
The wheel alignment includes the initial beam angle 
of the left and right wheels and their initial external tilt 
angles.

4.1.4 � Tire Characteristics
The tire characteristics include the vertical tire rigidity, 
lateral force, longitudinal force, positive torque, and tilt-
lateral force.

The lateral force characteristics of the tire are shown in 
Figure 2.

The positive torque characteristics of the tire are shown 
in Figure 3.

4.1.5 � Suspension System
The suspension system includes K left and right suspen-
sion characteristics (external dip angle, front beam angle, 
side angle, lateral displacement of the wheel center, and 
longitudinal displacement of the wheel center vs. wheel 
jump) and C left and right suspension characteristics 
(external dip angle, front beam angle, side angle, lateral 
displacement of the wheel center, longitudinal displace-
ment of the wheel center vs. longitudinal force, lateral 
force, and righting torque).

Figure 2  Tire lateral force characteristics

Figure 3  Tire align torque characteristic
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The main system model parameters of the suspension 
stiffness and damping are shown in Figures 4, 5.

The vehicle model is established as Figure 6 shown.

4.2 � Validation of the Vehicle Model
To verify the accuracy of the dynamic steering perfor-
mance model in this study, typical experimental steering 
performance conditions are hereby selected. The accu-
racy of the model was verified by comparing the experi-
mental data and simulation results. Verification of the 
specific vehicle steering performance test and simulation 
comparison is as follows.

4.2.1 � Verification of Steady‑State Rotation Response
The steady-state circumferential condition is selected to 
verify the steady-state steering performance of the vehi-
cle. The steady-state steering performance of the model 
is verified by comparing the experimental and simulation 
results of the lateral acceleration (Figure  7) and trans-
verse pendulum angular velocity (Figure 8), under steady 
circumferential motion.

4.2.2 � Verification of Transient Steering Response 
Performance

The transient steering response performance of the vehi-
cle is validated by the experimental conditions of the 
angular step and angular pulse of the steering wheel. By 
comparing the real vehicle experimental and simulation 
values of lateral acceleration and yaw rate under steering 
wheel angular step and angular pulse motion, the corre-
sponding transient steering performance accuracy of the 
model is verified.

The lateral acceleration and yaw rate are shown in Fig-
ures 9 and 10.

4.2.3 � Verification of Steering Portability
The steering portability performance of the vehicle is 
validated by the experimental conditions of S shape rota-
tion of the steering wheel. By comparing the real vehicle 
experimental and simulation values of steering torque 
and yaw rate under steering wheel S shape rotation, the 
corresponding steering performance accuracy of the 
model is verified.

The yaw rate and steering torque are shown in Fig-
ures 11 and 12.

4.2.4 � Verification of Turn‑Back Performance
In this study, the experimental conditions of low-
speed and high-speed hand-off are selected to verify 

Figure 4  Toe angle change with wheel travel

Figure 5  Camber angle change with wheel travel

Figure 6  Vehicle model
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the steering performance of the vehicle. The simulation 
results show that the steering performance of the model 
is correct by comparing the real vehicle experimental and 
simulation results of the lateral acceleration and yaw rate 
under the motion of a low-speed and high-speed hand-
off. Figures 13 and 14 show the experimental and simula-
tion comparison of a high-speed hand-off vehicle.

4.3 � Determination of Steering Target
In this study, the vehicle steering wheel torque and TB 
factors are selected as the target performance indicators 
for the consistency analysis of vehicle steering charac-
teristics. The TB factor is obtained by multiplying the 
peak response time of the yaw rate by the steady lateral 

Figure 7  Lateral acceleration

Figure 8  Yaw rate

Figure 9  Lateral acceleration

Figure 10  Yaw rate

Figure 11  Yaw rate
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deflection angle of the center of mass of the vehicle. The 
simulation condition is the steering wheel angle step 
condition in the test of the vehicle steering transient 
response performance. The speed is 80 km/h and the 
steering wheel angle corresponds to a lateral acceleration 
of 0.2g.

The original steering performance value is shown in 
Table 1.

4.4 � Comprehensive Analysis of Parameter Sensitivity 
for Steering Performance According to the Target 
System

To obtain the sensitivity of the system parameters rela-
tive to the steering wheel torque and TB factor [23‒25], 
Carsim software and Isight software were combined for 
simulation analysis; the results are shown in Figure 15.

4.5 � Optimization Design for Steer Target Performance
Optimization of the steering target performance with 
Isight software and Carsim is presented [26‒28] and the 
theory is utilized for multi-island genetic optimization 
[29‒34].

4.5.1 � Optimization Objectives
The optimization objectives are listed in Table 2.

The initial values and ranges of the optimization 
parameters are shown in Table 3.

4.5.2 � Optimization Results
The optimization results are shown in Table 4.

Figure 12  Steering torque

Figure 13  Yaw rate

Figure 14  Lateral acceleration

Table 1  Original steering performance value

Index Initial value

Steering wheel torque 4.5569

TB factor 1.4196

Figure 15  Sensitivity comprehensive analysis of steering 
performance parameters
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4.6 � Decomposition of the Performance Tolerance Interval
Here, the decomposition of the performance toler-
ance interval calculation is shown [35‒39]. Its role is to 
decompose the steering performance tolerance interval 
into the system tolerance interval [40, 41].

The performance tolerance interval is obtained by 
combining the target performance optimization result 
with the original design value. The steering moment is [0, 
0.2369]. The TB factor is [0, 0.1796]. The Jacobian matrix 

is obtained from the consistency analysis theory, and is 
shown as follows: 

Solving the following:

we obtain:

A4×32X32×1 = b4×1,

result =

[

0.0324

0.5325

−0.3665

−0.0093

0.0123

0.2024

0.0078

0.1404

0.0080

0.0146

0.0033

0.0080

0.0172

0.6484

−0.0290

0.1108

0.0250

0.0776

0.0306

0.0497

−0.0002

0

−0.0086

−0.0002

0.0141

0.0281

0.0078

0.0249

0.0030

0.1391

0.0166

0.3283

]

.

Table 2  Steering performance target value

Index Target value

Steering wheel torque 4.32

TB factor 1.24

Table 3  Initial parameter values and optimization range

Note:

A_TOE_L: left wheel toe angle for front suspension,

A_TOE_R: right wheel toe angle for front suspension,

CS_FY_COEFFICIENT_FL: front left wheel toe angle rate with lateral force case,

CS_FY_COEFFICIENT_FR: front right wheel toe angle rate with lateral force case,

CS_FY_COEFFICIENT_RL: rear left wheel toe angle rate with lateral force case,

CS_FY_COEFFICIENT_RR: rear right wheel toe angle rate with lateral force case,

FS_COMP_COEFFICIENT: rear wheel rate,

FY_k11: tire lateral force with vertical force 1725 N, tire slip angle 0.5,

FY_k12: tire lateral force with vertical force 2500 N, tire slip angle 0.5,

HYS_COL: steering column friction force,

Mz_k12: tire align torque with vertical force 3430 N, tire slip angle 0.5,

Mz_k12: tire align torque with vertical force 5146 N, tire slip angle 0.5,

K102: steering assist torque with steering wheel torque of 4 N·m and vehicle 
speed of 80 km/h,

K112: steering assist torque with steering wheel torque of 2 N·m and vehicle 
speed of 80 km/h.

Parameter Initial value Optimize range

A_TOE_L 0 (−0.5 ,0.5)

A_TOE_R 0 (−0.5, 0.5)

CS_FY_COEFFICIENT_FL −4.50 × 10−4 (−4.95 × 10−4, −4.05 × 10−4)

CS_FY_COEFFICIENT_FR −4.50×10−4 (−4.95×10−4, −4.05×10−4)

CS_FY_COEFFICIENT_RL −8.31 × 10−4 (−9.14 × 10−5, −7.479 × 10−5)

CS_FY_COEFFICIENT_RR −8.31 × 10−4 (−9.14 × 10−5, −7.479 × 10−5)

FS_COMP_COEFFICIENT 35 (31.5 , 38.5)

FY_k11 444.357 (400 , 466.5)

FY_k12 894.186 (805 , 984)

HYS_COL 1.5 (1.35 , 1.65)

Mz_k12 17.9612 (16 , 20)

Mz_k13 38.2152 (34 , 42)

K102 40 (32 , 48)

K112 3.11 (2.5 , 3.7)

kToe2 −0.501756 (−0.55 , −0.45)

kToe4 0.425353 (0.38 , 0.47)

Table 4  Optimization results

Parameter Initial value Optimize result

A_TOE_L 0 0.0396

A_TOE_R 0 −0.2071

CS_FY_COEFFICIENT_FL −4.50 × 10−4 −4.77 × 10−4

CS_FY_COEFFICIENT_FR −4.50 × 10−4 −4.50×10−4

CS_FY_COEFFICIENT_RL −8.31 × 10−5 −8.55 × 10−5

CS_FY_COEFFICIENT_RR −8.31 × 10−5 −8.25 × 10−5

FS_COMP_COEFFICIENT 35 32.6579

FY_k11 444.357 482.1273

FY_k12 894.186 855.736

HYS_COL 1.5 1.5797

Mz_k12 17.9612 16.5643

Mz_k13 38.2152 41.196

K102 40 44.528

K112 3.11 3.0892

kToe2 −0.501756 −0.4831

kToe4 0.425353 0.3957
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4.7 � Consistency
The consistency analysis results are shown in Table 5.

5 � Conclusions

(1)	 By modeling the steering characteristic parameters 
and tolerances of the actual system, the feasibil-
ity of the methods for expressing the characteristic 
parameters and tolerance model in the consistency 
analysis are verified.

(2)	 According to the vehicle steering performance and 
characteristic parameters sensitivity analysis, the 
feasibility of the comprehensive analysis method of 
correlation and coupling between performance and 
parameters is verified.

(3)	 The feasibility of the consistency design process 
method is verified by decomposing the tolerance 
interval of the actual steering performance index.

Acknowledgements
The authors would like to express sincere gratitude to the State Key Labora-
tory of Automobile Simulation and Control for providing the test environment.

Authors’ contributions
YL is responsible for writing the entire paper and conducting the simulation 
model. XG provided advice on the abstract. PL reviewed the introduction and 
RG checked the validation results. All authors read and approved the final 
manuscript.

Authors’ Information
Yanhua Liu, born in 1973, is currently an engineer at Brilliance Auto R&D Center, 
Shenyang, China. He received his master’s degree from Jilin University, China, in 
2011. His research interests include the chassis system and dynamic simula-
tion. Tel: +86-24-88412628.

Xin Guan, Doctor of Engineering, distinguished Professor of Cheung Kong 
scholar. He is the president of Automobile Research Institute of Jilin University, 
China. The vice president of Automobile Engineering Society of China, and the 
counselor of Jilin Provincial Government.

Pingping Lu is a teacher at Jilin University, China. She received her doctor 
degree from Jilin University, China, in 2012. Her research interests include the 
chassis system and dynamic simulation.

Rui Guo is a teacher at Jilin University, China. She received her doctor degree 
from Jilin University, China, in 2009. Her research interests include the chassis 
system and dynamic simulation.

Funding
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 27 June 2019   Revised: 12 November 2020   Accepted: 25 
November 2020

References
	[1]	 X Guan. Research progress of vehicle dynamics modeling and simulation in 

national key laboratory of vehicle dynamics. Changchun: Academic Report 
of National Key Laboratory of Automobile Dynamic Simulation of Jilin 
University, 2009.

Table 5  Consistency analysis results

Index Optimize result

Steering wheel torque (4.32 , 4.5569)

TB factor (1.24 , 1.4196)

Parameter Optimize result

A_TOE_L (0.0437, 0.0607)

A_TOE_R (−0.2830, −0.2090)

CS_FY_COEFFICIENT_FL (−5.7338 × 10−4, −4.8273 × 10−4)

CS_FY_COEFFICIENT_FR (−5.1340 × 10−4, −4.5370 × 10−4)

CS_FY_COEFFICIENT_RL (−8.6774 × 10−5, −8.6209 × 10−5)

CS_FY_COEFFICIENT_RR (−8.3140 × 10−5, −8.2752 × 10−5)

FS_COMP_COEFFICIENT (33.2196, 55.4817)

FY_k11 (371.7201, 535.547)

FY_k12 (877.1294, 922.1411)

HYS_COL (1.628, 1.6582)

Mz_k12 (16.561, 16.5643)

Mz_k13 (40.8417, 41.1878)

K102 (45.1559, 45.7792)

K112 (3.1133, 3.1661)

kToe2 (−0.5503, −0.4845)

kToe4 (0.3657, 0.5256)



Page 12 of 12Liu et al. Chin. J. Mech. Eng.           (2021) 34:11 

	[2]	 L X Zhang, J Q Liu, F Q Pan, et al. Multi-objective optimization study of 
vehicle suspension based on minimum time handling and stability. Pro-
ceedings of the Institution of Mechanical Engineers, 2020, 234(9): 2355-2363.

	[3]	 H Xu, Y Q Zhao, C Ye, et al. Integrated optimization for mechanical elastic 
wheel and suspension based on an improved artificial fish swarm algo-
rithm. Advances in Engineering Software, 2019: 137.

	[4]	 Q Shi, C W Peng, Y K Chen, et al. Robust kinematics design of MacPher-
son suspension based on a double-loop multi-objective particle swarm 
optimization algorithm. Journal of Automobile Engineering, 2019, 233(12): 
3263-3278.

	[5]	 X Guan, S Y Feng, J Zhan, et al. Solve the Angle and position of the spin-
dle axis based on steering geometry. Engineering Science and Technology, 
2009, 9(21): 6593-6596.

	[6]	 J J Hu, Z B He, P Ge, et al. Modeling and simulation of electric power 
steering system based on multi-body dynamics. Applied Mechanics and 
Materials, 2012, 1498: 2091-2097.

	[7]	 H Spencer, R X Ning. Virtual product development technology. Beijing: 
China Machine Press, 2002.

	[8]	 X M Shi. Automobile chassis innovation research and development and 
computer simulation. Changchun: Academic Report of National Key 
Laboratory of Automobile Dynamic Simulation of Jilin University, 2006.

	[9]	 T D Kim, J H Kim, J H Kim. Sensitivity analysis and optimum design of 
energy harvesting suspension system according to vehicle driving condi-
tions. Journal of the Korean Society for Precision Engineering, 2019, 36(12): 
1173-1181.

	[10]	 E Sert, P Boyraz. Optimization of suspension system and sensitivity analy-
sis for improvement of stability in a midsize heavy vehicle. Engineering 
Science and Technology, an International Journal, 2017, 20(3): 997-1012.

	[11]	 M Sandim, A Paiva, L H D Figueiredo. Simple and reliable boundary 
detection for mesh free particle methods using interval analysis. Journal 
of Computational Physics, 2020, 420.

	[12]	 Y H Ma, Y F Wang, C Wang, et al. Interval analysis of rotor dynamic 
response based on Chebyshev polynomials. Chinese Journal of Aeronaut-
ics, 2020, 9: 2342–2356.

	[13]	 L M Tang, Y Xiao, J W Xie. Fatigue cracking checking of cement stabilized 
macadam based on measurement uncertainty and interval analysis. 
Construction and Building Materials, 2020, 250.

	[14]	 J W Fan, H H Tao, R Pan, et al. An approach for accuracy enhancement of 
five-axis machine tools based on quantitative interval sensitivity analysis. 
Mechanism and Machine Theory, 2020, 148: 103806.

	[15]	 H B Huang, J H Wu, X R Huang, et al. A novel interval analysis method to 
identify and reduce pure electric vehicle structure-borne noise. Journal of 
Sound and Vibration, 2020, 475: 115258.

	[16]	 Z Li, L Zheng. Integrated design of active suspension parameters for 
solving negative vibration effects of switched reluctance-in-wheel motor 
electrical vehicles based on multi-objective particle swarm optimization. 
Journal of Vibration and Control, 2019, 25(3): 639-654.

	[17]	 M H Shojaeefard, A Khalkhali, S Yarmohammadisatri. An efficient sensitiv-
ity analysis method for modified geometry of Macpherson suspension 
based on Pearson correlation coefficient. Vehicle System Dynamics, 2017, 
55(6): 827-852.

	[18]	 H Taghavifar, S Rakheja. Parametric analysis of the potential of energy 
harvesting from commercial vehicle suspension system. Journal of Auto-
mobile Engineering, 2019, 233(11): 2687-2700.

	[19]	 R K Ding, R C Wang, X P Meng, et al. Energy consumption sensitivity 
analysis and energy-reduction control of hybrid electromagnetic active 
suspension. Mechanical Systems and Signal Processing, 2019, 134(Dec.1): 
106301.1-106301.20.

	[20]	 Y Q Zhao, H Xu, Y J Deng, et al. Multi-objective optimization for ride 
comfort of hydro-pneumatic suspension vehicles with mechanical elastic 
wheel. Journal of Automobile Engineering, 2019, 233(11): 2714-2728.

	[21]	 B R Fang, J D Zhou, Y M Li. Matrix theory. Beijing: Tsinghua University Press, 
2004.

	[22]	 W B Guo, M S Wei. Singular value decomposition and its application in 
generalized inverse theory. Beijing: Science Press, 2008.

	[23]	 X B Ma, P K Wong, J Zhao. Practical multi-objective control for automo-
tive semi-active suspension system with nonlinear hydraulic adjustable 
damper. Mechanical Systems and Signal Processing, 2019, 117: 667-688.

	[24]	 A Khadr, A Houidi, L Romdhane. Design and optimization of a semi-active 
suspension system for a two-wheeled vehicle using a full multibody 
model. Proceedings of the Institution of Mechanical Engineers. Part K, Journal 
of Multi-body Dynamics, 2017, 231(k4): 630-646.

	[25]	 A Seifi, R Hassannejad, M A Hamed. Use of nonlinear asymmetrical shock 
absorbers in multi-objective optimization of the suspension system in 
a variety of road excitations. Proceedings of the Institution of Mechanical 
Engineers. Part K, Journal of Multi-body Dynamics, 2017, 231(2): 372-387.

	[26]	 R Soon, L N B Gummadi, K Cao. Robustness considerations in the design of a 
stabilizer bar system. SAE Paper, 2005, 01: 1718.

	[27]	 J Zhou. Reliability and robustness mindset in automotive product develop-
ment for global markets. SAE Paper, 2005, 01: 212.

	[28]	 Narasimhan K, Sharma A K. Multistage process optimization for manu-
facturing automotive component using finite element method. SAE Paper, 
2005, 26: 332.

	[29]	 D J Ball, M G Zammit, G C Mitchell. Program optimization by robust design. 
SAE Paper, 2005, 01: 3849.

	[30]	 H An, S Chae, H Kim. Optimum design of exhaust system using the robust 
design. SAE Paper, 2006, 01: 0082.

	[31]	 E G Leaphart. Application of robust engineering methods to improve ECU 
software testing. SAE Paper, 2006, 01: 1600.

	[32]	 A Zutshi, B Avutapalli, D Stagner, et al. Applying six sigma tools to the rear 
driveline system for improved vehicle level NVH performance. SAE Paper, 
2007, 01: 2286.

	[33]	 S Lee, W Ha, T Yeo. Robust design for occupant protection system using 
Taguchi’s method. SAE Paper, 2007, 01: 3724.

	[34]	 Y Q Zhang. The smoothness analysis and parameter selection of virtual 
prototype based on orthogonal test. Automotive Technology, 2005, 10.

	[35]	 M Yao, G L Wang, K K Zhou. Robust optimization design of structural 
parameters of vehicle drum brake. Journal of Agricultural Machinery, 2005, 
36(121): 17-20.

	[36]	 M Q Wang. The application of Taguchi method in the optimization of 
vehicle body frame stiffness. Automotive Technology, 1998, 5: 5-7.

	[37]	 C Y Tang. The optimal design of vehicle dynamic stability characteristics. 
Wuhan: Huazhong University of Science and Technology, 2007.

	[38]	 J H Dong. Multi-objective optimization method and application research 
based on microgenetic algorithm. Changsha: Hunan University, 2010.

	[39]	 Fengli Huang, Jianping Lin, Meipeng Zhong, et al. Multi-objective robust 
design and optimum algorithm in injection molding processing. Journal 
of Tongji University, 2011, 39(2): 287-291+298.

	[40]	 K Guo, L Chen, Y H Wei. Optimization and its application. Beijing: Higher 
Education Press, 2007.

	[41]	 C Fu, Y Liu, Z Xiao. Interval differential evolution with dimension-
reduction interval analysis method for uncertain optimization problems. 
Applied Mathematical Modelling, 2018, 69: 441-452.


	Research on Key Issues of Consistency Analysis of Vehicle Steering Characteristics
	Abstract 
	1 Introduction
	2 Process of Consistency Research
	3 Interval Decomposition Theory of Objective Performance Tolerance
	3.1 Interval Mathematics Theory—Numerical Differentiation Theory
	3.2 Taylor Expansion for Asymmetric Structure
	3.3 Algorithm for the Least-Squares Generalized Inverse Interval
	3.3.1 Generalized Inverse Matrix
	3.3.2 Generalized Inverse Matrix Theory Used to Solve Linear Equations
	3.3.3 Solution of Compatible Equations
	3.3.4 Solution of Incompatible Linear Equations
	3.3.5 Algorithm for the Least-Squares Generalized Inverse Interval

	3.4 Operation Steps for the Decomposition of the Performance Tolerance Interval
	3.4.1 Coefficient Gained
	3.4.2 Matrix Established
	3.4.3 Matrix Solved


	4 Validation of Analysis Method for Steering Characteristic Consistency
	4.1 Establishment of the Vehicle Model
	4.1.1 Steering System
	4.1.2 Positioning Parameters of Left and Right Front Wheel Pins
	4.1.3 Wheel Alignment
	4.1.4 Tire Characteristics
	4.1.5 Suspension System

	4.2 Validation of the Vehicle Model
	4.2.1 Verification of Steady-State Rotation Response
	4.2.2 Verification of Transient Steering Response Performance
	4.2.3 Verification of Steering Portability
	4.2.4 Verification of Turn-Back Performance

	4.3 Determination of Steering Target
	4.4 Comprehensive Analysis of Parameter Sensitivity for Steering Performance According to the Target System
	4.5 Optimization Design for Steer Target Performance
	4.5.1 Optimization Objectives
	4.5.2 Optimization Results

	4.6 Decomposition of the Performance Tolerance Interval
	4.7 Consistency

	5 Conclusions
	Acknowledgements
	References




