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Abstract 

Engine tests are both costly and time consuming in developing a new internal combustion engine. Therefore, it is 
of great importance to predict engine characteristics with high accuracy using artificial intelligence. Thus, it is pos-
sible to reduce engine testing costs and speed up the engine development process. Deep Learning is an effective 
artificial intelligence method that shows high performance in many research areas through its ability to learn high-
level hidden features in data samples. The present paper describes a method to predict the cylinder pressure of a 
Homogeneous Charge Compression Ignition (HCCI) engine for various excess air coefficients by using Deep Neural 
Network, which is one of the Deep Learning methods and is based on the Artificial Neural Network (ANN). The Deep 
Learning results were compared with the ANN and experimental results. The results show that the difference between 
experimental and the Deep Neural Network (DNN) results were less than 1%. The best results were obtained by Deep 
Learning method. The cylinder pressure was predicted with a maximum accuracy of 97.83% of the experimental value 
by using ANN. On the other hand, the accuracy value was increased up to 99.84% using DNN. These results show that 
the DNN method can be used effectively to predict cylinder pressures of internal combustion engines.
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1  Introduction
Among Artificial Intelligence technologies, Deep Learn-
ing is seen as the driving force of technology generali-
zation and development [1]. In general, Deep Learning 
technology is a sophisticated technology based on an 
increase in the number of hidden layers in a simple neu-
ral network. According to LeCun et al. [2], training neu-
ral networks with more than three hidden layers is called 
Deep Learning. In recent years, Deep Learning has 
emerged as a hot research topic in the field of Machine 
Learning and has achieved remarkable success in learn-
ing top hidden features in data samples [3]. Deep Neu-
ral Network which is one of Deep Learning techniques 
has become a powerful and extremely popular mecha-
nism widely used to solve various complexity problems, 
depending on their ability to generate models that fit 

nonlinear complex problems [4]. The main reasons why 
Deep Neural Networks are so popular nowadays are lack 
of correctness, efficiency and flexibility [5]. Deep Learn-
ing methods are extensively applied to various fields of 
science and engineering such as speech recognition, 
computer vision, pattern recognition, image classifica-
tion, and language learning methods [6, 7].

There are many studies in the literature which use Arti-
ficial Intelligence in internal combustion engines. Cay [8] 
estimated fuel consumption, brake power and exhaust 
gas temperature of a SI engine by using ANN method. 
Cay et  al. [9] predicted performance and exhaust emis-
sions of an engine fueled with gasoline and methanol 
using ANN. Manieniyan et  al. [10] performed wear ele-
ment analysis of a DI diesel engine using biodiesel with 
exhaust gas recirculation using neural networks. Bahri 
et  al. [11] investigated combustion noise, and ringing 
operation in a 0.3 L converted diesel engine using ANN. 
Rahimi et al. [12] predicted the performance and exhaust 
emissions of a compression ignition engine using a wave-
let neural network with a stochastic gradient algorithm. 
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Bendu et al. [13] developed an intelligent estimation tool 
with the Generalized Regression Neural Networks to pre-
dict the performance (brake thermal efficiency, exhaust 
gas temperature) and exhaust gas emissions (UHC, CO, 
NO, smoke) of an ethanol-fueled HCCI engine. In a study 
by Roy et  al. [14], the availability of ANNs to estimate 
performance and exhaust emissions for a single-cylinder, 
four-stroke Common Rail Direct Injection Diesel engine 
is being investigated. Rezai et al. [15] developed two dif-
ferent ANN models, radial basis function and forward 
feed, in order to predict performance and emission val-
ues of a HCCI engine operating with oxygenated fuels. 
Heister and Froehlich [16] proposed the use of an ANN 
model to predict the cylinder pressure at different engine 
speeds, depending on the crankshaft angle. In their 
study, Benneth et  al. [17] proposed a Repetitive Non-
linear Autoregressive Neural Network with exogenous 
input for restoring cylinder pressure in multi-cylinder 
IC motors using measured crank kinematics. They have 
provided fast and robust training using crankshaft speed 
and crankshaft acceleration as input variables. Maass 
et  al. [18] used a NARX Neural Network to predict the 
cylinder pressure. The used ANN model was validated by 
experimental data from a diesel engine. Saraee et al. [19] 
investigated the effect of nanoparticle addition on spe-
cific fuel consumption and exhaust emissions of a diesel 
engine using ANN. Luján et al. [20] developed an adap-
tive learning algorithm to predict volumetric efficiency 
of a turbocharged diesel engine based on the increase of 
hidden layer weight update speed. Their results showed 
that the proposed adaptive learning method performs 
with higher learning speed, reduced computational 
resources and lower network complexities. Şahin [21] 
used ANN model to predict the in-cylinder air-fuel ratio 
by using data of the ionization current. The ANN model 
predicted the air-fuel ratio with a prediction accuracy 
of 0.99508. Goudarzi et al. [22] used a back propagation 
neural (BPN) network to estimate the heat transfer rate 
through the valve and its seat due the complexity of ther-
mal contact problem between the valve and its seat.

Although there are many studies in the literature that 
utilize ANNs on engine performance and exhaust emis-
sion prediction, there are no studies that use DNNs. 
DNN models are widely used in areas such as image pro-
cessing, image classification, speech recognition and text 
classification. For this reason, it is thought that this study 
will make a significant contribution to the literature. This 
study aims to predict the cylinder pressure of an HCCI 
engine with the help of DNNs. In the first step, different 
batch sizes, number of epochs, number of hidden layers 
and activation functions were tested to find the param-
eters that give the best estimation results of the DNN. In 
the second stage, DNNs with different number of hidden 

layers were compared with ANNs with different number 
of hidden layers. Comparisons were made using error 
measurement values ​​of Mean Absolute Error (MAE) and 
Mean Absolute Percentage Error (MAPE).

2 � Materials and Methods
2.1 � Experimental Setup and Procedure
In this study, the experiment were performed on a sin-
gle-cylinder Ricardo Hydra research engine. The engine 
specifications are given in Table 1.

The fuel was injected into the inlet port at compression 
TDC (Top Dead Centre) and targeted onto the back of 
the closed inlet valves. This timing was designed to allow 
the maximum possible time for fuel to evaporate and mix 
before induction into the cylinder. The intake could be 
pressurized using an electrically driven compressor and 
the intake air could be heated. The excess air coefficient 
was measured by a Horiba MEXA 1500 exhaust gas ana-
lyzer. Cylinder pressure was measured with a Kistler 6125 
piezoelectric pressure transducer located in the side of 
the pent-roof cylinder head.

Engine tests were performed with unleaded gasoline 
fuel. The fuel specifications are presented in Table 2. The 
excess air coefficient was set to fixed values of 3.0, 3.75, 
4.25 and 4.75 by adjusting the amount of injected fuel. 

Table 1  Specifications of the test engine

Parameter Value Unit

Bore 86 mm

Stroke 86 mm

Connection rod length 143.5 mm

Compression ratio 14.04 –

Inlet valve diameter 32 mm

Number of valves 4 –

Inlet valve opening (IVO) 340 CAD

Inlet valve closing (IVC) 612 CAD

Exhaust valve opening (EVO) 120 CAD

Exhaust valve closing (EVC) 332 CAD

Table 2  Fuel specifications

Parameter Value Unit

Fuel Name Unleaded gasoline

Molecular formula C6.43H11.85

RON 94.40 –

MON 84.00 –

Stoichiometric air/fuel ratio 14.53 –

Heat of combustion 44.81 MJ/kg

Density (at 20 °C) 0.731 g/cm3
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During the experiments, intake air temperature, intake 
air pressure and engine speed held constant at 80  °C, 
2.0 bar (abs) and 1200 r/min respectively. Lubricant and 
coolant temperatures were both held at a constant tem-
perature of 90 °C. An average pressure signal based on 
100 cycles was obtained and stored by the AVL system 
for each condition once combustion had stabilized.

2.2 � Deep Learning model
In the study, 4803 pieces of data were used. Crank angle 
and air excess coefficient values are used as input varia-
bles and cylinder pressure values are used as output vari-
ables. 66.6% of the data set is divided into training and 
33.3% is divided into test data set. To track the loss of 
validation during training, 321 data points corresponding 
to 10% of the training data set were selected as validation 
data sets and used to reduce errors.

In most cases, input data has a wide range of values 
that reduces the effectiveness of training procedures. 
Data normalization method can be used to overcome this 
situation [23]. Before the network was trained, the input 
and output variables of training and test data were scaled 
between 0 and +1 with the help of min-max normaliza-
tion given in Eq. (1) [24]:

where Xi is the value of the feature, X̃ i is the scaled fea-
ture value, Xmin and Xmax are the minimum and maxi-
mum value of the dataset, respectively.

In this study, MAE and MAPE were used as the perfor-
mance criteria. The equations for these criteria are given 
below;

where n is total number of data points in the test data set, 
Yi is actual value of the cylinder pressure and Ŷi is the pre-
dicted value of the cylinder pressure. The low MAE and 
MAPE values indicate that the predicted values agree 
with the actual data [25–27]. In addition to these error 
measures, the 1-MAPE value was used in this study to 
show the accuracy of predictions of the models in per-
centage terms.

Forecast models can provide a high unrealistic fore-
casting performance when reapplied to the same sample 
they are trained [28]. Malliaris and Salchenberger [29] 
indicate that validation techniques are needed to identify 
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the appropriate number of hidden layer nodes during 
the modeling of the neural network, so that under-fitting 
(very few neurons) and over-fitting (too many neurons) 
problems can be avoided. One of the approaches that can 
be used to avoid over-fitting is the k-fold-cross-validation 
technique [30, 31]. In this study, in addition to statistical 
performance measures, a 3-fold-cross-validation tech-
nique has been applied to improve the generalization 
ability of DNNs.

The DNN Model is formed as an input layer, four hid-
den layers and an output layer. The general structure of 
the network and the number of neurons in each layer are 
given in Figure  1. Analyzes were performed using the 
Keras Library in the Spyder development environment. 
As an activation function, sigmoid function, hyperbolic 
tangent function (tanh) and rectified linear unit (ReLU) 
activation functions are used in generally [32]. In this 
paper, The ReLU activation function is used in each of 
the layers. When the ReLU activation function is used in 
the layers, convergence is accelerated and the parameters 
are learned faster than typical logistic sigmoid and tanh 
activation functions [33]. When the performance of the 
fitting function is measured, different loss functions such 
as mean square error loss function, logistic loss function, 
hinge loss function and cross entropy loss function can 
be used [34]. In this study, mean squared error loss func-
tion is used as loss function. The batch sizes can be given 
up to the size of training data set. While the Adam opti-
mization method [35] was used as the optimization func-
tion, the learning rate was taken as 0.001.

3 � Results and Discussion
It is a known fact that parameters influence Neural Net-
work performance. To find the best parameters, the 
number of epoch was changed to 500 and 1000 in each 
application, while the batch size was changed to be 2, 4, 
8, 16, 32, 64, 128, 256, 512, and 1024. When the compar-
ison results are analyzed in Figure  2, it is seen that the 
DNN created by using 500 epoch number and 64 batch 
size parameter gives the best performance with 0.159571 
MAPE value.

The graphs in Figure 3 were obtained from Spyder soft-
ware. The figures illustrate the optimal neural network 
training and validation processes. In these figures, the 
horizontal axis denote the training and validation epoch. 
In Figure 3a, the vertical axis is the MAE value, while the 
vertical axis in Figure  3b denotes loss value. As can be 
seen from the figures, as the number of epoch increases 
training and validation errors and lost values tend to 
decrease in parallel. A slow decline is seen first, while a 
slow decline in epoch numbers is seen. This means that 
the network does not memorize.



Page 4 of 8Yaşar et al. Chin. J. Mech. Eng.            (2021) 34:7 

As mentioned previously, there are 1601 data points 
in the test dataset. However, in order to clearly see the 
difference between the predicted and experimental 
data, the points of the crank angle range realized by the 
side are shown in Figure 4. As can be seen from the fig-
ure, the experimental and predicted cylinder pressure 

values coincide except a few points. This indicates that 
the prediction performance of the model is very good.

In order to investigate the effect of the neuron number 
of on the prediction performance, the neurons number in 
each layer was decreased and a new model with 4 hid-
den layers was created. In the first model (DNN1), the 
number of neurons in the hidden layers are 100, 150, 
120 and 120, respectively, while the number of neurons 
in the second model (DNN2) are 10, 15, 12 and 12. The 
prediction accuracy values of the two models are given 
in Figure 5. Although they have different estimating per-
formance, both models show a prediction accuracy over 
99%. As can be seen from these results, the DNN1 model 
was not affected by the overfitting situation which could 
be caused by the use of excess neuron number.

In order to investigate the effect of activation functions 
on prediction performance, the results obtained with 
hyperbolic tangent, log sigmoid, and ReLU activation 
function were compared. Figure  6 shows the prediction 
accuracy values of the models trained with different acti-
vation functions. As can be seen from the figure, the best 
predictor was the ReLU activation function with 99.84% 
prediction accuracy value.

The results of the study on dataset shows that the 4 hid-
den layer DNN with 500 epoch number and 64 batch size 
parameters using the ReLU activation function in each 
layer and using 100, 150, 120, 120 neuron numbers in lay-
ers gives the best performance. To understand that the 
network whether memorize or not because of the high 

Figure 1  Structure of the DNN

Figure 2  MAPE values of DNN models which trained with different 
epoch and mini-batch sizes
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Figure 3  Change of the (a) MAE and (b) Loss values with Epoch number
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number of epochs, new tests have been made by chang-
ing the epoch numbers on this model. Figure 7 presents 
a graphical representation of the test MAPE values of the 
DNN trained with different epoch numbers. It is under-
stood that as the number of epoch increases, the MAPE 
value decreases up to 500 epoch size. However, the 
MAPE value tends to increase at the epoch sizes larger 
than 500.

In order to understand effects of hidden layer num-
ber on training of network and whether DNNs are 
superior to ANNs in prediction performance or not, 

performances of DNN models which were built with 
optimal parameters were compared with ANN models. 
DNN1 and DNN2 which two models of DNNs have 4 
hidden layers and 5 hidden layers respectively. ANN1, 
ANN2 and ANN3 that are models of ANNs have 1 hid-
den layer, 2 hidden layers and 3 hidden layers respec-
tively. ReLU activation function was used in each layer.

The MAPE values in the test dataset of ANN and 
DNN models with different numbers of hidden layers 
are shown in Figure  8. As can be seen from the fig-
ure, as the number of hidden layers increases to a cer-
tain extent, the prediction performance of the models 
increases. The DNN with 4 hidden layers gives better 
prediction result with MAPE value of 0.159. However, 
when the number of hidden layers is increased to 5, the 
prediction performance decreases.

Figure 4  Experimental and predicted cylinder pressure values of 91 
test data points

Figure 5  Prediction accuracy values of DNNs generated by different 
neuron numbers

Figure 6  Prediction accuracy values in the test data set of models 
with different activation functions

Figure 7  Test MAPE values of DNN trained with different epoch 
numbers
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4 � Conclusions
In this article, cylinder pressure of an HCCI engine was 
predicted by using DNN and the results were compared 
with the results of three different ANN models. Con-
clusions obtained from this study are summarized as 
follows.

(1)	 ANNs perform well in predicting the cylinder pres-
sure. However, DNNs produce better prediction 
results compared to ANNs.

(2)	 When the results are examined, it is seen that 
99.84% prediction accuracy was obtained by the 
model which trained by DNNs.

(3)	 DNN methods, which give very close results to the 
experimental values, can be used to determine the 
cylinder pressure of an HCCI engine at different 
operating conditions. Thus, the number of experi-
ment, which require long time and high cost, can be 
significantly reduced.
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