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Abstract 

Parallel Kinematic Machines (PKMs) are being widely used for precise applications to achieve complex motions and 
variable poses for the end effector tool. PKMs are found in medical, assembly and manufacturing industries where 
accuracy is necessary. It is often desired to have a compact and simple architecture for the robotic mechanism. In this 
paper, the kinematic and dynamic analysis of a novel 3-PRUS (P: prismatic joint, R: revolute joint, U: universal joint, S: 
spherical joint) parallel manipulator with a mobile platform having 6 Degree of Freedom (DoF) is explained. The kin-
ematic equations for the proposed spatial parallel mechanism are formulated using the Modified Denavit-Hartenberg 
(DH) technique considering both active and passive joints. The kinematic equations are used to derive the Jacobian 
matrix of the mechanism to identify the singular points within the workspace. A Jacobian based stiffness analysis 
is done to understand the variations in stiffness for different poses of the mobile platform and further, it is used to 
decide trajectories for the end effector within the singularity free region. The analytical model of the robot dynamics 
is presented using the Euler-Lagrangian approach with Lagrangian multipliers to include the system constraints. The 
gravity and inertial forces of all links are considered in the mathematical model. The analytical results of the dynamic 
model are compared with ADAMS simulation results for a pre-defined trajectory of the end effector.

Keywords:  Parallel manipulator, Kinematic modelling, Workspace analysis, Euler-Lagrangian modelling, Singularity 
analysis, Stiffness analysis
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1  Introduction
Robot manipulators can be broadly classified into open 
or closed depending upon the connections between 
each link and the end effector. Due to the open structure 
of serial manipulators, the errors and inertial effects in 
each link gets added up at the end effector which results 
in reduced accuracy and rigidity. A Parallel Manipulator 
(PM) has the end effector connected by several independ-
ent kinematic chains that enable superior rigidity and 
precision over serial manipulators [1, 2]. These mecha-
nisms have wide applications in manufacturing and ser-
vice industries, health care, space, etc. PMs also have a 
higher payload to weight ratio since the load carried by 
the end effector is distributed along the legs within the 
mechanism. However, most parallel manipulators have 

lower workspace compared to serial manipulators due 
to the constraint motion of the end effector. Various 
researchers have proposed different designs of PMs hav-
ing multiple Degrees of Freedom (DoF) depending upon 
the applications. Among these, the six DoF symmetric 
PMs are the most promising architecture because of its 
relatively larger workspace and lower singularities [3, 4]. 
The Stewart-Gough platform, one of the early proposed 
six DoF PM, has two platforms connected via six limbs [5, 
6]. Merlet [7] and Domagoj et al. [8] analysed the forward 
and inverse kinematic equations for the Stewart-Gough 
mechanism using interval analysis method and geo-
metrical approach respectively. David et al. [9] have pro-
posed another six DoF parallel mechanism for accurate 
measurement applications. The direct kinematics for the 
mechanism is obtained using the geometrical approach, 
and the design parameter optimization is based on the 
study of the condition number of the Jacobian. Nicho-
las et  al. [10] introduced a six DoF PM having six legs. 
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It consists of three prismatic actuators each aligned par-
allel to one axis of the cartesian plane. Each leg consists 
of two passive revolute joints whose axis is parallel to 
the direction of the prismatic joint. Each leg is attached 
to the mobile platform via a spherical joint. The direct 
kinematics for the mechanism is solved by considering 
the orientation and the position separately in the math-
ematical model. However, the orientations of the mobile 
platform is limited due to the interferences between the 
legs during motion making it difficult for applications 
needing higher mobility. Byun et al. [11] have developed 
the 3-PPSP parallel manipulator also having six DoF. 
The solutions for the inverse and forward kinematics are 
obtained from the geometrical model, and the workspace 
is computed by applying suitable displacements to each 
active prismatic joint. Bruno et al. [12] proposed an opti-
mal design for a six DoF parallel mechanism having three 
legs. The mechanism consists of a mobile platform con-
nected to the base by three identical five-bar linkages. 
The workspace analysis is done using the geometrical 
kinematic model, and its optimisation is done to ensure 
maximum singularity free constant orientation work-
space. Ketankumar et al. [13] developed the loop closure 
equations for the planar 3-RRR PM and analyzed the sin-
gularity using Instantaneous Centre of Rotation (ICR) 
method. This methodology is however applicable to sim-
ple architectures and difficult for spatial mechanisms. 
Singularity is an inherent property of closed chain mech-
anisms which occurs when the motion of the end effec-
tor does not produce any motion of the end effector or 
when the end effector cannot resist any forces or torques 
even if all actuators are locked. Gabardi et  al. [14] have 
presented the complete kinematics of a 4-UPU parallel 
manipulator by Screw Theory, and further, the Jacobian 
Singularities have been determined. A numerical proce-
dure for optimizing the geometrical parameters to get a 
singularity-free workspace is also presented in the paper. 
Refs. [15] and [16] are other examples of analytical par-
allel kinematics solution via Screw theory whose design 
has been optimized by considering the singularity-free 
workspace. One common solution to avoiding singu-
larities within the workspace is by replacing one or more 
passive joints with actuated joints. Sreenivasan et  al. 
[17], Hunt and Primrose [18] and Bruyninckx [19] pro-
posed parallel mechanisms having six joints each on the 
base and the mobile platform. These mechanisms possess 
higher stiffness, lower inertia effects and larger payload 
carrying capacities. However, these mechanisms have 
relatively lower work volumes with complex architecture. 
Obtaining the direct kinematics for these mechanisms 
from the conventional geometrical approach or Screw 
theory is a difficult task. Serder [20] has demonstrated 
the application of modified DH modelling technique to 

obtain the kinematic relations for the planar 3 DoF RRR 
mechanism. The author has incorporated the constraints 
into the model by assuming appropriate constraint equa-
tions. The constant distance between any two consecu-
tive joints on the mobile platform is considered as the 
constraint equation for the RRR mechanism. By this 
methodology, both the passive and active joint variables 
are incorporated into the mathematical model. In context 
to real-time control, dynamics of a parallel manipulator 
is analysed to determine the input force to be exerted 
by actuators to produce a desired trajectory for the end 
effector. Several methods such as Euler-Lagrangian for-
mulation [21], Principle of Virtual Work [22], Newton-
Euler formulation [23] are used to obtain the dynamic 
equations of robotic systems. Inverse dynamic analysis 
of a parallel mechanism is done for a pre-defined path of 
the end effector. Leroy et al. [24] developed the dynamic 
model of a three DoF parallel mechanism by incorporat-
ing the holonomic constraints using Lagrangian multipli-
ers into the Euler-Lagrangian equation.

Despite extensive researches happening in the field of 
parallel mechanisms, most mechanisms have limited 
workspace, complicated architecture, difficulties in solv-
ing inverse kinematics, etc. To overcome these short-
comings, the development of parallel manipulators with 
simpler architectures has been accelerated. Neverthe-
less, manipulators having decoupled motion of the end 
effector is quite limited and remains a challenging task 
especially in cases of six DoF manipulators. Geomet-
ric modelling or Screw theory are the usual approaches 
employed to obtain the kinematic model of parallel 
mechanisms. In Geometric modelling approach, the loop 
closure equations are formulated for the mechanism in 
terms of all joint variables and dimensional parameters. 
However, the formulation of loop closure equations is a 
very cumbersome task, especially for complex geom-
etries. In addition, the procedures used in this approach 
cannot be generalised for all manipulator designs [25]. 
Also, obtaining the loop closure equations for mecha-
nisms having more number of legs is very difficult. Screw 
Theory [14, 16, 26] is another well-established methodol-
ogy which is found in many literatures to obtain the kin-
ematic model for parallel mechanisms. According to this 
method, it has only two coordinate frames of which one 
is located at the base and the other is at the end-effec-
tor. However, in the DH modelling approach, frames are 
assigned to all joints up to the end effector. Therefore, the 
Kinematic model formulated using the DH approach will 
include all joint variables inclusive of both active and pas-
sive joints. Even though the computation involved with 
the DH model is slightly higher, the singularity analysis 
performed with the DH model will be more effective 
than that obtained from the Screw theory model. This 
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is because the analysis considers the singularity induced 
due to both active and passive joints. In this paper, the 
authors’ have showcased a methodology to use modified 
DH modelling technique to reduce the computational dif-
ficulties by breaking down the closed parallel mechanism 
into individual serial manipulators. The conventional 
DH modelling is applied on each leg and finally coupled 
together using suitable constraint equations. Denavit-
Hartenberg (DH) modelling technique is a widely used 
method to obtain kinematics of serial manipulators. 
This method is a direct and easy to learn approach for 
obtaining forward and inverse kinematics of open-chain 
mechanisms. In this paper, a novel 3-PRUS manipulator 
is proposed. This mechanism has only three legs unlike 
the case of other 6 DoF mechanisms having six legs. This 
helps in reducing the inertia effects especially during fast 
motions. The DH modelling approach is used to inves-
tigate the kinematics of the 3-PRUS mechanism by con-
sidering each leg as an open-chain separately. The three 
legs modelled separately are coupled finally using suitable 
constraints to account for the closed configuration of the 
manipulator. The conceptual design and analysis of the 
proposed 3-PRUS parallel mechanism having decoupled 
non-redundant motions of the end effector are explained 
in the following sections. The conceptual design and 
mobility analysis of the 3-PRUS mechanism is described 
in Section  2. The forward and inverse kinematics mod-
elling is addressed in Section  3. Jacobian matrix for the 
manipulator is derived analytically and further used to 
analyse performances including singularity and stiffness 
indices for the manipulator. An algorithm is explained 
to obtain the maximum singularity free work volume for 
the robotic system. In Section 4, the closed form dynamic 
model is developed analytically using the Euler-Lagran-
gian formulation and compared with ADAMS results 
for a pre-defined trajectory path of the end effector. The 
results obtained are explained in Section 5. In Section 6, 
the details regarding the prototype manufactured is 
explained and analysed.

2 � Geometrical Design of the 3‑PRUS Manipulator
Parallel robots generally possess complicated kinemat-
ics and dynamics which further complicates the control 
of the robot [27]. Such complications of parallel robots 
can be avoided by proposing simpler designs with lesser 
number of legs and joints to the mechanism. Achieving 
kinematically decoupled motions of the mobile platform 
is yet another challenging task to be solved. Keeping in 
mind the above problems, certain considerations have 
been made to propose the 3-PRUS mechanism. Figures 1 
and 2 shows the CAD model and schematic model of 
the 3-PRUS mechanism. The parallel manipulator com-
poses of a base and mobile platform connected by three 

legs. Each leg consists of a one DoF Prismatic (P) joint, 
a one DoF Revolute (R) joint, a two DoF Universal (U) 
joint and a three DoF Spherical (S) joint. Among this, 
the prismatic and revolute joints are active, universal 
and spherical joints are passive. Decoupled motions of 
the mobile platform are possible since each leg consists 
of two active joints aligned normal to each other. The 
three sliders move parallel to each other as shown in Fig-
ure 2. The mobile platform is connected to the individual 
sliders through the S joint. The U joint can be assumed 
as two R joints, and the S joint as a three intersecting R 
joints normal to each other. The proposed mechanism 
has six DoF that exhibits simpler kinematics, consider-
able stiffness and higher load carrying capacity. A fully 
parallel manipulator can have only one solution to the 
inverse kinematic problem. Levenberg-Marquardt Algo-
rithm is used in this paper to obtain the exact solution 
to the inverse kinematics problem which is explained in 
the following section. The number of DoF for the 3-PRUS 
mechanism is theoretically calculated using the modified 
Chebyshev–Grübler–Kutzbach formula [28] expressed in 
Eq. (1):

(1)DoF = d
(

e − g − 1
)

+

g
∑

i=1

fi + ϑ − ǫ,

Figure 1  CAD model of the 3-PRUS manipulator

Figure 2  Schematic model of the 3-PRUS manipulator
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where ‘d’ is the number of DoF in three-dimensional 
space, ‘e’ is the number of elements, ‘g’ is the number of 
joints, ‘fi’ is the number of DoF for the ith joint, ‘ϑ’ is the 
number of excessive non-common constraints and ‘ϵ’ is 
the degrees of partial freedom of links that affects the 
motion to one side of links. Substituting the above values 
for the 3-PRUS mechanism into Eq. (1),

Eq. (2) indicates that independent control of the six 
active joints (3-P and 3-R) can enable complete mobility 
to the mobile platform. This makes the 3-PRUS manipu-
lator suitable for health care applications like scanning 
or massaging, assembly operations, painting, pick/place 
operations, and light machining tasks.

3 � Kinematic Modelling
Kinematic modelling is done to find analytical relations 
between the input and output variables of the mecha-
nism. Input variables correspond to the values of actu-
ated joints. Output variables refer to the position and 
orientation of the mobile platform. These kinematic 
equations are necessary to analyse the workspace, deter-
mine singular points and further develop the dynamic 
model of the parallel robot. This section explains DH 
modelling concepts to obtain the inverse kinematic equa-
tions for the parallel spatial mechanism. DH method is 
a well-established method to model serial mechanisms 
for the pose of the end effector. Most parallel mecha-
nisms can be assumed as multiple serial linkages coupled 
together at the end effector.

3.1 � Forward Kinematics
Forward kinematics is done to obtain the pose of the end 
effector in terms of the joint variables. Initially, the closed 
mechanism is split into individual open chains. The indi-
vidual open chains are assumed as separate three serial 
manipulators with its zeroth frame located at {O1}, {O2}, 
and {O3} respectively, as shown in Figure 2. The DH algo-
rithm is applied to each leg to get its own end-effector 
pose from {O1}, {O2}, and {O3}. The three individual legs 
are coupled together at the three corners of the plat-
form by taking the distance between them a constant. 
The frames assigned to each joint according to the DH 
convention is shown in Figure 3, which is common to all 
three legs. Let {O2} be the global frame about which the 
pose of the mobile platform is to be determined. The DH 
parameters assigned between two consecutive frames 
are listed in Table 1 and is substituted into the standard 
transformation matrix [29] to obtain relations between 
each frame. The pose of the seventh frame with respect 
to the zeroth frame for each leg is derived from Eq. (3),

(2)
DoF = 6(11− 12− 1)+ (3+ 3+ 6+ 9)+ 0− 3 = 6.

Frame {7} corresponds to the last frame of the spherical 
joint on the mobile platform. To obtain the pose of the 
end effector tip from {O2}, another frame {8} is assigned 
at the tip of the end effector as shown in Figure  4. The 
pose of the end effector tip from global frame {O2} for the 
middle leg is obtained from Eq. (4),

Similarly, the poses of the end effector tip from the 
global frame {O2} along the left and right legs are given in 
Eqs. (5) and (6) respectively:

(3)
T 7
Oi

= T 1
Oi

∗ T 2
1 ∗ T 3

2 ∗ T 4
3 ∗ T 5

4 ∗ T 6
5 ∗ T 7

6 , i = 1, 2, 3.
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Figure 3  DH frame assignment for one leg of the 3-PRUS 
manipulator

Table 1  DH parameters for the first leg

θ d a α (°)

0 x1 0 90

x2 + 90 0 0 90

x3 + 90 0 0 90

x4 0 − a − 90

x5 − 90 0 0 − 90

x6 − 90 0 0 − 90

x7 0 0 0
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3.2 � Inverse Kinematics
Inverse kinematics deals with the determination of the 
joint variables corresponding to the known pose of the 
mobile platform. In the previous section, the pose of 
the end effector tip is determined separately from the 
global frame {O2} by assuming each leg to be individual 
serial chains. This implies that Eqs. (4), (5) and (6) can be 
equated to the desired pose matrix to couple the three 
legs and obtain the closed-form inverse kinematic solu-
tion for the 3-PRUS manipulator.

Considering the linear dependency property of the 
orientation matrix [29], the column vectors of the ori-
entation matrix and the position vectors in Eq. (7) are 
equated with forming eighteen sets of equations. How-
ever, according to the DH model of the 3-PRUS mecha-
nism, there are 21 joint variables considering both active 
and passive joints. Therefore, the holonomic constraints 
given in Eq. (8) are used for the additional three equa-
tions which couple the three legs to get an exact solution 
to the inverse kinematics.

(6)
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(SX )i,j , (SY )i,j and (SZ)i,j corresponds to the position vec-
tor of the seventh frame for the ith leg expressed with 
respect to the global frame {O2}. An iterative Leven-
berg–Marquardt Algorithm (LMA) is used to solve the 
set of 21 non-linear equations. The LMA is a curve fit-
ting method that adaptively varies the parameter updates 
between Gradient descent method and the Gauss–New-
ton method [30]. This is a heuristic method used to com-
pute the solution for the set of equations. In this method, 
the set of equations are expressed as ‘f(x) = 0’ where x 
represents all the joint variables, x = [x1 x2 x3 … x21]T. 
LMA uses a damping factor (λ) to control the incre-
mental step size after every iteration. As the value of λ 
is increased, the step size gets reduced which accordingly 
varies the time taken to find the solution. The algorithm 
begins by initiating the set of values for x. Residues are 
the values of each function obtained on substituting the 
joint variables in each iteration. The objective of this algo-
rithm is to minimise this residue and finally approach to 
zero. If the residue approaches zero, the step size should 
be increased and therefore λ is to be decreased and vice 
versa. The flowchart of the algorithm used to solve the 
set of equations is shown in Figure 5. The increments are 
given to the variables after each iteration that is calcu-
lated using Eq. (9),

where

 
I is the identity matrix, δ is the increment matrix, 

R is the residue matrix and K is the iteration number. 
The algorithm designed in MATLAB stops running 
when the solution reaches within a tolerance of 0.01 
or when the iteration number reaches the maximum 
(Kmax) assigned. The algorithm will return the val-
ues of x during the last iteration as the solution when 
either of the above conditions comes first. The average 
time taken to solve a set of equations by the LMA algo-
rithm is 42 s using an Intel Core i7 processor.

(8)

{

[
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]2

+
[
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]2

+
[
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]2
}
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T
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Figure 4  Frame assignment for the end effector and previous frame
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3.3 � Jacobian Matrix for the 3‑PRUS Mechanism
The previous sections have introduced the pre-requi-
sites needed to define and calculate the Jacobian matrix. 
Jacobian matrix relates the velocity between joint vari-
ables and the end effector variables. A similar approach 
explained in the previous section is used to derive the 
Jacobian matrix. Each leg is assumed as a serial robot 
which is coupled together using suitable kinematic con-
straints. Let x = [Px Py Pz α β γ]T denotes the generalized 
vector of the end effector pose representing the six DoF. 
The joint variables describing the geometry is expressed 
in general as, θ = [x1 x2 x3…x21]T which comprises of both 
active and passive joints. Input and output vectors for the 
closed-loop mechanism can be expressed generally as,

where γ ,β and α are the Euler angles defining the angu-
lar rotation of the end effector platform and Px,Py and Pz 
represents the position coordinates of the end effector 
tip. The distance between any two consecutive corners of 
the mobile platform expressed in terms of joint variables 
and Euler angles are equated together to form Eq. (10). 
Equations in terms of joint variables are obtained from 
the DH model explained in Section  3.1. The position 

(10)F(θ , x) = 0,

coordinates of each corner of the mobile platform Kj, in 
terms of joint variables are given in Eq. (11),

The next step is to obtain the position coordinates of Kj 
in terms of the Euler angles. Two frames {B} and {P} are 
located at the global frame and the end effector tip respec-
tively as shown in Figure 6. The frames are assigned simi-
lar to that used for the DH model. The rotation matrix in 
Eq. (12) is used to transform between frames {B} and {P} in 
terms of zyx Euler angles [31]:

where s = sin(·) and c = cos(·). The position coordinates 
for Kj from global frame in terms of Euler angles is as 
follows: 

after substitution,

(11)

[K1] = a cos x2 cos x2 + a sin x2 sin x3 sin x4;

a cos x3 sin x4 − c;

a cos x2 sin x3 sin x4 − a cos x4 sin x2 − x1;

[K2] = a cos x9 cos x11 + a sin x9 + sin x10 sin x11;

a cos x10 sin x11;

a cos x9 sin x10 sin x11 − a cos x11 sin x9 − x8;

[K3] = a cos x16 cos x18 + a sin x16 sin x17 sin x18;

a cos x17 sin x18 + c;

a cos x16 sin x17 sin x18 − a cos x18 sin x16 − x15.

(12)

B
PR = Rz(α) · Ry(β) · RX (γ )

=





cβcα cγ sαsβ − cαsγ sαsγ + cαcγ sβ
cβsα cαcγ + sαsβsγ cαsβsγ − cγ sα
−sβ cβsγ cγ cβ



,

(13)BKj = [Px Py Pz]
T + B

pR · [Kxi Kyj Kzj]
T,

Figure 5  Flowchart for Levenberg–Marquardt Algorithm

Figure 6  Line diagram representation of a leg in the 3-PRUS 
mechanism
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As mentioned earlier, the distance between any two 

consecutive corners of the mobile platform is written 
separately using Eqs. (11) and (14) and equated together 
to form Eq. (10). Partially differentiating Eq. (10),

In most cases, however, a simplified Jacobian matrix (J) 
can be obtained by considering the active joints only [31]. 
By this assumption, matrices A and B are both (3 × 6) 
matrix obtained by partially differentiating Eq. (10) with 
active joints and end effector pose variables. The simpli-
fied Jacobian matrix is derived from Eq. (16). The Jaco-
bian model for the 3-PRUS mechanism is a square matrix 
of order six.

4 � Dynamic Modelling of the 3‑PRUS Manipulator
The dynamic model is used to study the force and torque 
variations of the active joints as a function of time for a 
desired trajectory of the mobile platform. There are three 
important methods to obtain a dynamic model for par-
allel robots, namely, the Newton–Euler procedure; the 
Euler Lagrangian formulation with Lagrangian multipli-
ers and the Principle of Virtual Work. In this section, the 
dynamic model of the 3-PRUS manipulator is developed 
using the Euler Lagrangian technique with Lagrangian 
multipliers [32]. According to this method,

(14)

[K1] = Px + bs(δ)cβcγ + bc(δ)(sαsγ + cαcγ sβ);

Py + bs(δ)cβsγ + bc(δ)(cαsβsγ − cγ sα);

PZ − sβbs(30)+ bc(δ)cαcβ;

[K2] = PX − bcβcγ ;

Py − bcβsγ ;

Pz + bsβ;

[K3] = Px + bs(δ)cβcγ − bc(δ)(sαsγ + cαcγ sβ);

Py + bs(δ)cβsγ − bc(δ)(cαsβsγ − cγ sα);

PZ − sβbs(δ)− bc(δ)cαcβ;

(15)
∂F

∂θ
θ̇ +

∂F

∂x
ẋ = Aθ̇ + Bẋ = 0.

(16)θ̇ = A−1Bẋ = J ẋ.

(17)
d

dt

(

∂L

∂ q̇i

)

−
∂L

∂q
= τi −

m
∑

j=1

ϑj
∂ηj(q)

∂qi
.

Expressing the above equation in state-space form, we 
get,

where ϑ is the Lagrangian multiplier matrix, and ψ(q) is 
the partial derivative of the constraint equation for the 
closed mechanism. The 3-PRUS manipulator is dynami-
cally modelled for each leg individually. One leg is further 
divided into three parts, namely, the slider, connecting 
link and the mobile platform. The kinetic and poten-
tial energies for each subpart are written separately and 
finally coupled together to form the Lagrangian (L). Let 
m1, m2, and m3 be the masses of the slider, connecting 
link and mobile platform with end effector as indicated 
in Figure 6.

For the first leg, Kinetic energy of the slider,

Kinetic energy of the connecting link,

where v22 = vẋ22 + vẏ22 + vż22 (refer Appendix). I2xx, I2yy 
and I2zz are the moment of inertia terms and a is the 
length of the rigid link. Kinetic energy of the moving 
platform,

where v23 = vẋ23 + vẏ23 + vż23 , (refer Appendix).
Potential Energy of slider,

Potential energy of connecting link,

Potential energy of moving platform,

The same procedure is applied to the other two legs of 
the 3-PRUS mechanism. The Lagrangian (L) is equal to 
the total kinetic energy minus the total potential energy 
of the system. The three legs are finally coupled together 
using the Lagrangian multipliers. The equation of motion 
for one leg is expressed in general as follows:

(18)[M(q)]q̈ + [C(q, q̇)]q̇ + G(q) = τ − [ψ(q)]Tϑ ,

(19)K1 =
1

2
m1(ẋ1)

2.

(20)K2 =
1

2
m2v

2
2 +

1

2
I2xxẋ

2
2 +

1

2
I2yyẋ

2
3 +

1

2
I2zzẋ

2
4,

(21)K3 =
1

2
m3v

2
3 +

1

2
I3xxẋx

2
5 +

1

2
I3yyẋ

2
6 +

1

2
I3zzẋ

2
7,

(22)P1 = 0,

(23)P2 = m2g
(

vy2
)

,

(24)P3 = m3g(vy3).
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The overall mass, Coriolis, gravity and force matri-
ces of the complete system in the state-space form are 
expressed in the following order,

The Lagrangian multipliers included in the Lagran-
gian formulation takes into account the constraint forces 
imparted from the geometrical arrangement of the mecha-
nism. The constraints defined in Eq. (8) are used to obtain 
the constraint matrix (ψ(q)). The matrix is derived on par-
tial differentiation of the constraint equations with respect 
to each variable. Hence, the order of ψ(q) tensor for this 
mechanism is (3 × 21). Let ϑ be the Lagrangian multiplier 
matrix of the system. Murray et al. [33] have stated that the 
work done by the constraint force is zero. Therefore,

or ψ(q)q̇ = 0.
Differentiating above equation with time gives,

Re-arranging Eqs. (18) and (28), the Lagrangian multi-
plier ([ϑ]) for the system is determined as follows,

(25)



















F
τ1
τ2
τ3
τ4
τ5
τ6



















=

�

Mass
Matrix

�

7×7





















L̈i
θ̈1
θ̈2
θ̈3
θ̈4
θ̈5
θ̈6





















+

�

Corriolis
Matrix

�

7×7





















L̇i
θ̇1
θ̇2
θ̇3
θ̇4
θ̇5
θ̇6





















+

�

Gravity
Matrix

�

7×1

.

(26)

[M]21×21 =





(M1)7×7 0 0
0 (M2)7×7 0
0 0 (M3)7×7



;

[C]21×21 =





(C1)7×7 0 0
0 (C2)7×7 0
0 0 (C3)7×7



;

[G]21×1 =





(G1)7×1
(G2)7×1
(G3)7×1



;
�

τ ′
�

21×1
=





(τ1)7×1
(τ2)7×1
(τ3)7×1





(27)
Work done by constraint force =

(

[ψ(q)]Tϑ
)T

q̇ = 0

(28)[ψ(q)]q̈ + [ψ(q̇)]q̇ = 0.

(29)
ϑ = −

(

[ψ][M]−1[ψ]T
)−1

{[

ψ̇
]

q

+
[

ψ̇
]

[M]−1(τ − [C]q̇ − G)

}

.

Eq. (29) is substituted back into Eq. (18), to get the final 
expression for the torque variations,

The above equation is used to study the torque vari-
ations at every joint. Based on this analysis suitable 
actuators are chosen at every active joint. A numerical 
simulation for the dynamic analytical model is demon-
strated in the next section, and its results are compared 
with ADAMS for a pre-defined trajectory of the end 
effector.

5 � Results and Discussion
Dimensional synthesis, workspace analysis, singular-
ity, stiffness analysis and dynamic simulation study 
are discussed in detail in this section. The workspace 
analysis is carried out based on the kinematic relations 
derived in Sections 3.1 and 3.2. The dimensions of the 
various links within the manipulator are determined 
from the workspace analysis. The Jacobian matrix 
is used to analyse the singularity and stiffness for the 
3-PRUS mechanism. The singularity analysis is carried 
out to determine the singular poses of the mechanism. 
A numerical simulation example is also included in this 
section to validate the dynamic analytical model with 
ADAMS results.

5.1 � Workspace Analysis and Dimensional Synthesis
The forward kinematic relations developed from the 
DH model is used to plot the workspace for the 3-PRUS 
manipulator. The workspace is plotted based on the flow 
chart shown in Figure 7. Based on this flowchart, a point 
is marked in the three-dimensional cartesian space after 
every iteration if it satisfies the constraint Eq. (8) for an 
instantaneous pose of the end effector. Therefore, this 

(30)τ = [M(q)]q̈ + [C(q, q̇)]q̇ + G(q)+ [ψ(q)]Tϑ .

Figure 7  Flow chart for the workspace plot
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algorithm will identify and plot the points that lie within 
the reachable region of the manipulator.

The algorithm is used to plot a cluster of points in 
three-dimensional space that satisfies Eq. (8) using 
MATLAB. The individual points are marked using 
the position coordinates derived from the forward 
kinematic equations defined in Eq. (7). Each point 
is obtained by assigning different values to the joint 

variables within the specified limit. The magnitude of 
the linear joint variables ranges from 0 to 1.2  m, and 
that of the revolute joint varies from − 45° to 45° during 
the iteration. The flow chart for dimensional synthesis 
based on the workspace analysis is shown in Figure  8. 
According to this algorithm, the work volumes for all 
combinations of link dimensions are quantified using 
the ‘Convhull’ function in MATLAB. The volumes com-
puted are then further analysed to choose that combi-
nation of link dimensions corresponding to maximum 
volume. The results of dimensional synthesis based on 
this algorithm is listed in Table 2.

The reachable volume for the 3-PRUS manipulator is 
shown in Figure 9. The reachable space for the manipu-
lator is approximately ellipsoid in shape and its volume 
corresponding to the geometric parameters listed in 
Table 2 is 2.86 × 10−2 m3. Khaled et al. [34] proposed the 
3-SPS parallel mechanism which consists of one active 
prismatic joint and two passive spherical joints in each 
leg. The approximate work volume for that mechanism is 
1.32 × 10−5 m3. Li et al. [35] proposed the 3-PRS mecha-
nism for surgical applications and its estimated work vol-
ume is 3.2 × 10−4 m3. Xu et al. [36] proposed the 6-PSS 
parallel mechanism and its work volume is conical and 
approximately 6.29 × 10−3  m3. This study shows that 
the workspace for the 3-PRUS manipulator is relatively 
larger compared to other parallel manipulators of similar 
dimensions mentioned above.

5.2 � Singularity Analysis
The Jacobian matrix is used to analyse the singular position 
and enable position control for the end effector. Determi-
nation of singular points is necessary during path planning 
since these points may cause loss of DoF for the end effec-
tor when reached. This analysis is an extension of the 

Figure 8  Flow diagram for dimensional synthesis based on the 
workspace

Table 2  Link dimensions after optimisation

Joint parameters Value (m)

c (normal distance b/w two sliders) 0.25

a (length of connecting link) 0.5

l (sliding distance-horizontal) 0.9

b (tip to centroid distance-mobile platform) 0.2

Figure 9  Reachable points for the 3-PRUS Parallel manipulator

Figure 10  Singularity analysis flow diagram
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workspace analysis to decide the workable volume of the 
end effector free from singular positions. The positioning 
of the end effector should be restricted within the singular 
free region during the working. Nawratil [37] has stated a 
theorem for non-redundant six DoF mechanisms that the 
manipulator reaches a singular position if and only if the 
determinant of the Jacobian matrix vanishes. A numeri-
cal based algorithm is used to determine the singular 
points within the workspace of the 3-PRUS mechanism by 
determining points where the determinant of the Jacobian 
becomes zero. Singularity-free workspace is plotted based 
on the flowchart shown in Figure 10 and the singular free 
workspace for the 3-PRUS manipulator is shown in Fig-
ure 11. The algorithm developed in MATLAB is used for 
the singularity analysis which identifies the locations where 
the determinant of the Jacobian matrix does not become 
zero. The singularity free region of the manipulator shown 
in Figure 11 is a subset of the reachable workspace shown 
in Figure 9. Smooth and un-interrupted motions of the end 
effector are possible within this region.

5.3 � Stiffness Analysis
This section explains the Jacobian based stiffness analysis 
from the DH model that is effectively applicable to paral-
lel manipulators having non-redundant DoF. The stiffness 
model is simplified by assuming every link in the manip-
ulator rigid and isotropic. Also, the active and passive 
joints are assumed finite stiffness values whose magnitude 
depends upon the joint. Higher stiffness values of manipu-
lators can improve its dynamic performance during fast 
motions. Compared to serial manipulators, parallel manip-
ulators offer higher stiffness and accuracy to the mobile 
platform [38]. The stiffness properties for the 3-PRUS 
mechanism is defined by a (6 × 6) stiffness matrix (K). In 
this analysis, the manipulator is assumed to be in static 
equilibrium and every actuator is modelled as springs. The 
stiffness of the PM is evaluated by considering an elastic 
model for every joint variable. The change in joint variable 
δθ when a joint force f is applied is obtained from Eq. (31):

where k = diag[k1…k6] is the actuated joint stiffness 
matrix, whose elements ki are the stiffness of each 
actuator.

According to the principle of Virtual work, the end 
effector force F in terms of the joint force f is given 
using the following equation,

Rewriting Eq. (16) for infinitesimal displacements, we 
get,

Substituting Eqs. (31) and (33) into Eq. (32):

Hence, the stiffness matrix (K) for the mechanism is 
given by the following expression assuming constant 
stiffness to all actuators.

The above model is used to obtain the stiffness maps 
for the 3-PRUS parallel manipulator. In this analysis, 
the active prismatic and revolute joints are assumed 
stiffness magnitudes of 1000  N/m and 500  N/m [21] 
respectively. The stiffness of the mobile platform largely 
depends upon the stiffness of the actuators according 
to this methodology. The (6 × 6) Jacobian matrix of the 
3-PRUS mechanism derived in Section 2 is substituted 
into Eq. (34), to study the stiffness variations. The stiff-
ness matrix characterises the stiffness at a given point 
of its workspace. The static stiffness maps for differ-
ent poses of the mobile platform within the singular 
free region is shown in Figure  12. The stiffness mesh 
graphs in Figure 12a–f shows that the stiffness along x, 
y, z, α, β, and γ does not have significant changes for 
different positions of the end effector having the same 
orientation. This property of the manipulator improves 
the kinematic accuracy of the end effector. Also, it is 
clear from Figure  12g–i that magnitude of stiffness 
reduces as the angle made by the platform increases. 
This is because the loads acting on the end effector 
when it makes an angle with the global frame will cre-
ate a moment reaction on the platform accounting for 
its reduced stiffness for larger angles. A similar trend is 
observed even when the mobile platform rotates about 
the y and z axis. Stiffness of the manipulator is maxi-
mum when the platform is aligned to the global axis, 
that is when α = 0, β = 0 and γ = 0. Figure  12j–l show 
a slight decrease in the magnitude of stiffness along 
x, y, and z for larger heights. The magnitude of the 

(31)f = k · δθ ,

(32)F = JTf .

(33)δθ = J · δx.

(34)F = (JTkJ ) · δx = K · δx.

(35)K = JTkJ .

Figure 11  Singularity-free workspace
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Figure 12  Stiffness plots for different poses of the mobile platform
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stiffness plot can be changed by adjusting the values of 
joint stiffness. Therefore, this analysis guides the choice 
of joints depending upon its applications and judge 
whether the manipulator can withstand the workloads 
acting on the platform when put to work.

5.4 � Analytical and ADAMS Based Simulation—A 
Comparative Study

In this section, a simulation study of the dynamic model 
is demonstrated by considering the same geometrical 
parameters listed in Table  2. The comparative study of 
the analytical and ADAM based simulation is performed 
as per the flow diagram shown in Figure 13.

The dynamic model of the mechanism is analysed for a 
pre-defined trajectory of the end effector. The end effec-
tor tip is assumed to follow a smooth cubic trajectory 
expressed as

where the constants n1, n2  and n3 control the frequency 
of trajectory and Td is the total time duration for the 
simulation. The constants in the above equation are 
determined based on the boundary conditions applied 
to the end effector. The initial and final positions of the 
end effector are P(0) = (40, 580, 360) and P(10) = (− 60, 
480, 640) respectively. The initial and final velocities of 
the end effector are assumed to be zero. Similarly, the 

(36)Px = a0x + a1xt + a2xt
2 + a3xt

3,

(37)Py = a0y + a1yt + a2yt
2 + a3yt

3,

(38)Pz = a0z + a1zt + a2zt
2 + a3zt

3,

(39)

α = a1 sin

(

n1π t

Td

)

;β = a2 sin

(

n2π t

Td

)

; γ = a3 sin

(

n3π t

Td

)

,

angular positions of the mobile platform during the first 
and fourth seconds are (0.5, 0.4236, 0.747) and (− 0.5, 
− 0.3078, 0.747) radians respectively. The coefficients 
computed for the above-mentioned boundary conditions 
are listed in Table 3. The path followed by the end effec-
tor is shown in Figure 14. 

During the simulation study, the positional coordi-
nates and the corresponding Euler angles are computed 
using Eqs. (36), (37), (38) and (39) for every time interval 
of 0.1  s. The inverse kinematics is then solved for every 
instantaneous pose of the end effector using the Leven-
berg Marquardt Algorithm explained in Section 3.2. On 
solving the inverse kinematics, the values for every joint 
variable is computed for every time interval of 0.1 s. Tak-
ing the time derivative of the joint variables for every 
instant give the theoretical linear and angular velocity 
variations of the prismatic and revolute joints, respec-
tively, as is shown in Figure 15.

To simplify the analysis, every slider and the connect-
ing links are assumed as slender bars and the mobile 
platform as a triangular plate. The results of the dynamic 
model are compared with the corresponding results 
of the 3-PRUS model in ADAMS. Figure  16 shows the 
imported model of the 3-PRUS manipulator in ADAMS. 
The analysis is done for a payload of 0.5 kg. This load is 

Figure 13  Flow diagram for the comparative study of the dynamics 
simulation

Table 3  List of coefficients for the cubic trajectory

Coefficient Magnitude Coefficient Magnitude

aox − 550 a1z 0

a1x 0 a2z 171/10

a2x − 21/10 a3z −57/50

a3x 7/50 a1 π/6

aoy − 100 n1 4

a1y 0 a2 π/6

a2y 9/2 n2 3

a3y − 3/10 a3 π/4

aoz 180 n3 6

Figure 14  End effector cubic trajectory from initial to final positions
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added to the mass of the mobile platform in the simula-
tion study.

The actuation force and torque variations with time for 
every active joint obtained by the two methods are illus-
trated in Figure 17. The slight variations in the dynamic 
Force and Torque values obtained by the two approaches 
are observed as a part of simplifying the analytical model. 
To lower the complexities involved in formulating the 
dynamic equations, the effect of friction has not been 
considered in this paper. However, in the ADAMS sim-
ulation model, a dynamic coefficient of friction value of 
0.3 has been assigned at every joint. This accounts for 
the slight increase in the Force and Torque values in the 
ADAMS simulation model compared to the analytical 
model.

The maximum force required by each slider according 
to the analysis is 5.2 N, 4.4 N and 3.4 N, respectively. The 
dynamic model is used to choose the appropriate actua-
tors depending upon the forces computed for different 
applications. The maximum force for each slider in the 
force plot is taken as the theoretical force required to 
calculate the actuator torques considering the lead screw 
parameters.

Assuming reasonable safety factors (say 1.5), the actual 
torque is calculated using Eq. (40):

where η is the safety factor. The dynamic model devel-
oped can be used to design controllers and study the total 
power consumptions for different applications.

6 � Prototype of the Dual 3‑PRUS Manipulator
The 3-PRUS manipulator mainly comprises of slid-
ers, revolute joints, universal joints and spherical joints 
interconnected by rigid links. The slider slides straight 
along the guide rod by the aid of a lead screw attached 
to the motor. The prototype is manufactured using sim-
pler parts mainly to display the motion of the mobile 

(40)τactual = ητtheoretical ,

Figure 15  a Slider velocity vs time, b Angular velocity vs time

Figure 16  a Imported 3-PRUS mechanism in ADAMS, b Spherical 
joints assigned on the mobile platform in ADAMS
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platform. Two similar 3-PRUS manipulators are fabri-
cated to demonstrate coordinative assembly operation. 
The physical prototype of the dual 3-PRUS manipulator 
is shown in Figure 18 in which one arm is at the top of 
the fixed frame and the other is at the lower portion. Two 
additional actuators are used at each end of the arm to 
rotate and open/close the end effector attached to the 
platform. There are eight motors in total to be controlled 
for an individual 3-PRUS mechanism. The user defines 
the path followed by the end effector for each mechanism 
via the MATLAB interface using the laptop connected to 
the system. The end effector tracks the trajectory based 
on the inverse kinematics. The angular rotations of each 
motor connected to the slider via lead screw is calculated 
using Eq. (41):

where p is the pitch of the lead screw and ∆Li is the slider 
displacement for each leg. The angular rotations calcu-
lated is then given as input to the controller to enable 
rotations to the motor.

7 � Conclusions and Outlook
In this paper, the kinematic and dynamic model of a novel 
six DoF 3-PRUS parallel manipulator is developed. The 
proposed design has a simple architecture with six active 
and six passive joints each. The mechanism is modelled 
using the DH convention, and the closed-form inverse 
kinematics solution is obtained by considering suitable 

(41)θ =
2π(�Li)

p
,

Figure 17  Numerical simulation results: a Sliding force plot (L-E), b Sliding force plot (ADAMS), c Torque plot (L-E), d Torque plot (ADAMS)
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constraint equations. The forward kinematic equations 
are further used to plot the reachable volume of the end 
effector. A numerical based Levenberg–Marquardt Algo-
rithm (LMA) is explained to solve the inverse kinematics 
equations. The optimized link dimensions are computed 
from the workspace analysis to determine the maximum 
volume the end effector can move. The Jacobian matrix 
for the 3-PRUS is derived using an analytical approach 
by incorporating the holonomic constraints within the 
mechanism. The Jacobian matrix which is a (6 × 6) ten-
sor for the 3-PRUS parallel manipulator is used to ana-
lyze the singularity and stiffness of the mechanism. Based 
on this analysis, the maximum singular free workspace 
for the defined geometric parameters is determined. The 
methodology explained in this paper is easy to under-
stand and applicable to any parallel manipulators having 
complex geometries by defining suitable constraint equa-
tions. The closed-form dynamic model of the manipula-
tor is developed using the Euler–Lagrangian formulation. 
The results of the dynamic model for a pre-defined trajec-
tory is compared with ADAMS. The mathematical model 
developed in this paper can be used to choose suitable 
actuators and design appropriate controllers for automa-
tion. Finally, the prototype of a dual 3-PRUS manipulator 
is manufactured to study the motion of the mobile plat-
form. The two manipulators can be made to coordinate 
with each other to do a specific task. This mechanism 
can be effectively used for health care applications, such 
as scanning, physiotherapy, surgical applications, etc., by 
changing the upper and lower bounds of the link dimen-
sions and using suitable end effector. Kinematic calibra-
tion and error analysis may also be done on the prototype 

to evaluate the accuracy and precision of the mechanism. 
Machine learning algorithms can be incorporated to 
decide intelligent trajectory for different applications.
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Appendix
Position coordinates of the centre of the connecting link 
derived from the DH model is,

Position coordinates of the centre of mobile platform 
obtained from the DH model is,

vx2 =
a

2
[sinx2sinx3sinx4 − cosx2cosx4];

vy2 =
a

2
cosx3sinx4;

vz2 =
[

x1 +
a

2
(cosx4sinx2 + cosx2sinx3sinx4)

]

;

Figure 18  Experimental setup of 3-PRUS dual PKM prototype
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