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Abstract 

In machinery fault diagnosis, labeled data are always difficult or even impossible to obtain. Transfer learning can lever-
age related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagnosis performance 
in sparsely labeled or unlabeled target domain, which has been widely used for cross domain fault diagnosis. How-
ever, existing methods focus on either marginal distribution adaptation (MDA) or conditional distribution adaptation 
(CDA). In practice, marginal and conditional distributions discrepancies both have significant but different influences 
on the domain divergence. In this paper, a dynamic distribution adaptation based transfer network (DDATN) is pro-
posed for cross domain bearing fault diagnosis. DDATN utilizes the proposed instance-weighted dynamic maximum 
mean discrepancy (IDMMD) for dynamic distribution adaptation (DDA), which can dynamically estimate the influ-
ences of marginal and conditional distribution and adapt target domain with source domain. The experimental evalu-
ation on cross domain bearing fault diagnosis demonstrates that DDATN can outperformance the state-of-the-art 
cross domain fault diagnosis methods.
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1  Introduction
As a critical part of modern equipment, bearing always 
works under harsh conditions and suffers from time-
varying load, which results in a significant risk of failure 
[1]. Bearing failure is the main cause of the machinery 
breakdowns, and sometimes can lead to huge economic 
loss and severe casualties [2, 3]. To ensure the operational 
reliability of equipment, researchers have conducted 
related studies for bearing fault diagnosis and proposed 
many effective methods [4–8].

Among these methods, deep learning based methods 
have shown its excellent performance in recent years, 
which can learn diagnosis knowledge from large amount 

of labeled data and reduce the dependence on exper-
tise [9–12]. Although deep learning based methods are 
not expertise-dependent, they are heavily data-depend-
ent. Unfortunately, collecting labeled machinery failure 
data are expensive or even impossible [13]. Under such 
circumstance, transfer learning [14] begins to attract 
researchers’ attention, which could transfer the related 
knowledge of fully labeled source domain to enhance the 
fault diagnosis performance in sparsely labeled or unla-
beled target domain [15, 16].

Han et al. [17] introduced adversarial learning for fea-
ture distribution adaptation and transferred the source 
domain fault diagnosis model to the target domain. Guo 
et  al. [18] utilized both Maximum mean discrepancy 
(MMD) and adversarial learning to adapt the feature dis-
tribution, which can transfer the fault diagnosis model 
to other machineries. Yang et  al. [19] transferred fault 
diagnosis model from laboratory bearings to locomotive 
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bearings with MMD-based multi-layer feature alignment 
and pseudo label learning. Wang et al. [20] utilized con-
ditional maximum mean discrepancy (CMMD) to align 
feature distribution for cross-domain bearing fault diag-
nosis. Li et al. [21] proposed a novel cross domain fault 
diagnosis method, which take full advantage of the avail-
ability of target domain health labels.

These transfer learning methods have achieved great 
success in unsupervised domain adaptation, which can 
build fault diagnosis models for unlabeled target domain. 
However, these works only tend to adapt either marginal 
or conditional distributions (MDA or CDA) between 
source and target domain. In practice, both marginal 
and conditional distribution discrepancies have sig-
nificant but different influences on domain divergence 
[22]. Recently, researchers have carried out some work 
in joint distribution adaptation (JDA) [23, 24], which 
simultaneously adapt marginal and conditional distri-
bution. Although these works have achieved better per-
formance, they allocate equal weights to marginal and 
conditional distributions discrepancies, which cannot 
quantify the different contributions of these distributions 
discrepancies.

In this paper, a dynamic distribution adaptation based 
transfer network (DDATN) is proposed for cross domain 
bearing fault diagnosis, which utilizes the proposed 
instance-weighted dynamic maximum mean discrepancy 
(IDMMD) for dynamic distribution adaptation (DDA). 
The main contributions of the paper are as follows.

(1)	 Introduce DDA framework for cross domain bear-
ing fault diagnosis, which can dynamically adjust 
the weights of marginal and conditional distribu-
tions discrepancies in domain adaptation.

(2)	 Propose a novel dynamic distribution discrepancy 
metric (IDMMD) for unsupervised DDA. IDMMD 
uses a novel dynamic factor estimation method to 
dynamically estimate the contributions of MDA 
and CDA, which further considers the contribution 
of CDA of each class. In addition, it takes the con-
fidence of target domain pseudo labels into account 
when calculates the conditional distribution dis-
crepancy.

The remainder of the paper are organized as follows. 
The theoretical and technical bases are introduced in 
Section 2. Section 3 describes the detail of the proposed 
DDATN, which has been experimental evaluated in Sec-
tion 4. Finally, the conclusion is drawn in Section 5.

2 � Preliminaries
2.1 � Dynamic Distribution Adaptation
Marginal and conditional distributions have different 
contributions on domain divergence and their contribu-
tions dynamically change during the transfer learning 
procedures. To improve transfer learning performance, 
DDA [22] is proposed as a general transfer learning 
framework, which considers the different and ever-
changing contributions of marginal and conditional dis-
tributions on domain divergence. In DDA, the dynamic 
distribution discrepancy has the general form as

where Ps and Qs are marginal and conditional distribu-
tions of source domain Ωs, respectively; Pt and Qt are 
marginal and conditional distributions of source domain 
Ωt, respectively; D(Ps, Pt) is marginal distribution dis-
crepancy, D(c)(Qs, Qt) is conditional distribution dis-
crepancy for class c, C is the number of classes; μ is the 
dynamic weight which changes when the training goes 
on.

From Eq. (1), DDA degenerates to MDA and CDA 
when μ=0 and μ=1, respectively. Therefore, DDA can 
be regarded as a more general distribution adaptation 
framework.

2.2 � Maximum Mean Discrepancy
Maximum mean discrepancy (MMD) [25] which is an 
effective distribution discrepancy metric widely used in 
transfer learning. Given datasets Xs and Xt sampled from 
distributions P(Xs) and P(Xt), the MMD between P(Xs) 
and P(Xt) is can be calculated as

where xis∈Xs, xjt∈Xt; ns and nt are the numbers of samples 
in Xs and Xt, respectively; φ is a nonlinear mapping func-
tion in reproducing kernel Hilbert space (RKHS) H.

From Eq. (2), the MMD is expressed as the distance in 
H between mean embeddings of Xs and Xt.
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3 � Dynamic Distribution Adaptation Based Transfer 
Network

In this paper, DDA is introduced for improving the cross 
domain bearing fault diagnosis performance. The frame-
work of DDATN is shown in Figure 1. It consists of DDA 
and supervised learning. The DDA part aims to constrain 
the feature extractor Gf to extract domain-invariant fea-
tures by minimizing the proposed dynamic distribution 
discrepancy IDMMD. The supervised learning part real-
ized by minimizing the supervised loss LC will guide the 
Gf to extract features which are discriminative for bearing 
health conditions, and train the effective classifier Gy which 
can accurately diagnosis bearing fault with these features.

3.1 � Supervised Learning
The DDATN is proposed for unsupervised domain adap-
tation, which target domain data are totally unlabeled. The 
supervised learning is realized using labeled source domain 
data, whose loss can be defined as

where J (·, ·) is cross-entropy loss function, yis is the 
labeled of source domain sample xis.

3.2 � Instances‑weighted Dynamic Maximum Mean 
Discrepancy (IDMMD)

In unsupervised domain adaptation, target domain cannot 
provide label information. The final fault diagnosis process 
can just be conducted by the shared classifier Gy which 
trained by labeled source domain data. To prevent the 
interference of target domain specific features and domain 
divergence, it is important to extract the domain-invariant 
features.
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In DDATN, a novel dynamic distribution discrepancy 
metric IDMMD is proposed for constraining Gf to extract 
domain-invariant features. IDMMD based on the DDA 
framework, which considers the ever-changing contribu-
tions of marginal and conditional distribution discrepancy 
on domain divergence. In addition, IDMMD further con-
siders the different contributions of conditional distribu-
tions discrepancies of different class, and the confidence 
of target domain samples’ pseudo labels. The IDMMD 
between Ωs and Ωt is defined as:

where IDMMDM is the marginal distributions discrep-
ancy, IDMMDC

(c) is the conditional distributions discrep-
ancy for class c, μ(c) is the dynamic factor for IDMMDC

(c). 
They are defined as

where yi(c) is the real one-hot label of xis for class c, ŷj(c) is 
the prediction probabilities of xjt for class c.

The IDMMDM is the original form of MMD. For 
unsupervised domain adaptation, the labels of target 
domain samples which are necessary for calculating 
conditional distributions discrepancy is unavailable. 
Therefore, the predictions of Ωt are regarded as its soft 
labels. Considering the confidence of the soft labels, 
different weights are allocated to different target 
domain samples while calculating IDMMDC

(c), which 
are their prediction probabilities for class c. Intuitively, 
MMD calculates the distance between the centers of 
two datasets in the embedded feature space. In target 
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ŷ
(c)
j φ

(

xtj

)

nt
∑

j=1

ŷ
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Figure 1  Framework of DDATN
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domain, the center of each class will tend to be closer 
to the samples which have higher prediction probabili-
ties with the proposed weight allocation. Therefore, the 
negative effects of misclassification will be diminished.

To quantify the ever-changing contributions of mar-
ginal and conditional distributions, the dynamic factors 
for each class are calculated as Eq. (7). The class has 
larger IDMMDC value will be allocated larger dynamic 
factor, and the dynamic factor of marginal distribution 
will be calculated as Eq. (4). The proposed dynamic fac-
tor allocation method aims at guiding the DDA to focus 
on the main cause of domain shift.

3.3 � General Procedure of DDATN
As mentioned above, DDATN contain two parts: super-
vised learning and DDA. Therefore, the total loss func-
tion of DDATN can be defined as

where λ is the trade-off factor.
The procedures of DDATN are presented in Figure  2 

and summarized as follows.

(1)	 Datasets generation. The source and target domain 
signals are segmented and standardized to form 

(8)Ltotal = LC + � · IDMMD(�s,�t),

Figure 2  Flowchart of DDATN
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the source and target domain datasets (Ωs and Ωt), 
respectively.

(2)	 Batch optimization. Source and target domain sam-
ples batches are generated from Ωs and Ωt, respec-
tively. These batches are forward propagated to cal-
culate the loss Ltotal. The loss is back-propagated to 
update the whole network.

(3)	 Traverse datasets. Repeat step 2 to traverse the Ωs 
and Ωt.

(4)	 Iterative optimization. Repeat step 3 for nepochs 
times.

(5)	 Model evaluation. Evaluate the final fault diagnosis 
model with testing dataset.

4 � Experiment
4.1 � Dataset Description
In this section, the CWRU [26] bearing dataset (CW) and 
the bearing dataset from our laboratory (OL) are utilized 
for verifying the effectiveness of the DDATN.

The test rig of CWRU bearing dataset is shown in Fig-
ure  3, which consists of a driven motor (left), a torque 
transducer and an encoder (middle), and a dynamometer 
(right). The test bearing is installed at the output side of 
the motor and support the motor shaft. This bearing test 
includes four health conditions with four fault diameters 

(0.18, 0.36, 0.53, 0.071 mm), and it is conducted on four 
different loads (0, 1, 2, 3 hp) with sampling rates of 12 kHz 
and 48 kHz. The details of the used part of data whose 
sampling rate is 12 kHz are listed in Table 1.

The bearing test rig of our laboratory is shown in Fig-
ure 4. The test rig is driven by the motor, and the power 
transfer to the shaft which is supported by the test bear-
ing with belt drive. The loading device exert radial force 
on the shaft to simulate the load of bearing. In this test, 
inner and outer race faults with size 0.5 mm are intro-
duced to the test bearing by wire-electrode cutting. The 
acceleration signals are collected with sampling rate of 12 
kHz. The details of this dataset are listed in Table 2.

For each health condition, 100 samples are segmented 
from the original vibration signals. Therefore, there are 
300 and 1200 (300 for each speed) sampled from CW and 
OL bearing datasets, respectively. The length of the sam-
ple is set as 2048.

4.2 � Comparison Setting
Thirty-six cross equipment tasks are conducted to verify 
the effectiveness of DDATN, which are listed in Table 3. 
For target domain dataset, half are used for training and 
the rest are served as testing dataset. In Table 3, S denotes 
source domain dataset, T denotes target domain training 

Figure 3  CWRU bearing test rig

Table 1  Details of the CWRU bearing dataset

Health conditions Fault diameter /mm Load /hp Speed /(r/
min)

Normal (N) 0.18/0.36/0.53 1 1772

Inner race fault (IR) 2 1750

Outer race fault (OR) 3 1730

Figure 4  Bearing test rig

Table 2  Details of the OL bearing dataset

Health 
conditions

Fault diameter 
/mm

Load /hp Speed /(r/min)

Normal (N) 0.5 / 500/800/1100/1400

Inner race fault (IR)

Outer race fault 
(OR)
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dataset, OL 500 (150) denotes the OL bearing data with 
speed of 500 r/min and the number of samples are 150 
(50 samples for each health condition). CW0.18_1(300) 
denotes the CWRU data with 0.18 mm fault diameter 
and 1 hp load, and the number of samples are 300 (100 
samples for each health condition).

The structures of features extractor Gf and classifier Gy 
are presented in Table 4, where Conv1D denotes 1D con-
volutional layer, MP1D denotes 1D max pooling layer, FC 
denotes fully connected layer. The Gf and Gy are trained 
by Adam optimizer (learning rate = 0.001, β1 = 0.9, 
β2 = 0.999). The tradeoff factor λ is set as 1.

The details of the comparison methods are as follow-
ing. They use the same CNN structure as DDATN.

Method 1 (DDC): Deep domain confusion (DDC) 
[27] is a deep transfer learning method proposed by 
Tzeng et al., which utilizes MMD for single-layer fea-
ture alignment.
Method 2 (FTNN): Feature-based transfer neu-
ral network (FTNN) [19] is proposed by Yang et al, 
which applied MMD-based multi-layer feature 
alignment and pseudo label learning to transfer fault 
diagnosis knowledge from laboratory bearings to 
locomotive bearings.
Method 3 (DTN) [23]: Deep transfer network 
(DTN) is a cross-domain fault diagnosis method 
proposed by Han et al. It utilizes MMD and CMMD 
to evaluate the marginal and conditional distribu-
tions discrepancies, respectively. They are given 
equal weights for single-layer feature joint distribu-
tion adaptation.
Method 4 (IWC): IWC is derived from DDATN, 
which only takes the conditional part of IDMMD as 
the evaluation of the domain divergence.
Method 5 (IWCM): IWCM is also derived from 
DDATN, which allocates equal weights to the mar-
ginal and conditional parts of the IDMMD.

4.3 � Result and Discussion
The experiment is conducted on a computer with two 
E5-2630 v3 CPUs, a Nvidia GeForce RTX 2080 Ti GPU 
(11 GB memory), and 64 GB memory. To avoid the influ-
ence of randomness, each task is repeated 10 times. The 
mean accuracies, standard deviations, training and test-
ing time are listed in Table 5. The overall accuracy curves 
of these methods are presented in Figure 5. In addition, 
for each method, the average accuracy and standard devi-
ation among all tasks are also presented in Avg.

The comparison shows that IWC, IWCM and DDATN 
have better performances than other methods. DDC has 
the worst accuracy in in almost all tasks except task 14. 
FTNN and DTN are both derived from DDC, whereas 
they have different improving directions. FTNN extends 
the single-layer adaptation to multi-layer adaptation and 

Table 3  Cross equipment tasks

Task Training datasets Testing dataset

S T

1 CW0.18_1 (300) OL500 (150) OL500 (150)

2 OL800 (150) OL800 (150)

3 OL1100 (150) OL1100 (150)

4 OL1400 (150) OL1400 (150)

5 CW0.18_2 (300) OL500 (150) OL500 (150)

6 OL800 (150) OL800 (150)

7 OL1100 (150) OL1100 (150)

8 OL1400 (150) OL1400 (150)

9 CW0.18_3 (300) OL500 (150) OL500 (150)

10 OL800 (150) OL800 (150)

11 OL1100 (150) OL1100 (150)

12 OL1400 (150) OL1400 (150)

13 CW0.36_1 (300) OL500 (150) OL500 (150)

14 OL800 (150) OL800 (150)

15 OL1100 (150) OL1100 (150)

16 OL1400 (150) OL1400 (150)

17 CW0.36_2 (300) OL500 (150) OL500 (150)

18 OL800 (150) OL800 (150)

19 OL1100 (150) OL1100 (150)

20 OL1400 (150) OL1400 (150)

21 CW0.36_3 (300) OL500 (150) OL500 (150)

22 OL800 (150) OL800 (150)

23 OL1100 (150) OL1100 (150)

24 OL1400 (150) OL1400 (150)

25 CW0.53_1 (300) OL500 (150) OL500 (150)

26 OL800 (150) OL800 (150)

27 OL1100 (150) OL1100 (150)

28 OL1400 (150) OL1400 (150)

29 CW0.53_2 (300) OL500 (150) OL500 (150)

30 OL800 (150) OL800 (150)

31 OL1100 (150) OL1100 (150)

32 OL1400 (150) OL1400 (150)

33 CW0.53_3 (300) OL500 (150) OL500 (150)

34 OL800 (150) OL800 (150)

35 OL1100 (150) OL1100 (150)

36 OL1400 (150) OL1400 (150)
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introduces pseudo label learning for further improve-
ment, which has demonstrated to be effective in this case. 
DTN extends the MDA to JDA and achieves higher aver-
age accuracy than FTNN.

IWC achieves the average accuracy of 91.24% with 
standard deviation of 11.16%, which indicates that the 
proposed conditional distribution discrepancy metric is 
effective and robust. IWCM shows better performance 
than IWC in all tasks. The extension from CDA to JDA is 
proved valid while comparing IWCM with IWC. In addi-
tion, the IWCM can be regarded as the variation of DTN, 
which replaces the pseudo label strategy with instance-
weighted strategy when calculating conditional distribu-
tion discrepancy. The comparison between IWCM and 
DTN demonstrates the effectiveness of the instance-
weighted strategy.

Specifically, DDATN outperforms other methods in 
all tasks and achieves the highest average accuracy of 
98.43% with lowest standard deviation, which indicates 
its superior effectiveness and robustness. In tasks 3, 7, 13, 
21, 23, DDATN does not perform best, but it still gains 
a very close accuracy with the highest one. In tasks 4 
(CW0.18_1 to OL1400) and 8 (CW0.18_2 to OL1400), 
the accuracies of DDATN are relatively low (67.07% for 
both tasks), which indicates that DDATN cannot gain 
very high accuracy in some transfer tasks. However, the 
accuracies of DDATN in these tasks still higher than 
other methods. In some difficult transfer tasks, DDATN 
may not be able to gain very high accuracy, but it can 
improve the performance to some degree.

In summary, the comparison indicates that the pro-
posed conditional distribution discrepancy metric is 

effective and robust, whereas the extension from MDA, 
CDA and JDA to DDA can further improve the cross-
domain fault diagnosis performance.

4.4 � Feature Visualization
All the methods used in this experiment are feature-
based transfer learning methods. To further evaluate the 
feature alignment performance of DDATN, t-distributed 
stochastic neighbor embedding (t-SNE) [28] is utilized 
for feature visualization. Tasks 33 and 36 are selected 
for visualization. For DDC, IWC, IWCM and DDATN, 
the feature visualizations are conducted on Flatten layer, 
whereas it is conducted on FC_2 layer for FTNN and 
DTN. In Figures 6 and 7, the legend consists of two parts: 
bearing health condition (outside the bracket) and the 
domain label (inside the bracket). For example, IR (T) 
denotes the inner race fault sample of the target domain. 
The marker of source and target domain samples are cir-
cle and triangle, respectively. The color represents the 
health condition, e.g., blue represent Normal (N), red 
represent Inner Race fault (IR), green represent Outer 
Race fault (OR).

In task 33, the features of IWC, IWCM and DDATN 
show good fusion of source and target domains, whereas 
great discriminability with respect to bearing health con-
ditions is also observed. For other methods, their features 
still have related good interclass discriminability, but the 
aggregation of source and target domains is poor. Espe-
cially, the source and target domain samples can be lin-
early separated with the feature of DDC.

Table 4  Structures of Gf and Gy

Layer type Activation function Parameter name Parameter size Output size

Gf Input / / / (2048,1)

Conv1D_1 ReLU Kernels 16×129 (1920,16)

MP1D_1 / Pool Size 8 (240,16)

Conv1D_2 ReLU Kernels 32×5 (240,32)

MP1D_2 / Pool Size 4 (60,32)

Conv1D_3 ReLU Kernels 32×5 (60,32)

MP1D_3 / Pool Size 4 (15,32)

Conv1D_4 ReLU Kernels 64×15 (1,64)

Flatten / / / (64)

Gy FC_1 Sigmoid Nodes 32 (32)

FC_2 Leaky_ReLU (α=0.2) Nodes 16 (16)

Output SoftMax Nodes 3 (3)
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In task 36, the features of IWC, IWCM and DDATN 
still show superior performance compared with the fea-
tures of other methods, which still have good fusion of 
source and target domains. However, there has been a 

significant degeneration of the interclass separability of 
IWC and IWCM, whereas DDATN still hold excellent 
interclass separability. For DDC, FTNN and DTN, the 
interclass separability and intraclass aggregation are both 

Table 5  Comparison results

The highest accuracies of each row are indicated in bold

Tasks Methods

DDC FTNN DTN IWC IWCM DDATN

Accuracy (%)

 1 66.73±3.49 79.20±9.82 97.60±3.80 98.67±1.83 98.73±1.55 98.93±0.72
 2 61.80±2.41 91.73±3.22 95.80±4.96 98.40±2.25 98.73±2.21 99.73±0.47
 3 32.97±2.70 80.40±8.60 63.70±15.97 86.27±7.32 93.47±2.08 93.07±1.64

 4 32.60±1.84 45.20±18.08 55.40±9.61 50.20±7.58 64.67±5.38 67.07±1.86
 5 66.13±2.72 81.33±7.77 97.20±2.66 98.22±3.83 98.60±2.36 99.20±0.61
 6 66.80±5.11 90.47±5.43 94.70±5.57 97.01±3.10 98.20±2.25 99.60±0.56
 7 63.20±3.78 87.93±9.22 77.73±9.90 91.53±3.21 94.67±2.63 94.27±2.83

 8 35.53±2.61 60.73±17.34 54.00±7.48 59.00±10.77 59.40±9.26 67.07±2.58
 9 70.47±5.36 96.27±2.04 98.47±2.39 97.77±3.79 98.67±2.24 99.00±0.79
 10 67.67±5.65 91.87±3.12 95.27±3.89 97.60±2.25 98.67±2.20 99.33±0.70
 11 64.60±2.21 80.60±6.43 77.33±8.57 90.20±5.37 91.73±3.16 95.87±1.03
 12 51.73±2.67 75.73±8.53 61.73±6.49 90.87±5.91 91.33±5.75 93.73±5.73
 13 76.40±9.78 82.47±4.35 95.20±9.56 98.30±1.95 98.93±2.04 98.73±1.39

 14 94.13±2.26 91.33±3.72 96.37±5.69 97.80±1.69 98.60±1.52 99.33±0.83
 15 68.07±2.54 69.47±5.94 83.13±6.46 95.27±2.25 94.67±2.90 96.47±1.26
 16 61.53±3.08 66.67±4.92 73.80±7.17 97.27±3.23 98.07±2.19 98.33±1.05
 17 78.33±3.97 88.53±4.99 96.87±4.59 98.07±4.55 97.13±3.08 98.33±1.94
 18 87.27±5.63 88.53±2.06 95.33±3.36 98.01±2.37 98.07±1.97 99.07±1.10
 19 80.33±6.43 87.47±3.74 87.13±2.83 92.87±2.35 92.60±2.28 95.60±1.41
 20 60.40±3.15 72.93±5.61 80.93±5.35 97.20±3.12 94.20±4.79 98.87±0.83
 21 89.27±7.28 91.07±3.93 95.87±3.51 96.96±4.42 96.67±5.69 96.20±3.34

 22 94.20±2.42 94.67±1.54 95.67±2.42 97.73±2.11 98.47±1.63 99.13±0.55
 23 58.60±3.94 82.47±6.56 82.33±4.17 88.73±6.09 91.40±1.73 91.07±3.36

 24 71.13±3.21 79.27±5.59 77.87±7.32 95.73±3.81 95.20±1.96 97.87±1.83
 25 65.07±1.97 92.67±2.58 93.30±5.32 97.26±3.31 97.73±2.20 98.80±1.03
 26 56.87±2.69 93.27±2.56 68.90±2.06 78.67±6.93 78.53±7.63 98.87±2.50
 27 51.07±1.84 64.53±6.86 61.33±2.79 91.47±4.48 91.73±3.11 86.67±4.96

 28 49.87±2.43 72.80±3.44 67.33±4.42 81.80±10.48 84.80±10.88 96.07±2.66
 29 64.67±2.06 93.07±4.03 96.67±3.46 98.00±4.53 98.80±2.43 99.47±0.82
 30 65.73±2.04 92.53±2.61 93.20±9.05 99.40±0.66 98.47±4.16 99.60±0.72
 31 47.73±4.36 63.67±9.19 65.03±2.67 78.93±12.77 90.87±4.38 95.53±2.97
 32 36.47±2.29 68.73±9.74 74.20±12.79 73.53±12.84 74.80±10.66 82.60±5.37
 33 69.93±6.72 90.40±6.61 96.73±1.59 99.93±0.22 100.00±0.00 100.00±0.00
 34 65.40±1.87 82.73±7.53 92.53±6.15 90.67±11.88 99.73±0.34 99.80±0.32
 35 55.00±3.10 56.23±3.69 67.67±9.22 95.53±1.81 95.87±1.33 97.13±0.71
 36 52.67±3.05 69.13±3.22 60.40±3.00 89.60±7.52 95.60±2.23 96.80±1.60
 Avg. 63.34±15.50 80.45±12.51 82.41±14.59 91.24±11.16 92.99±9.45 95.20±7.85

Training time (s) 28.9704 70.9475 80.3900 68.2972 78.5600 78.2453

Testing time (s) 0.0090 0.0043 0.0088 0.0081 0.0081 0.0084
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poor, whereas the fusion of source and target domains 
are hard to be observed.

The feature visualization demonstrates that DDATN 
can effectively adapt the target domain features distribu-
tions to that of source domain. The target samples can 
be accurately aggregated to the corresponding source 
cluster, and the extracted features shows good fusion of 
domains and excellent discriminability of bearing health 
conditions.

5 � Conclusions
This article proposes a novel unsupervised domain 
adaptation method termed DDATN. It introduces DDA 
for cross domain bearing intelligent fault diagnosis. 
The DDA is realized by the proposed IDMMD, which 
combines novel dynamic factor estimation method and 
instance-weighted conditional distribution discrep-
ancy metric. The cross domain bearing fault diagnosis 
experiment is conducted to verify the effectiveness of 
DDATN. DDATN achieved better performance than 
other state-of-the-art cross domain fault diagnosis 
methods. The results demonstrate that the proposed 
conditional distribution discrepancy metric and the 
dynamic factor calculation method are effective and 
robust for DDA. Therefore, DDATN can effectively 
adapt the target domain features distributions to that 
of source domain for better cross domain bearing fault 
diagnosis.
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