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Abstract 

Supervised fault diagnosis typically assumes that all the types of machinery failures are known. However, in practice 
unknown types of defect, i.e., novelties, may occur, whose detection is a challenging task. In this paper, a novel fault 
diagnostic method is developed for both diagnostics and detection of novelties. To this end, a sparse autoencoder-
based multi-head Deep Neural Network (DNN) is presented to jointly learn a shared encoding representation for both 
unsupervised reconstruction and supervised classification of the monitoring data. The detection of novelties is based 
on the reconstruction error. Moreover, the computational burden is reduced by directly training the multi-head DNN 
with rectified linear unit activation function, instead of performing the pre-training and fine-tuning phases required 
for classical DNNs. The addressed method is applied to a benchmark bearing case study and to experimental data 
acquired from a delta 3D printer. The results show that its performance is satisfactory both in detection of novelties 
and fault diagnosis, outperforming other state-of-the-art methods. This research proposes a novel fault diagnostics 
method which can not only diagnose the known type of defect, but also detect unknown types of defects.
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1  Introduction
With the objective of increasing the availability and 
reducing operation and maintenance cost of mechani-
cal systems, Prognostics and Health Management 
(PHM) approaches has been getting more and more 
attention [1–3]. Fault diagnostics is one of the fun-
damental tasks of PHM, which aims at detecting and 
diagnosing machinery failure using model-based or 
data-driven approaches [4]. In the era of Industry 4.0, 
since mechanical systems are getting more and more 
complex, it is very difficult and expensive to develop 
physics-based degradation models required for model-
based approaches. Whereas the increased availability 
of data collected from multiple monitoring sensors and 

the grown ability of processing data by artificial intel-
ligence algorithms have brought the great potential for 
the development of advanced data-driven approaches 
[5]. Data-driven approaches are typically based on 
the development of an empirical classification model 
trained on monitoring data. Chine et al. [6] proposed a 
fault diagnostics approach for the photovoltaic system 
based on Artificial Neural Networks (ANNs). Malik 
et  al. [7] used Empirical Mode Decomposition (EMD) 
for feature extraction, and an ANN was trained using 
the extracted features for gearbox fault diagnostics. 
He et  al. [8] extracted statistical features from moni-
toring signals and Support Vector Machines (SVMs) 
were developed for fault diagnostics for the 3D printer. 
Li et al. [9] utilized wavelet packet decomposition and 
SVM for the diagnostics of machinery faults of high-
voltage circuit breaker failures. Liu et al. [10] proposed 
a bearing diagnostics approach which combined EMD 
and auto-regressive model to extract features from 
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vibration signals and used random forests to set an 
effective classification model. Hu et  al. [11] developed 
a wind turbine bearing fault diagnosis based on multi-
masking EMD and fuzzy c-means clustering. Other 
approaches, such as k-nearest neighbor [12], naïve 
Bayes [13], linear discriminant analysis [14], fuzzy petri 
nets [15], extreme learning machines [16], have also 
been successfully developed for fault diagnostics.

Although these intelligent fault diagnostics approaches 
have shown great progress, there are still some limita-
tions. On the one hand, they rely on the identification of 
handcrafted features requiring expert knowledge or com-
putationally demanding feature selection methods. On 
the other hand, the shallow learning architecture of these 
approaches leads to poor performance for complex clas-
sification problems. To address these difficulties, recently 
Deep Learning (DL) methods have been extensively 
applied for machinery fault diagnostics [17–20]. DL 
methods are expected to automatically provide high-level 
representation by using neural networks with multiple 
layers of non-linear transformations, without requir-
ing human-designed and labor-intensive analyses of the 
data [21, 22]. Jia et  al. [23] fed the frequency spectra of 
vibration signals into stacked AutoEncoders (AEs)-based 
Deep Neural Networks (DNNs) for rotating machinery 
diagnostics. Chen et  al. [24] proposed Sparse AutoEn-
coder (SAE) and deep belief network for fault diagnosis of 
bearings. Lu et al. [25] employed denoising AEs for fault 
diagnostics of rotating machinery components. Shao 
et  al. [26] presented a deep belief network by stacking 
multiple restricted Boltzmann machines for fault diag-
nostics of induction motors. Wang et  al. [27] employed 
Convolutional Neural Networks (CNNs) for fault diag-
nostics of motors, where the input is the time-frequency 
map of the vibration signal. Jiang et al. [28] presented a 
method incorporating multiscale learning into the tradi-
tional CNN architecture for defect identification of wind 
turbine gearbox. Chang et  al. [29] proposed a concur-
rent CNN composed of parallel convolution layers with 
multi-scale kernels for fault diagnosis of wind turbine 
bearings. Yuan et  al. [30] investigated the development 
of different Recurrent Neural Networks (RNNs) includ-
ing vanilla RNN, Long Short-Term Memory (LSTM) and 
gated recurrent unit for fault diagnostics and prognos-
tics of aero engine. Chen et  al. [31] utilized multi-scale 
CNNs to extract features that are then fed to a LSTM for 
bearing fault diagnostics. Echo State Networks (ESNs), 
another type of RNN characterized by high training effi-
ciency, were successfully developed for fault diagnostics 
in Refs. [32] and [33], respectively. Zhang et al. [34] pro-
posed a novel approach named deep hybrid state network 
integrating sparse AE and double-structure ESN for fault 
diagnosis of 3-D printers.

Even though these studies have outperformed other 
state-of-the-art fault diagnostics methods, the occur-
rence of novel conditions, which is common in real 
applications since the available monitoring data typically 
cannot cover all the possible types of defects and operat-
ing conditions, is seldom considered.

In this context, the objective of the present work is to 
develop a fault diagnostics method with the following 
characteristics: (i) it does not require the application of 
feature selection and extraction techniques; (ii) it can 
detect novel conditions not been recorded in the avail-
able dataset; and (iii) it can accurately diagnose known 
normal and faulty conditions.

We consider SAE-based method as a possible solution 
for this objective. An AE is a neural network with a sym-
metrical architecture, composed of an “encoder” and a 
“decoder” network. The “encoder” network transforms 
the large-dimensional input data into a small set of fea-
tures and the “decoder” network reconstructs the data 
from the extracted features [35]. Since many natural sig-
nals show the sparsity property, which states that signals 
are with useful patterns occurred sparsely. The sparse 
modeling of signals has proven to be effective to extract 
the inherent low-dimensional features [36]. SAE, a vari-
ant of AE, employs sparsity penalty to encourage the 
extraction of discriminative features, which prevents the 
AE from simply copying the inputs and makes the fea-
tures more representative for classification [37, 38]. Since 
SAE tends to perform a poor reconstruction with data 
different from those used for its training, the reconstruc-
tion error of the input data is expected to be an indicator 
of novelty detection [39]. A SAE can be transformed into 
a SAE-based DNN for diagnostics [40] by: (i) pre-training 
multiple 1-hidden-layer SAEs and stacking them to build 
a multi-layer stacked SAE, and (ii) taking only the multi-
layer encoder network of the stacked SAE and adding a 
classification layer on it to build a DNN, then fine-tuning 
the DNN using input-output data. The “pre-training” and 
“fine-tuning” are used mainly due to the gradient vanish-
ing/exploding problems when directly training the DNN 
caused by commonly adopted tanh or sigmoid nonlinear 
activation functions [35].

Various studies have demonstrated the success of 
DNNs for machinery fault diagnostics [23, 41–46]. How-
ever, they didn’t consider the detection of previously 
unseen conditions, and most of them construct the DNN 
through the way of pre-training and fine-tuning which 
requires many computational efforts. In Ref. [39], Prin-
cipi et  al. proposed a novelty detection approach based 
on the reconstruction error of stacked AE. But the 
stacked AE is trained using normal data only, instead of 
data including normal and known multiple faulty condi-
tions, which is common in fault diagnostics problems.
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To further explore the capability of AE and AE-based 
DNNs for both novelty detection and fault diagnostics, 
we propose a SAE-based multi-head DNN for address-
ing the two problems. The multi-head DNN uses an 
encoder network to jointly learn a shared encoding rep-
resentation, based on which a decoder network and a 
classification module are employed for unsupervised 
reconstruction and supervised classification, respectively. 
The novelty detection is realized by comparing the recon-
struction error with a pre-defined threshold. In addition, 
the Rectified Linear Unit (ReLU) activation function [35], 
which is widely used for the training of CNNs to relieve 
the gradient vanishing/exploding problems, is adopted 
for the multi-head DNN to make it possible to directly 
train the DNN instead of following the conventional way 
of pre-training and fine-tuning.

The proposed method is validated by using two case 
studies about machinery fault diagnostics. The first case 
is from a benchmark considering bearings with differ-
ent types of defects operating under different loads. The 
second one is a real experiment in which the monitoring 
data of a delta 3D printer with different types of defects 
are collected. The performance of the proposed method 
is compared to that of other commonly used novelty 
detection and fault diagnostics methods.

The remaining of this paper is organized as follows. 
Section 2 presents the problem statement. The proposed 
fault diagnostics method is illustrated in Section 3. Sec-
tion  4 shows the applications of the proposed method 
to a benchmark bearing diagnostics case study and to 
experimental data of a delta 3D printer. Finally, conclu-
sions are drawn in Section 5.

2 � Problem Statement
The objective of this work is to develop a machinery fault 
diagnostics method being able to identify the unknown 
faulty conditions, and to diagnose the known normal and 
faulty conditions among C different classes. We assume 
to have available the measurements of S signals col-
lected during the operation of the machinery under all 
the already known C conditions. For ease of notation, we 
assume all the signals are collected at the same sampling 
rate. Let xks (τ ) , τ = 1, . . . ,Tk , be the τ th data point col-
lected in the s-th signal, s ∈ {1, . . . , S} , under the kth con-
dition, k ∈ {1, . . . ,C} , where Tk is the time at which the 
last data point under the k th condition is collected.

Each signal xks  is segmented into pieces containing M 
data points using a non-overlapping window, and ⌊T/M⌋ 
pieces are obtained. Then, all the S signals belonging to 
the same piece are gathered together as a sample 
xik =

{
x
ik
1 , . . . , x

ik
s , . . . , x

ik
S

}
 , ik = 1, . . . ,Nk , where xiks  is 

the ik th piece of the sth signal collected under the k th 
condition.

Finally, all the available N =
∑C

k=1N
k samples 

are lumped together to form a dataset of N  input-
output pairs 

(
xi, yi

)
 , i = 1, . . . ,N  , where the output 

yi ∈ {1, . . . ,C} is the corresponding label of the sample 
class.

The proposed method receives the test sample 
x
TEST =

{
x
TEST
1 , . . . , xTESTs , . . . , xTESTS

}
 collected from 

test equipment as the input, and is required to identify 
whether it operates in any of already known conditions, 
if no, a novel condition is detected, otherwise the class 
yTEST ∈ {1, . . . ,C} is diagnosed.

3 � The Proposed Method
3.1 � Sparse Autoencoder
An autoencoder is an unsupervised neural network with 
a symmetrical structure [35], as shown in Figure 1.

The input D-dimensional sample x is transformed into 
its hidden representation a =

[
a1, a2, . . . , aD1

]
 from the 

input layer to hidden layer, known as the “encoder”:

where σ , W 1 , b1 are the activation function, the weight 
matrix and the bias vector of the encoder, respectively.

Then, the decoder, i.e., the network from hidden layer 
to the output layer, reconstructs the input x to x̂ based on 
the feature vector a:

where W 2 , b2 are the decoder weight matrix and the bias 
vector, respectively. As a variant of the autoencoder, a 
sparse autoencoder encourages the extraction of discrim-
inative features by adding a sparse restriction for the net-
work training [37]. Given the available input samples xi , 
i = 1, . . . ,N  , the training objective of SAE is to minimize 
the following cost function:

(1)a = σ(W 1x + b1),

(2)x̂ = σ(W 2a + b2),

...

... ...

x x̂
a

Encoder Decoder

( )1 1
,bWW ( )2 2

,bWW

Input layer Hidden layer Output layer

Figure 1  Structure of an autoencoder
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where the first term is the reconstruction error, the sec-
ond term is the L2 regularization term where W  is the 
SAE weight matrix, Rsparse is the sparsity regularization, 
and � and β are coefficients control the importance of the 
corresponding terms.

It has been found that constraining hidden neurons 
to be inactive most of the time makes them respond to 
different patterns lying in the data, i.e., the extracted fea-
tures a are discriminative [37]. Let p̂j be the average acti-
vation of the jth hidden neuron of the SAE hidden layer, 
considering all the input samples xi, i = 1, · · · ,N :

where ai,j is the jth element of the ith hidden representa-
tion ai , j = 1, · · · ,D1 . The sparsity regularization in Eq. 
(3), Rsparse , is calculated using the Kullback-Leibler (KL) 
divergence function to measure whether p̂j is close to a 
desired small sparsity proportion p:

The KL function is zero when all p̂j are equal to p and 
increases when they diverge.

3.2 � Multi‑head Deep Neural Network
We propose a SAE-based multi-head DNN for both nov-
elty detection and diagnostics of known conditions. The 
multi-head DNN consists of three modules: an encoder, 
a decoder and a classification module, as shown in Fig-
ure  2. The encoder extracts high-level representations 
from input data using multiple layers of non-linear trans-
formations. The extracted representations are shared 
by the decoder and the classification module as their 
input. The decoder aims at reconstructing the input data 
whereas the classification module predicts the label of 
the input data. More specifically, the construction of the 
multi-head deep neural network includes:

(1) Encoder
The encoder receives the sample x as the input and 

extracts high-level representation of x using L hidden 
layers, LǫN+ . Let a(1) , ..., a(L) be hidden representations 
extracted from the corresponding hidden layer, their 
dimensions D1 , ..., DL , are set as following: (i) D1 is typi-
cally set larger than that of input layer, D , to obtain a 
sparse-overcomplete representation at the first hidden 
layer, which has been shown able to extract independent 

(3)Fcost =
1

N

N∑

i=1

�xi − x̂i�
2
+

�

2
�W �2 + βRsparse,

(4)p̂j =
1

N

∑N

i=1
ai,j ,

(5)
Rsparse =

∑D1

j=1
KL

(
p�p̂j

)

=
∑D1

j=1

[
plog

p

p̂j
+ (1− p)log

1− p

1− p̂j

]
.

basis functions for input data [47]; (ii) the dimension 
Dl , l = 2, 3, . . . , L of the remaining hidden layers should 
be smaller than Dl−1 to obtained compressed represen-
tation. The ReLU activation function is employed in the 
input layer and all the hidden layers.

The sparsity regularization defined in Eq. (5) is applied 
to all the hidden layers to encourage the extraction of 
discriminative features, and the L2 regularization is 
employed to constraint the weights of the encoder.

(2) Decoder
The structures of the decoder and the encoder, i.e., the 

number and dimensions of hidden layers, are exactly 
symmetrical. The decoder aims at recovering the input 
x using a(L) . We use ReLU activation function in all the 
hidden layers and the sigmoid activation function in the 
output layer for reconstruction. The L2 regularization is 
used to constraint the weights of the decoder.

...x

(1)a ...

...

...

...

(2)a

−( 1)La

( )La

...

...

...

...

...

...

x̂

Dropout

1 C2 ...

Encoder

Decoder

Classification

−( 1)ˆ La

(2)â

(1)â

Input

Figure 2  Structure of the multi-head deep neural network
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(3) Classification module
The classification module employs a softmax layer with 

C neurons, representing different conditions, to solve the 
C-class classification problem. Given the representation 
a(

L) , the softmax layer gives a vector [̂y1, ŷ2, . . . , ŷC ] as the 
output. The kth unit of the output, ŷk , k ∈ {1, 2, . . . , C} , is 
typically regarded as a number proportional to the condi-
tional probability that the machinery is in the kth condi-
tion given sample x:

where 0 ≤ ŷk ≤ 1 , 
∑C

k=1 ŷk = 1 and zk is the kth output 
unit before applying the softmax activation function:

where wk and bk are weights and bias of the kth neuron of 
the softmax layer.

To prevent over-fitting, in the classification module, we 
employ the dropout regularization on the hidden layer 
a(

L) . Dropout randomly sets to zero a proportion pdrop of 
the hidden neurons during forward and backpropagation 
[35]. Therefore, the following equation is used for com-
puting zk considering the dropout, instead of using Eq. 
(7):

where ◦ is the element-wise multiplication operator and 
r ∈ R

DL is a ‘masking’ vector of Bernoulli random varia-
bles with probability pdrop of being 0. Gradients are back-
propagated only through the unmasked neurons.

To be associated with the neurons of the softmax 
layer, in the training set 

(
xi, yi

)
 , i = 1, . . . ,N  , each label 

yi is transformed into a one-hot C-dimensional vector (
yi,1, yi,2, . . . , yi,C

)
i=1,...,N

 , where

The training objective of the multi-head DNN over the 
training set 

(
xi, yi

)
 , i = 1, . . . ,N  , is to minimize the fol-

lowing cost function:

where the first term is the reconstruction error, the sec-
ond term is the L2 regularization term where W  is the 
weight matrix of the whole multi-head DNN, R(j)sparse is 
the sparsity regularization applied on the jth hidden layer 

(6)ŷk =
exp(zk)∑C
j=1 exp

(
zj
) ,

(7)zk = wk · a
(L) + bk ,

(8)zk = wk ·

(
a
(L) ◦ r

)
+ bk ,

(9)yi,k =

{
1, yi = k ,
0, otherwise,

k = 1, . . . ,C .

(10)

Fcost =
η1

N

∑N

i=1
�xi − x̂i�

2
+

�

2
�W �2

+ β
∑L

j=1
R
(j)
sparse −

η2

N

∑N

i=1

∑C

k=1
yi,k logŷi,k ,

of the encoder, the last term is the cross-entropy loss 
measuring the performance of the classification module, 
� , β , η1 and η2 are coefficients controlling the importance 
of the corresponding terms.

3.3 � Overview of the Proposed Method
The flow chart of the proposed fault diagnostics method 
using the multi-head DNN is shown in Figure  3. The 
original monitoring signals are segmented into data 
samples (Section  2). Then a multi-head DNN is built 
and trained using data samples collected from already 
known C classes associated with normal and faulty con-
ditions. Given a test data sample, the multi-head DNN 
first identifies whether it belongs to the already known 
C classes. If yes, an unknown condition is reported, 
otherwise the multi-head DNN diagnoses the label of 
the test sample among C already known classes.

Original monitoring signals

Data samples

Training set

Signal
segmentation

Samples belong to
classes {1, 2,.., C}

Test set

Samples do not belong
to classes {1, 2,.., C}

Train multi-head DNN

Feed multi-head DNN the
test samples

Belong to already
known C classes?

Novelty detection Fault diagnostics

YesNo

Figure 3  Flow chart of the proposed fault diagnostic method with 
novelty detection
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With respect to the novelty detection, a test sample 
x
TEST is detected as unknown when the magnitude of its 

reconstruction error is larger than a certain threshold δ:

In this work, we set the threshold as:

where Q1 and Q3 are the 25th and 75th percentiles of {
�xi − x̂i�

2, i = 1, . . . ,N
}

 , i.e., reconstruction errors 
over the training set. Notice that δ is the upper whisker in 
the box-plot method [48].

4 � Experimental Evaluations
The proposed method has been verified with respect to 
data collected from a bearing fault benchmark, before its 
application to the experimental data acquired on a delta 
3D printer. All computations have been performed using 
an Intel Core i5-5200 CPU at 2.2 GHz processor with 4 
GB RAM in Python 3.6 environment.

4.1 � Evaluation of the Proposed Method Using Benchmark 
Data

We consider the benchmark bearing diagnostics dataset 
provided by the Case Western Reserve University, which 
contains vibration data collected from an experimental 
rig with defective bearings operating under four differ-
ent loads [49]. During the experiment, besides the nor-
mal condition, three different kinds of fault, i.e., inner 
race fault, outer race fault (at 6 o’clock) and ball fault, 
were introduced the drive-end bearing of the motor 
with fault diameters of 0.18 mm, 0.36 mm and 0.54 mm, 
respectively. Table  1 shows the detailed description of 
the dataset. Vibration signals were collected at sampling 

(11)eTEST = �xTEST − x̂
TEST

�
2
> δ.

(12)δ = Q3+ 1.5(Q3− Q1),

frequency 12 kHz, by an accelerometer attached through 
the magnetic base at the drive-end.

The vibration signal of each condition is segmented 
into samples using a non-overlapping fixed-length time 
window containing 1024 data points. We implement Fast 
Fourier Transformation (FFT) on each sample to get the 
1024 Fourier amplitude coefficients. Since the coefficients 
are symmetric, the first 512 coefficients are used for each 
sample. The last column of Table 1 listed the number of 
samples obtained for each bearing condition.

We assume normal, inner race faults and balls faults 
are already known conditions (classes 1‒7), and the outer 
race faults (classes 8‒10) are unknown conditions. The 
training set is composed of 70% of the data randomly 
selected from classes 1‒7, respectively. The remaining 
data of classes 1‒7 and all the data of classes 8‒10 are 
used as the test set. During the training of the multi-head 
DNN, 5% of the training data is randomly selected as the 
validation set to prevent the overfitting of the model. The 
developed multi-head DNN is formed by an encoder with 
an input layer of D = 512 neurons and L = 3 hidden lay-
ers of D1 = 600 , D2 = 100 , D3 = 10 neurons, a symmet-
ric decoder, and a classification module with a softmax 
layer of 7 neurons associated with the known 1‒7 classes 
in the training set. The hyperparameters of the multi-
head DNN are set as follows: p = 0.05 , � = 1×10−7 , 
β = 1 , η1 = 80 , η2 = 1 and pdrop = 0.3.

(1) Novelty detection
With respect to novelty detection, the objective is to 

isolate samples of unknown classes from those of known 
classes in the test set. The box plot of reconstruction 
errors on different datasets is shown in Figure  4. The 
threshold for novelty detection, δ , is set to 5.25× 10−4 

Table 1  Bearing conditions with assigned labels

Bearing condition Fault 
diameter 
(mm)

Label
/Class

Load
(hp)

Number 
of 
samples

Normal ‒ 1 0,1,2,3 1657

Inner race fault 0.18 2 0,1,2,3 476

Inner race fault 0.36 3 0,1,2,3 472

Inner race fault 0.54 4 0,1,2,3 474

Balls fault 0.18 5 0,1,2,3 473

Balls fault 0.36 6 0,1,2,3 475

Balls fault 0.54 7 0,1,2,3 475

Outer race fault 0.18 8 0,1,2,3 475

Outer race fault 0.36 9 0,1,2,3 474

Outer race fault 0.54 10 0,1,2,3 476 Figure 4  Case 1: box plot of reconstruction errors
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in this case study based on the reconstruction errors 
on the training set, as described in Eq. (12). Notice that 
the majority of reconstruction errors of known class 
test samples are below the threshold whereas those of 
unknown class test samples are above the threshold, 
i.e., the known and unknown class test samples are well 
separated.

In order to evaluate the novelty detection performance 
of the proposed method quantitatively, we denote test 
samples of known (classes 1‒7) and unknown (classes 
8‒10) classes as positive and negative, respectively. And 
we use True Positive ( TP ) to represent the number of 
correctly classified positive samples, False Negative ( FN  ) 
to represent the number of positive samples misclassified 
as negative, True Negative ( TN  ) to represent correctly 
classified negative samples and False Positive ( FP ) to rep-
resent the number of negative samples misclassified as 
positive. The novelty detection performance of the devel-
oped multi-head DNN is evaluated considering the True 
Positive Rate ( TPR ), True Negative Rate ( TNR ) and the F1 
score:

The TPR and TNR are the proportions of correctly clas-
sified positive and negative samples, respectively. The F1 
score is widely used as a performance metric for binary 
classification models, whose value ranges in [0, 1] where 
the larger value indicates better performance.

The result of novelty detection of the proposed method 
is shown in Table  2. The proposed method has been 
compared with two popular one-class learning methods, 
one-class SVM and Isolation forest. One-class SVM aims 
at constructing a smooth boundary around the major-
ity of probability mass of data [50, 51]. Since one-class 
SVM is a shallow model which prefer low-dimensional 
input data, the D3 = 10 dimensional feature vectors a(3)i  , 

(13)True Positive Rate(TPR) =
TP

TP + FN
,

(14)TrueNegative Rate (TNR) =
TN

TN + FP
,

(15)F1 =
2TP

2TP + FP + FN
.

i = 1, . . . ,N  , extracted by the encoder from the training 
set are used as its input. The Radial Basis Function (RBF) 
kernel is used for one-class SVM, and the parameter ν , 
i.e., the assumed proportion of negative samples in the 
training set, is set to 0.01, which has been optimized with 
the objective of maximizing the F1 score by trial-and-
error considering as possible options {0, 0.01, . . . , 0.2} , 
respectively. The isolation forest employs decision trees 
for novelty detection, each tree is constructed by ran-
domly splitting features and the anomalous data will 
produce significant shorter paths in trees. The isolation 
forest is also fed by D3 = 10 dimensional feature vectors 
a
(3)
i  , i = 1, . . . ,N  , extracted by the encoder. Its param-

eter Ntree , the number of trees, is set to 40, which has 
been optimized with the objective of maximizing the F1 
score by trial-and-error considering as possible options 
{10, 20, . . . , 100} , respectively.

As shown in Table 2, the proposed method provides a 
satisfied TNR=98.53%, which means that nearly all the 
samples of the unknown classes are correctly detected, 
and the TPR is 88.57% which means that most of the 
samples of known classes can be identified. The TPR of 
one-class SVM is large whereas its TNR is only 4.14%, 
indicating that most of the samples of unknown classes 
cannot be detected. The isolation forest gets the small-
est TPR indicating only about 61.32% samples of known 
classes can be identified. Moreover, the proposed method 
gets a larger F1 score which also indicates that its perfor-
mance is better than that of one-class SVM and isolation 
forest.

(2) Fault classification
The fault classification performance of the developed 

multi-head DNN is evaluated considering the “accuracy” 
of classification on the known class samples in the test 
set, which computes the proportion of correctly classified 
samples:

Table  3 shows the obtained results. The fault classifi-
cation performance of the proposed method is satisfac-
tory, characterized by a 100% accuracy. The proposed 
method has been compared with two state-of-the-art 

(16)Accuracy =
TP + TN

TP + FN + TN + FP
.

Table 2  Comparison of performance of novelty detection

The 
proposed 
method

One-class SVM fed 
by multi-head DNN 
features

Isolation forest fed 
by multi-head DNN 
features

TPR(%) 88.57 97.69 61.32

TNR(%) 98.53 4.14 100

F1 score 0.93 0.65 0.76

Table 3  Comparison of performance of classification

Performance Accuracy (%)

The proposed method 100

SVM fed by multi-head DNN features 100

ANN fed by multi-head DNN features 99.85

kNN fed by multi-head DNN features 100
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fault diagnostics methods based on the use of a SVM, a 
1-hidden-layer ANN and a k-nearest neighbor (kNN) 
model. Since SVMs, ANNs and kNNs are shallow mod-
els which prefer low-dimensional input data, the D3 = 10 
dimensional feature vectors a(3)i  , i = 1, . . . ,N  , extracted 
by the encoder are used as their input. The RBF kernel 
is employed for the SVM and the regularization param-
eter of SVM is set to 1, which is optimized by consider-
ing as possible options {0.1, 0.2, . . . , 5} . The number of 
hidden neurons of the ANN has been optimized by trial-
and-error considering as possible options {6, 7, . . . , 50} . 
An ANN model with layers of (10, 10, 7) neurons and 
ReLU activation functions have been selected. The num-
ber of reference neighbors of kNN is set to 3, which has 
been optimized by trial-and-error considering as pos-
sible options {1, 2, . . . , 5} . The accuracies of the SVM, 
ANN and kNN are 100%, 99.85% and 100%, respectively, 
which are comparable with the proposed methods. These 
results confirm that the proposed method is accurate on 
classification problem and the features extracted by the 
multi-head DNN is discriminative enough to help shal-
low models to achieve good performance.

(3) Selection of hyperparameters and activation 
function

The proposed method has six parameters. The � , β , 
η1 , η2 are used to balance the values of terms in the cost 
function (Eq. (10)) and are set by calculating the magni-
tude ratio of the terms in the training phase. The pdrop is 
used to prevent overfitting of the classification module 
and is typically suggested to be around 0.5. We selected 
pdrop to be 0.3 by experience since it does not influence 
the classification accuracy a lot.

The sparsity proportion p is the most sensitive hyper-
parameter for SAE-based DNNs. During model training, 
a validation set formed by 5% of the training data is ran-
domly selected, and  p is selected based on the perfor-
mance over the validation set considering the possible 
options {0.05, 0.1, 0.2, 0.3, 0.4} . Table 4 reports the perfor-
mance of the proposed method on validation set regard-
ing different values of p . And p = 0.05 with the smallest 
reconstruction error and largest classification accuracy is 
selected.

In addition, we have investigated the use of a more 
cutting-edge activation function, Leaky ReLU, in 
the proposed method instead of ReLU. Leaky ReLU 
is a variant of ReLU, which maps negative inputs to 
small negative values instead of zeros. However, with 
Leaky ReLU, the proposed method gets F1 score 0.74, 
TNR 66.74%, TPR 80.40% and classification accuracy 
99.93%. Compared with the results obtained with ReLU 
(Tables  2 and 3), the performance of Leaky ReLU is 
comparable regarding the classification accuracy, but 
much worse with respect to novelty detection. A pos-
sible reason is that the input of the multi-head DNN 
is the FFT coefficients which are positive. The Leaky 
ReLU keeps negative values during the computation, 
which weakens the data reconstruction and leads to 
poorer novelty detection.

4.2 � Experiment Evaluation for 3D Printer Diagnostics
In this Section, the proposed method is applied to diag-
nose the fault of a delta 3D printer (SLD-BL600-6) [52]. 
The extruder nozzle of the delta 3D printer was con-
trolled to perform a predefined circular movement with 
a radius 75mm. A multi-channel attitude sensor was 
mounted on the moving platform to monitor its 3-axial 
angular acceleration, vibration acceleration and mag-
netic field intensity (Figure 5).

The wear of joint bearings and synchronous belts 
were considered as faulty conditions. The faults of 
joint bearings were introduced by loosening the screw 
of each joint bearing by half-turn, i.e., 0.35 mm. And 
the faults of synchronous belts were injected by relax-
ing the length of two teeth, i.e., 3 mm, for each belt. In 
each fault condition, we consider exclusively the fault 
of one joint bearing or one synchronous belt. As listed 
in Table  5, 15 faulty conditions are simulated in total, 
including faults of 12 joint bearings and 3 synchronous 
belts. Printing tests were performed under these faulty 
conditions and we found that the printing quality of the 

Table 4  Performance of the proposed method on validation set 
regarding values of p

p Reconstruction error Accuracy (%)

0.05 1.92 × 10−4 100

0.1 2.20 × 10−4 100

0.2 2.38 × 10−4 99.82

0.3 2.62 × 10−4 100

0.4 2.56 × 10−4 99.92 Figure 5  Delta 3D printer and the attitude sensor
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3D printer was affected seriously. Figure 6 shows exam-
ples of the normal mode and faulty mode of the joint 
bearing and synchronous belt, respectively.

The 9-channel monitoring data were collected under 
normal and all the faulty conditions at the sampling fre-
quency of 100 Hz. For each condition, an experiment 
was performed to collect monitoring data for 20 circu-
lar movements, each channel of which contains 32400 
data points. The data were then divided into 253 samples 
using a non-overlapping fixed-length time window, each 
channel of which contains 128 data points. The experi-
ment was repeated for 3 times, therefore, 759 samples 
were collected for each condition. For each sample, the 
FFT was implemented on each of its channels to get the 
128 Fourier amplitude coefficients. Considering the sym-
metry of the coefficients, the first 64 coefficients are used 
for each channel. Then, coefficients of all the channels are 
concatenated to form a 576-dimensional vector, which is 
used as the representation of the sample.

We assume normal and joint bearing faults are already 
known conditions (classes 1‒13), and the synchronous 
belt faults (classes 14‒16) are unknown conditions. The 
training set is composed of 70% of the data randomly 
selected from classes 1‒13, respectively. The remain-
ing data of classes 1‒13 and all the data of classes 14‒16 
are used as the test set. During the training of the multi-
head DNN, 5% of the training data is randomly selected 
as the validation set to prevent overfitting. The devel-
oped multi-head DNN is formed by an encoder with an 
input layer of D = 576 neurons and L = 3 hidden layers 
of D1 = 600 , D2 = 100 , D3 = 30 neurons, a symmetric 

decoder, and a classification module with a softmax layer 
of 13 neurons associated with the known 1‒13 classes in 
the training set. The hyperparameters of the multi-head 
DNN are set as follows: p = 0.05 , � = 1× 10−7 , β = 1 , 
η1 = 80 , η2 = 1 and pdrop = 0.3.

(1) Novelty detection
The box plot of reconstruction errors on different data-

sets is shown in Figure 7. The threshold for novelty detec-
tion, δ , is set to 1.60× 10−4 based on the reconstruction 
errors on the training set, as described in Eq. (12). The 
known and unknown class test samples are well sepa-
rated by the threshold, since the majority of reconstruc-
tion errors of known class test samples are smaller than 
the threshold whereas those of unknown class test sam-
ples are larger than it.

Table 6 shows the result of novelty detection of the pro-
posed method and those of the one-class SVM and isola-
tion forest. The D3 = 30 dimensional feature vectors a(3)i  , 
i = 1, . . . ,N  , extracted by the encoder from the training 
set are used as the input of one-class SVM and isola-
tion forest. A one-class SVM model with the RBF kernel 
and ν = 0.01 has been selected. The parameter ν has 
been optimized to maximize the F1 score by trial-and-
error considering as possible options {0, 0.01, . . . , 0.2} , 

Table 5  3D printer conditions with assigned labels

Condition Label/Class Number of examples

Normal 1 759

Joint bearing A‒L 2‒13 759 for each class

Belt M‒O 14‒16 759 for each class

Figure 6  Examples of normal and faulty conditions of joint bearing 
and synchronous belt: (a) bearing-normal condition, (b) bearing-fault 
condition, (c) belt-normal condition, (d) belt-fault condition

Figure 7  Case 2: box plot of reconstruction errors

Table 6  Comparison of performance of novelty detection

The 
proposed 
method

One-class SVM fed 
by multi-head DNN 
features

Isolation forest fed 
by multi-head DNN 
features

TPR(%) 98.41 98.68 97.55

TNR(%) 94.69 32.67 58.04

F1 score 0.97 0.79 0.81
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respectively. The parameter of isolation forest Ntree is 
chosen as 50, which has been optimized with the objec-
tive of maximizing the F1 score by trial-and-error consid-
ering as possible options {10, 20, . . . , 100} , respectively.

Both the TNR and TPR of the proposed method are 
larger than 90%, which means that most of the samples 
of the unknown classes and known classes are correctly 
detected. The TPR of one-class SVM is 98.68% whereas 
the TNR is 32.67%, indicating that more than half of the 
samples of unknown classes cannot be detected. With 
similar problem, only 58.04% of the samples of unknown 
classes can be detected by the isolation forest. Moreover, 
the F1 score of the proposed method is larger than that 
of the one-class SVM, indicating that its performance is 
better.

(2) Fault classification
Table 7 shows the obtained results. The fault classifica-

tion performance of the proposed method is 97.56%. The 
proposed method has been compared with fault diag-
nostic methods based on the use of a SVM, a 1-hidden-
layer ANN and a kNN model. Similar to Section 4.1, the 
D3 = 30 dimensional feature vectors a(3)i  , i = 1, . . . ,N  , 
extracted by the encoder are used as the input of SVM, 
ANN and kNN. The RBF kernel is employed for the 
SVM and the regularization parameter of SVM is set to 
1, which is optimized by considering as possible options 
{0.1, 0.2, . . . , 5} . The number of hidden neurons of the 
ANN has been optimized by trial-and-error consider-
ing as possible options {6, 7, . . . , 80} . An ANN model 
with layers of (30, 30, 13) neurons and ReLU activation 
functions have been selected. The number of reference 
neighbors of kNN is set to 3, which has been optimized 
by trial-and-error considering as possible options 
{1, 2, . . . , 5} . The accuracy of SVM is 97.56%, the same 
as that of the proposed method. The accuracies of ANN 
and kNN are 96.98% and 96.92%, respectively, which are 
slightly worse. These results confirm that the classifica-
tion performance of the proposed method is no less than 
the other commonly used diagnostic methods.

5 � Conclusions
This paper contributes to addressing the problem of 
fault diagnostics with novelty detection capability 
based on the use of SAE-based multi-head DNNs. The 

proposed method allows jointly performing two tasks: 
i) data reconstruction for novelty detection and ii) clas-
sification for diagnostics, using a single model, where 
features shared by these two tasks are automatically 
extracted from high-dimensional data. Furthermore, 
the use of ReLU activation function allows the reduc-
tion of computational burden by direct training of the 
DNN, instead of requiring conventional training proce-
dures including pre-training and fine-tuning.

The fault diagnostics method has been verified on 
two case studies. The results obtained in the case stud-
ies show that: i) the proposed method can be applied 
for novelty detection of the machinery where multiple 
conditions are already known, and performs signifi-
cantly better than one-class SVM and isolation forest; 
ii) the diagnostics accuracy of the proposed method 
is satisfactory, no less than the SVM and ANN-based 
fault diagnostic methods.

The setting of hyperparameters of the multi-head 
DNN is based on trial-and-error and experience. In 
future studies, we will focus on designing a systematic 
strategy for the hyperparameter setting to further facil-
itate the application of the proposed method. Further-
more, the proposed method detects novelties based on 
the reconstruction error, which is effective but indirect. 
A more direct way is to extract very representative fea-
tures of available data, which should be compact within 
a clear boundary, but still be separable between those 
of different known types of defects. And the bound-
ary could be employed for the detection of novelties. 
Therefore, the design of advanced cost function for rep-
resentative feature extraction will be considered in our 
future work.
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