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Abstract 

Prognostics and Health Management (PHM), including monitoring, diagnosis, prognosis, and health management, 
occupies an increasingly important position in reducing costly breakdowns and avoiding catastrophic accidents in 
modern industry. With the development of artificial intelligence (AI), especially deep learning (DL) approaches, the 
application of AI-enabled methods to monitor, diagnose and predict potential equipment malfunctions has gone 
through tremendous progress with verified success in both academia and industry. However, there is still a gap to 
cover monitoring, diagnosis, and prognosis based on AI-enabled methods, simultaneously, and the importance of an 
open source community, including open source datasets and codes, has not been fully emphasized. To fill this gap, 
this paper provides a systematic overview of the current development, common technologies, open source datasets, 
codes, and challenges of AI-enabled PHM methods from three aspects of monitoring, diagnosis, and prognosis.
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1  Introduction
As the key ingredient in the modern industry, mechani-
cal equipment, such as helicopters, high-speed rail, aero 
engines, etc., is chronically operating in an increasingly 
harsh environment and its structure is becoming increas-
ingly complex as well, which may result in sudden equip-
ment failure, long maintenance cycles, high maintenance 
costs, and large downtime losses. Different from tradi-
tional maintenance methods (corrective maintenance 
and periodical maintenance), Prognostic and Health 
Management (PHM) uses the integration of advanced 
sensors as well as various intelligent approaches to moni-
tor the status of the mechanical system, which realizes 
timely and optimal maintenance via reducing manual 
labor, spares, and maintenance cost.

PHM mainly consists of monitoring, diagnosis, prog-
nosis, and health management [1, 2], whose relationships 
are summarized in Figure  1. Monitoring refers to fault 
detection, and the purpose is to determine whether the 

system is in a normal operating state, in which anomaly 
detection is one of the most important tools to trace the 
corresponding health state. Diagnosis refers to the iden-
tification of the fault type and its corresponding degree. 
Prognosis makes use of appropriate models to assess the 
degree of performance degradation and further predicts 
the remaining useful life (RUL). Health management 
integrates outputs from monitoring, diagnosis, and prog-
nosis and makes optimal maintenance and logistic deci-
sions via considering economic costs and other available 
resources. In general, PHM will greatly improve the oper-
ational safety, system reliability, and maintainability of 
equipment, and reduce the cost of equipment throughout 
its life cycle at the same time.

Traditional maintenance methods generally rely on 
experts to observe and diagnose equipment artificially 
and determine the fault type and its location by rea-
sonably mounting the sensors and analyzing the result 
using appropriate algorithms. This type of method 
increases manual labor, and the efficiency of mainte-
nance largely depends on expert experience. With the 
development of the sensor technology, a large number 
of sensors are installed on mechanical equipment to 
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collect multi-source data, including vibration, tempera-
ture, images, etc., which provides a base preparation for 
potential implementation of PHM. However, due to the 
fact that mechanical equipment is chronically operating 
in an extremely complex environment, the measured sig-
nal often contains heavy background noise, that is, the 
related fault features are often submerged in the interfer-
ence. Traditional signal processing methods, such as FFT 
(fast Fourier transform) and simple metric construction, 
cannot extract and analyze the feature information with 
high efficiency and precision. Advanced signal processing 
methods, such as sparse representation [3, 4] and time-
frequency analysis [5], often have some parameters that 
need to be adjusted carefully, resulting in huge work-
load. With the development of big data techniques and 
artificial intelligence (AI) algorithms, AI-enabled PHM is 
becoming increasingly popular and has already achieved 
wide success in both academia and industry. The main 
superiority of AI-enabled PHM is that it can perform 
monitoring, diagnosis, and prognosis at a high level of 
automation, and requires little intervention and expert 
knowledge.

AI-enabled PHM is mainly about using traditional 
machine learning (ML) or deep learning (DL) methods 
to perform the final health management. Traditional ML 
algorithms such as K-nearest neighbor (KNN), artificial 
neural network (ANN), support vector machine (SVM), 
etc., have been successfully applied to PHM and also have 
achieved considerable progress. However, their appli-
cations, to a large extent, still depend on hand-crafted 
feature extraction. As long as the extracted features can 
represent fault features effectively, traditional ML mod-
els can also establish the mapping between features and 
the mechanical health status successfully. However, 
hand-crafted feature extraction still relies on expert 
knowledge, which also differs considerably between dif-
ferent signals or equipment. Moreover, when handling 
massive heterogeneous data, these methods based on 
hand-crafted features are obviously time-consuming, and 

such experience-oriented methods are easy to drop their 
accuracy in the context of big data. Therefore, it remains 
a challenging problem about how to establish AI-enabled 
PHM with high efficiency and precision. Since Hin-
ton et  al. [6] first proposed and realized a DL model in 
2006, DL has become a subversive technology in AI. DL 
has achieved a significant breakthrough and extensive 
applications in a wide range of fields, especially com-
puter vision and natural language processing. In 2015, 
Nature organized a special issue to deeply summarize the 
development process of AI and took DL as one of the six 
breakthrough technologies in this field [7]. Because of its 
strong representation learning ability, DL is very suitable 
for automatic data analysis, which can establish the map-
ping from the data side to the task side via learning the 
representation features automatically from a large num-
ber of data. Consequently, the application of DL in PHM 
is becoming increasingly popular because of providing a 
technology with the potential to process a large number 
of data, extract features from high-dimension data, and 
form an “end-to-end” monitoring, diagnosis, and progno-
sis system automatically.

To explain the popularity of AI-enabled PHM, we con-
ducted a literature search using Web of Science with a 
database called the web of science core collection in the 
past five years. It is worth mentioning that it is impossi-
ble to cover all the related papers because the names of 
AI-enabled algorithms are often different. As shown in 
Figure 2, we can observe that research about AI-enabled 
PHM has increased rapidly and it is of great importance 
to embed AI into PHM. To summarize the research of 
AI-enabled PHM, many scholars published their review 
papers from a different angle. Hamadache et  al. [8] 

Figure 1  Relationship between monitoring, diagnosis, prognosis, 
and health management

Figure 2  Relationship between the number of published papers 
and publication years covering the last five years (as of March 2021). 
The basic descriptor is \TI= ((AI OR artificial intelligence OR machine 
learning OR support vector machine OR SVM OR data-driven OR deep 
OR autoencoder OR convolutional network* OR neural network*) 
AND (fault detection OR fault isolation OR fault diagnosis OR 
intelligent diagnosis OR prognosis OR residual useful life prediction 
OR condition monitoring OR health management))
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introduced the fundamentals of PHM techniques for roll-
ing element bearings (REBs) and reviewed contempo-
rary techniques including modern AI techniques and DL 
approaches for fault detection, diagnosis, and prognosis 
of REBs. Lee et  al. [9] detailed previous and on-going 
efforts in PHM for rotary machinery systems, and intro-
duced a systematic PHM design methodology and its 
applications. Ellefsen et al. [10] reviewed four DL-based 
techniques applied to PHM for autonomous and semi-
autonomous ships. However, these reviews mainly dis-
cussed the applications of PHM for a specific object. Liu 
et al. [11] and Lei et al. [12] reviewed applications of AI 
techniques to machine fault diagnosis. Lei et al. [13] and 
Zhang et al. [14] reviewed recent advances on machinery 
prognostics systematically. These papers mainly focused 
on one aspect of monitoring, diagnosis, and prognosis. 
Khan et al. [15] and Fink et al. [1] provided a systematic 
review of the DL and its applications in PHM. However, 
there is neither emphasis on the importance of anomaly 
detection in monitoring nor the summary of open source 
datasets and codes in these papers. Therefore, it needs 
a review to cover monitoring, diagnosis, and prognosis 
based on AI techniques with the emphasis on DL and the 
requirement of an open source community.

To fill the aforementioned gap, this paper systemati-
cally reviews the current development, common tech-
nologies, open source datasets, codes, and challenges 
of AI-enabled PHM from three aspects of monitoring, 
diagnosis, and prognosis. We focus on the applications 
of AI-enabled algorithms, especially DL in monitoring, 
diagnosis, and prognosis. More importantly, we empha-
size the importance of open source datasets and codes 
for the benign development of the research community 
of AI-enabled PHM. Last but not least, this paper pro-
vides some promising future directions in the field of 
AI-enabled PHM. It is worth mentioning that this review 
paper does not cover another important part of PHM, 
e.g., health management.

2 � AI‑Enabled Monitoring
2.1 � Introduction to AI‑Enabled Monitoring
As the key and basic task of PHM, monitoring of machin-
ery has not attracted enough attention, as shown in 
Figure  3. What is more, many existing studies about 
monitoring are based on the supervised methods [16–
19]. It means that both normal data and anomaly data are 
required for model training, which is usually inconsistent 
with the scenario of monitoring, since anomaly data with 
faults is not always available, and the form and location 
of the failure are even unknown. Thus, methods relying 
on the existing faults would fail when confronting the 
new fault, which would result in the catastrophic missing 

alarm. In this section, we specially define the monitoring 
task as anomaly detection and review the related papers.

2.2 � Anomaly Detection
The generalized concept of anomaly detection can be 
divided into three categories, including supervised learn-
ing, semi-supervised learning, and unsupervised learn-
ing. As described in the previous sub-section, supervised 
learning methods are not suitable for the monitoring 
task, and data from the healthy state is often available. 
So in this paper, anomaly detection refers to semi-super-
vised anomaly detection in the following discussion, 
specifically.

Semi-supervised anomaly detection can be regarded as 
a one-class classification problem, which means that only 
the data at the health state is available. The goal of anom-
aly detection is to detect the fault that may occur in the 
future based on the existing data. The failure would occur 
on any component of the machinery with any external 
manifestation, so it is a typical open-set task.

According to the different strategies of anomaly deter-
mination, anomaly detection methods for monitoring 
are divided into three categories in this paper, including 
distance-based methods, model-based methods, distri-
bution-based methods (also called density-based meth-
ods), hybrid methods, and others. We will review these 
methods in the following subsections.

2.2.1 � Distance‑Based Methods
Distance-based methods pay attention to the distance 
between data collected on the anomaly state and health 
state. The distance to be measured is calculated in the 
signal space or in the latent feature space after feature 
extraction. It is based on the assumption that collected 
data at the health state would be close to each other in the 
signal space or in latent feature space, and the collected 
data at the anomaly state would be naturally far away 
from the former data. Various metrics can be applied for 
distance calculation, including Euclidean distance, Man-
hattan distance, cosine distance, Chebyshev distance, etc. 

Figure 3  Content of monitoring
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Meanwhile, to consider the contributions of different fea-
tures to the distance calculation and the compactness of 
the feature space, plentiful pre-processing and represen-
tation learning strategies can also be applied before the 
distance calculation.

In Ref. [20], a comb filtering was applied to smooth 
the original signal, Gini-guided residual singular value 
decomposition and Principle Component Analysis 
(PCA) were used for feature extraction, and then itera-
tive Mahalanobis distance was calculated to obtain an 
anomaly score. In Ref. [21], Short-Time Fourier Trans-
form (STFT), Hidden Markov Model (HMM), and 
dimension reduction were applied to the original signal 
for feature extraction and a distance-based strategy was 
used for anomaly score calculation. In Ref. [22], a clas-
sical one-class classification method, Support Vector 
Data Description (SVDD) was applied together with a 
Genetic Algorithm (GA) for parameter optimization. 
An improved SVDD with artificially generated outli-
ers was proposed for rolling element bearings detection 
[23]. Multi-sensor data was utilized in Ref. [24] with a 
correlation-based anomaly detection method for predic-
tive maintenance. In Ref. [25], self-organizing map and 
KNN were used for cooling fan bearing monitoring. In 
Ref. [26], the K-means cluster method was utilized to 
obtain cluster center points, and an anomaly score was 
calculated based on the distance from center points. In 
Ref. [27], one class SVM was utilized for kinematic chain 
monitoring using data processed by Laplacian score 
ranking guided features selection.

2.2.2 � Model‑Based Methods
Model-based methods try to establish a prediction model 
to reflect the intrinsic regularity between parameters 
or on the timeline based on the health state data. It is 
assumed that, when an internal or external failure occurs 
on equipment, the intrinsic regularity of the data would 
deviate from the original model. So the occurrence of 
anomaly can be represented by the degree of deviation 
between the model prediction and actual data.

In Ref. [28], a Long Short-Term Memory (LSTM)} 
model was trained based on features extracted by 
Stacked AutoEncoders (SAE) to predict the vibration sig-
nal in next N time steps. The residual between predicted 
and actual signals was utilized to indicate the occurrence 
of anomaly for rotary machinery. In Ref. [29], Generative 
Adversarial Networks (GAN) was trained to discriminate 
the fake data from real data, and the output of the dis-
criminator was further regarded as the anomaly indica-
tor. Similarly, the reconstruction model based on LSTM 
and GAN was trained with normal data in Refs. [30, 
31], and the anomaly score was influenced by the out-
put of the discriminator and the reconstruction error 

simultaneously. In Ref. [32], AutoEncoders (AE) based 
GAN was trained to generate artificial normal data. Then 
the test data was fed into AE to get reconstructed latent 
features and reconstructed signals. Finally, an anomaly 
score was calculated based on the reconstruction error. 
In Refs. [33, 34], the Yet Another Segmentation Algo-
rithm (YASA) was utilized for data segmentation, and 
the segmentation results were fed into one-class SVM for 
offshore oil extraction turbo machine anomaly detection. 
In Refs. [35, 36], a LSTM prediction model was trained, 
and the residual between predictions and actual signals 
was utilized as an anomaly score for water treatment sys-
tem and aircraft anomaly detection, respectively. In Refs. 
[37–39], an AE model for data reconstruction was built 
and the reconstruction error was used as the anomaly 
indicator. In Ref. [40], a rotary speed to vibration regres-
sion was trained to predict the vibration signal, and 
the residual was further used for anomaly detection. A 
comparison between autoregressive-based models and 
network-based models was implemented in Ref. [41] 
for wind turbine fault detection. In Ref. [42], the HMM 
model was trained for screw compressors anomaly detec-
tion after dimension reduction by PCA. In Refs. [43, 44], 
the autoregressive integrated moving average (ARIMA) 
process was proposed for data prediction and anomaly 
detection with multi-sensors. In Ref. [45], the AE model 
was trained with data processed by the series-to-image 
transform for anomaly detection.

2.2.3 � Distribution‑Based Methods
Distribution-based methods (density-based methods) try 
to estimate the distribution of normal data. It is assumed 
that anomaly data would be subject to a different distri-
bution from normal data. So if the anomaly data is input 
into the distribution model, a low probability will be 
obtained. This type of method can also be understood as 
density-based methods. Anomaly events can be regarded 
as low-probability events and they exhibit low density 
characteristics in the sample space. Therefore, without 
distribution model estimation, the sample density of the 
test data can also represent the probability of an anomaly.

In Ref. [46], a multivariate Gaussian distribution model 
was built after a set of feature extraction processes, 
including Hodrick-Prescott (HP) filtering and Gradient of 
Change (GoC), for anomaly detection. The Gaussian dis-
tribution was also used in Ref. [47] after feature extrac-
tion with SAE for gas turbine engine gas path anomaly 
detection. Generalized Extreme Value (GEV) distribution 
was applied in Ref. [48] for power generation monitoring. 
The martingale-test was performed in Ref. [49] to detect 
the change point of gearboxes based on the graph model. 
In Ref. [50], correlation coefficients of segmented signals 
were calculated and the derivation of the anomaly score 
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was based on the Probability Density Function (PDF) of 
correlation coefficients.

2.2.4 � Hybrid Methods
In order to break the limitation of a single algorithm, 
some other research took the advantages of the above 
methods and constructed hybrid methods for anomaly 
detection.

In Refs. [51, 52], model-based and distance-based 
methods were combined for anomaly detection. In Ref. 
[51], a PCA matrix was obtained for dimension reduc-
tion based on the normal data, and the residual of PCA 
was calculated as the input of the SVDD method for fault 
detection. Similarly, the model based on AE and LSTM 
was combined with SVDD in Ref. [52] for bearings ini-
tial fault detection. In Refs. [53, 54], model-based and 
distribution-based methods were combined for anomaly 
detection. In Ref. [53], the probability of the anomaly 
state was defined as the combination of the reconstruc-
tion error and the latent feature with an AE model, and 
a fault-attention factor was implied to re-weight the 
anomaly score. In Ref. [55], a set of anomaly detection 
methods were compared, including Gaussian Mixture 
Model (GMM), Parzen window density estimation, Local 
Outlier Factor (LOF), k-means clustering, PCA-based 
methods, and SVDD-based methods. In Ref. [56], a Hier-
archical Temporal Memory (HTM) model was built and 
the distribution of the model prediction error was esti-
mated for real-time, continuous, online detection of 
streaming data.

2.2.5 � Others Methods
Different from methods we described above, some 
researchers paid more attention to representation learn-
ing or the relationship between equipment groups and 
provided novel perspectives for condition monitoring.

In Ref. [57], advantages of equipment groups were 
taken by utilizing a clustering algorithm on electrical 
machine fleet after domain specific pre-processing. It 
is similar to the density-based methods, the clustering 
objects changed from the samples of time scale to the 
different equipment of space scale. But it also put for-
ward a high requirement for the consistency of operation 
states of different equipment in the group. In Ref. [58], 
a non-parametric k2 decomposition method was used to 
isolate the fault from multi-variate processes by meas-
uring the relative contribution of an individual variable. 
In Ref. [59], an AR-based model was proposed to detect 
the condition change between adjacent periods, but 
this method was not applicable to non-stationary work-
ing conditions. In Ref. [60], speed-energy spectra of the 
jet engine were calculated to reflect the operation state, 
and the difference between spectra was regarded as the 

anomaly indicator. In Ref. [61], a hybrid feature selection 
method based on ReliefF and an adaptive GA was pro-
posed, and recursive one-class SVM was trained after 
pre-processing with Extended Kalman Filter (EKF) to 
realize an online undated detection for chillers. In Ref. 
[62], dictionary learning was used, and the change of the 
dictionary was monitored for condition monitoring of 
rotating machinery.

2.3 � Open Source Datasets and Codes
2.3.1 � Date Type Summary
Among different monitoring scenarios, data used for 
anomaly detection is diverse. Although the photograph 
of equipment can directly reflect the healthy condition 
of equipment, it is hard to obtain surface photographs 
of all the components of equipment and most of the key 
components are invisible due to the complexity of the 
structure. A better alternative is the vibration signal of 
the rotating machinery, in which the global health infor-
mation for entire equipment can be obtained simulta-
neously. Meanwhile, vibration signals are also the most 
commonly used data in recent research work. Besides, 
temperature signals [24, 51, 61], electric current signals 
[25, 57], sound signals [49, 59], pressure signals [24], 
speed signals [40, 41, 63], voltage signals [64], and acous-
tic emission signals [62] are also used as the source data 
for monitoring. What is more, parameters related to 
equipment operation conditions are also used in many 
large scale equipment [29, 31, 36, 47].

2.3.2 � Open Source Datasets
Most of the methods proposed above are evaluated on 
real industrial data, but there is no way for performance 
comparison due to the privacy of datasets. So open 
source datasets are necessary for performance compari-
son between different methods. Here, we summarize a 
list of open source datasets utilized in existing papers.

Many researchers used fault classification datasets, 
such as CWRU datasets [65], Tennessee Eastman Pro-
cess datasets [66], and SEU datasets [67], for anomaly 
detection. The categories with the healthy condition are 
regarded as normal data and the categories with fault 
occurring are regarded as anomaly data. The run-to-
failure datasets, such as IMS datasets [68] and PHM2012 
datasets [69] were also used in condition monitoring 
task with artificial division of normal and anomaly states 
based on the degradation state of components.

There are also some datasets specially made for moni-
toring. For example, Airbus Helicopter Accelerometer 
dataset [70] used in Ref. [45] was collected by Airbus SAS 
with vibration measurements of helicopter in different 
directions (longitudinal, vertical, and lateral). Numenta 
Anomaly Benchmark [71] with over 50 labeled real-world 
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and artificial time series data files was used in Ref. [56]. 
Secure Water Treatment (SWaT) dataset [72] was estab-
lished for the research of the protection of Cyber Physi-
cal Systems (CPS) such as those for water treatment, 
power generation and distribution, and oil and natural 
gas refinement, and was widely used for the performance 
evaluation of anomaly detection method. The details of 
these datasets are listed in Table 1.

2.3.3 � Open Source Codes
Although a large number of methods have been proposed 
for monitoring, a few source codes of these methods are 
publicly available, which is not conducive to the sustain-
ability of research. In this subsection, we summarize the 
online available codes of related papers to provide a con-
venient way for researchers to get started in this field and 
more open source studies are also required in the future.

The whole code of Fault-attention Generative Probabil-
istic Adversarial Autoencoder based on Pytorch frame-
work proposed by Ref. [53] for anomaly detection with 
SEU datasets was released online in Ref. [73]. Numenta 
Platform for Intelligent Computing (NuPIC), proposed by 
Ref. [56], based on HTM learning algorithms for anom-
aly detection and prediction of streaming data sources 
was online available in Ref. [74]. Multivariate Anomaly 
Detection with GAN (MAD-GAN) framework proposed 
by Ref. [31] was also online available in Ref. [75].

2.4 � Challenges
All of the above methods are more or less based on cer-
tain assumptions, but in real-world applications, these 
assumptions would fail due to the inherent characteris-
tics of equipment or the complexity of the external envi-
ronment. To realize reliable and accurate monitoring and 
abnormal early warning in industrial applications, more 
realistic challenges need to be considered. The main chal-
lenges hindering the implementation of anomaly detec-
tion in reality can be summarized as follows.

2.4.1 � Balance between Recall and Precision
During the construction of anomaly detection mod-
els, the choice of the decision threshold or the decision 
boundary is an inevitable process. It is essentially a trade-
off between recall and precision. Low recall would lead 
to the omission of fault and cause catastrophic damages. 
Low precision would cause excessive and unnecessary 
maintenance and inspection, and the associated cost of 
condition monitoring will increase. Therefore, the opti-
mal threshold can be chosen via comparing the cost of 
omission and the cost of over-maintenance and minimiz-
ing the expected cost.

2.4.2 � Unified Benchmark Datasets
Although there are many datasets which can be used 
for anomaly detection research, benchmark datasets 
specially designed for AI-enabled monitoring are still 
required. Unified benchmark datasets can provide a 
normalized data processing flow and make performance 
comparisons between different models more convenient. 
Meanwhile, realistic anomaly detection datasets for mon-
itoring can make related research based on these datasets 
practically significant.

2.4.3 � Quick Alarm for Early Failure
In the stage of early failure for machinery, only weak fault 
features can be shown in collected data and there is lit-
tle difference between the signal characteristics under 
the health state and the fault state. To quickly detect 
early failure and avoid the fault extension, the sensibility 
of methods for early failure is of the utmost importance. 
The existing methods do not take this perspective into 
consideration.

2.4.4 � Adaptability under Variable Working Conditions
In reality, the operating condition of equipment, such as 
rotary speeds, loads, and temperatures, is variable and 
the corresponding data characteristics would also change 
accordingly. An ideal monitoring algorithm should be 
robust for different operating conditions. However, due 

Table 1  Open source datasets for condition monitoring

Dataset Name Research object Description

Airbus helicopter accelerometer [70] Helicopter Data were acquired from different accelerometers placed at different 
positions of the helicopter, including 1677 training sequences from 
normal flights and 594 sequences from normal and anomalous flights

Numenta anomaly benchmark [71] Various objects It is composed of over 50 labeled real-world and artificial time series data
les plus a novel scoring mechanism designed for real-time applications

SWaT [72] CPS Data were acquired from a water treatment testbed for research in the 
area of cyber security, and the data systematically generated from the 
testbed over 7 days under normal operation and 4 days with attack 
scenarios is provided
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to the complexity of equipment, it is impossible to train 
the model with data under all possible operating condi-
tions. Thus, models are required to recognize unseen 
operating conditions out of the training sets and do not 
make a false alarm under unseen operating conditions.

3 � AI‑Enabled Diagnosis
3.1 � Introduction to AI‑Enabled Diagnosis
Fault diagnosis plays an important role in exploring the 
relationship between measured data and machine health 
states [76, 77], which has been the research hot-spot of 
PHM. Traditionally, the relationship is found via expert 
knowledge and engineering experience. However, in 
engineering scenarios, people would like to shorten the 
maintenance cycle and improve the diagnostic accuracy 
through an automatic method. Especially with the help of 
AI, fault diagnosis is expected to become smart enough 
to automatically detect and identify health states.

The AI-enabled diagnosis aims to diagnose health states 
with applications of ML theories, such as SVM [78, 79], 
ANN [80, 81], and deep neural networks (DNN) [82, 83]. 
These methods utilize ML theories to capture features 
hidden in measured data with less expert knowledge. 
It attempts to build a bridge that automatically detects 
health states from the collected data. In recent years, 
AI-enabled methods have swept the field of mechanical 
fault diagnosis [84, 85]. It has been widely used to solve 
problems in fault diagnosis, such as class imbalance, vari-
able working conditions, and fault diagnosis under strong 
background noise. Therefore, in this section, we mainly 
review how the existing AI-enabled diagnostic methods 
solve these problems.

3.2 � Diagnosis
3.2.1 � Vanilla Fault Diagnosis
Generally, when we explore intelligent diagnosis algo-
rithms, the used datasets will not encounter the issues of 
class imbalance, low signal-to-noise ratio, and variable 
operating conditions. We call the diagnosis under this sit-
uation vanilla fault diagnosis. AI-enabled diagnosis algo-
rithms are mainly divided into two categories: traditional 
ML-based methods and DL-based methods. DL-based 
methods are closer to the expectations of automatic fault 
classification as shown in Figure  4. It can extract fea-
tures automatically without human intervention, and can 
establish the relationship between the learned features 
and the fault patterns. Therefore, in the following sec-
tion, we will mainly review DL-based algorithms that are 
widely used in fault diagnosis.

(1)	 AE-based methods
		  In the past five years, AE has made tremendous 

development in the field of PHM. AE has a strong 
ability to learn feature representation, and by input-
ting the extracted features into the classifier, fault 
diagnosis can be realized. For example, Lu et al. [86] 
introduced stacked denoising autoencoder (SDAE) 
to fault diagnosis, and Liu et  al. [87] proposed a 
rolling bearing fault diagnosis method by using 
SAE to extract features and adopted a fully con-
nected layer to classify the fault modes. Ma et  al. 
[88] proposed a deep coupling AE to achieve multi-
modal data fusion and fault diagnosis. Shi et al. [89] 
proposed a fault diagnosis method based on SAE, 
which integrated compression sensing and wavelet 

Figure 4  Flowchart of diagnosis based on deep learning models
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packet energy entropy for feature dimension reduc-
tion.

(2)	 DBN-based methods
		  Deep belief network (DBN) has achieved great suc-

cess in mechanical fault diagnosis in past five years. 
For example, Han et al. [90] used DBN and Teager-
Kaiser energy operator for feature extraction, and 
then used the particle swarm optimization based 
SVM for bearing fault classification. Jiang et  al. 
[91] proposed a feature fusion DBN for the intel-
ligent fault diagnosis of rolling bearing. Shao et al. 
[92] proposed a continuous DBN with locally linear 
embedding for rolling bearing fault diagnosis. Wang 
et  al. [93] proposed a hybrid method, including 
DBN and feature uniformization, and impulsive sig-
nals were used as the input to achieve real-time and 
accurate fault diagnosis. Gao et  al. [94] proposed 
a self-adaptive optimized DBN, which was pre-
trained by a mini-batch stochastic gradient descent. 
Zhang et al. [95] combined the advantages of DBN 
and variational mode decomposition (VMD) for 
rolling bearing fault diagnosis.

(3)	 CNN-based methods
		  Convolutional neural network (CNN) can directly 

learn features from the original monitoring data 
through sparse connection and weight sharing, 
which reduces the number of training parameters 
to accelerate convergence and suppress over-fitting. 
Many end-to-end frameworks based on CNN have 
been successfully constructed for fault diagnosis 
by using the vibration signal as the input. From the 
perspective of network inputs, CNN used in fault 
diagnosis can be classified into one-dimensional 
CNN (1D-CNN) and two-dimensional CNN (2D-
CNN). Their applications in mechanical fault diag-
nosis are listed in the following Table 2, where the 

category, motor, includes induction motors, perma-
nent magnet synchronous motors, etc.

(4)	 RNN-based methods
		  Due to the one-way non-feedback connection of 

DNN, they cannot learn the temporal dependencies 
containing in the signal. Recurrent neural network 
(RNN) can store the data information (short-term 
memory) of the most recent periods in the form of 
excitation, which makes them suitable for process-
ing time series.

For example, Liu et  al. [138] proposed a low-speed 
lightweight RNN, which has a small storage space occu-
pancy rate and low calculation delay. Miki et  al. [139] 
proposed a LTSM-based method for time-series analy-
sis and a training method for weakly supervised train-
ing. Rao et  al. [140] proposed a many-to-many-to-one 
bi-directional LSTM to automatically extract the rotating 
speed from vibration signals. Shao et al. [141] proposed a 
method based on the enhanced deep gated recurrent unit 
and the complex wavelet packet energy moment entropy 
for early fault diagnosis of bearings. Shi et  al. [52] pre-
sented a fault diagnosis framework based on SDAE and 
LSTM, which can effectively detect initial anomalies of 
rolling bearing and accurately describe the deterioration 
trend. To improve the diagnostic accuracy, Zhang et  al. 
[142] presented an attention-based equitable segmenta-
tion gated recurrent unit network, which consists of an 
equitable segmentation approach and an improved deep 
model.

3.2.2 � Fault Diagnosis under Imbalanced Dataset
During the operation of the machine, the collected data-
sets are often highly imbalanced, which contain many 
samples in the normal state but a paucity of samples from 
the fault state. Facing the imbalanced datasets, intelligent 
fault diagnosis approaches are biased towards the major 

Table 2  Publications about the application of CNN in fault diagnosis

Object Architectures References

Bearing 1D-CNN Chuya et al. [96], Eren et al. [97], Gonzalez-Muniz et al. [98], Li et al. [99],
Wang et al. [100], Yin et al. [101], Zhang et al. [102]

2D-CNN Gong et al. [103], Guo et al. [104], Huang et al. [105], Khodja et al. [106],
Li et al. [107], Wang et al. [108], Wang et al. [109], Wang et al. [110],
Xu et al. [111], Zhang et al. [112], Islam et al. [113], Kumar et al. [114]

Gear 1D-CNN Liang et al. [115], Wu et al. [116], Zhao et al. [117], Li et al. [118]

2D-CNN Chen et al. [119], Chen et al. [120], Han et al. [121], Li et al. [122],
Qiu et al. [123], Xin et al. [124], You et al. [125], Tang et al. [126]

Motor 1D-CNN Ince et al. [127], Kao et al. [128]

2D-CNN Hsueh et al. [129], Lee et al. [130], Yang et al. [131], Liu et al. [132],
Wen et al. [133], Shao et al. [134]

Turbine 1D-CNN Zhong et al. [135], Chang et al. [136]

2D-CNN Fu et al. [137], Jiang et al. [85]
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classes and hence show very poor classification accuracy 
on the minor classes.

From current research, there are three ways to solve 
this problem, including the data synthesis methods, 
designing a powerful feature extractor, and designing the 
corresponding loss function, which are summarized as 
follows.

(1)	 Data synthesis based methods
		  Data synthesis based methods are the most direct 

way for solving the class-imbalanced problem. Tra-
ditional data synthesis methods are SMOTE [143] 
and cost sensitivity based methods [144]. For exam-
ple, Razavi-Far et  al. [145] used an imputation-
based oversampling technique for class-imbalanced 
learning and the proposed scheme was evaluated on 
three experimental scenarios with different imbal-
ance ratios. Zhang et  al. [146] adopted a weighted 
minority oversampling strategy to balance the data 
distribution, and used a data synthesis strategy to 
avoid generating incorrect or unnecessary samples.

	 Recently, GANs [147] have been applied to gener-
ate artificial data for the minor classes or for data 
augmentation [148, 149]. For example, Mao et  al. 
[150] used GAN to generate synthetic samples for 
minority fault classes and improved the generaliza-
tion ability of the fault diagnosis model. Luo et  al. 
[151] proposed a conditional deep convolutional 
GAN. By using the conditional auxiliary genera-
tive samples as the input, fault diagnosis under the 
imbalanced dataset was achieved. Zhang et al. [152] 
utilized GAN to learn the mapping between the 
distributions of noise and real machinery temporal 
vibration data, and then used the generated samples 
to balance the minor classes. Wang et al. [153] used 
the encoder network of conditional variational AE 
to learn the distribution of fault samples, and then 
generated a large number of fault samples of minor 
classes through the decoder network. Zheng et  al. 
[154] proposed a dual discriminator conditional 
GAN to learn data distributions from signals on 
multi-modal fault samples, and automatically syn-
thesized realistic 1D signals of each fault. Besides, 
there are also other data synthesis models. For 
example, Zhou et  al. [155] proposed a nonlinear 
auto-regressive neural network to synthesize the 
small number of samples.

(2)	 Powerful feature extractor based methods
		  Designing a powerful feature extractor via DNN 

models to extract the discriminant features from 
signals can also achieve fault diagnosis under the 
imbalanced dataset. For example, Zhao et al. [156] 

proposed a normalized CNN to estimate the feature 
distribution difference and to diagnose the fault 
severity under the data imbalanced situation. Jia 
et al. [157] also used a normalized CNN model for 
the imbalanced fault classification of machinery and 
used a neuron activation maximization algorithm 
to explain what DNN learned. Zhao et al. [158] pro-
posed a deep Laplacian AE to extract deep sensi-
tive features and trained the model with a Laplacian 
regularization for rotating machinery fault imbal-
anced diagnosis. Lan et al. [159] used the weighted 
extreme learning machine as the feature extractor, 
and used the gravitational search algorithm to opti-
mize the extractor to further extract the significant 
features.

(3)	 Corresponding loss function based method
		  Designing a proper loss function for DNN models 

is also a promising methodology for imbalanced 
fault diagnosis of machinery. For example, Li et al. 
[160] proposed an adaptive channel weighted CNN 
(ACW-CNN) and used Focal loss for condition 
monitoring of the helicopter transmission system 
function. With the help of Focal loss, the ACW-
CNN could reduce the weight of easily classified 
categories and increase the weight of categories that 
were not easy to classify, so that the model could 
pay more attention to the minor classes. Xun et al. 
[161] proposed a deep cost adaptive CNN based 
intelligent classification method for imbalanced 
data, which used the cost adaptive loss function to 
adaptively assign different misclassification costs for 
all categories.

3.2.3 � Fault Diagnosis under Variable Working Condition
Fault diagnosis under variable working conditions is still 
a challenge due to the domain discrepancy problem. To 
achieve fault diagnosis under variable working condi-
tions, there are currently two widely adopted methods, 
that is, discriminative feature extraction based methods 
and transfer learning based methods.

(1)	 Discriminative feature extraction based methods
	Designing a DNN model that can extract discrimi-
native features is a common way for intelligent diag-
nosis under variable working conditions. For exam-
ple, Peng et al. [162] proposed a multi-branch and 
multi-scale CNN to learn discriminative features 
from multiple signals and time scales of vibration 
signals. Qiao et al. [163] also proposed an adaptive 
weighted multi-scale CNN to adaptively extract 
robust and discriminative multi-scale features 
from raw vibration signals. With the help of these 
extracted features, the model could achieve supe-



Page 10 of 29Zhao et al. Chin. J. Mech. Eng.           (2021) 34:56 

rior performance under variable working condi-
tions. Cheng et al. [164] proposed a hybrid method 
to extract discriminative features for bearing fault 
diagnosis, including the recurrence plot transform, 
speed up robust feature extraction and isometric 
mapping. Guo et al. [165] proposed a CNN model 
with Pythagorean spatial pyramid pooling to extract 
features from the input signals after continuous 
wavelet transform and used the extracted features 
to achieve fault diagnosis under variable work-
ing conditions. Different from the aforementioned 
approaches, Xiang et al. [166] used a Teager energy 
operator demodulation to process the raw signal, 
and then input the obtained Teager computed order 
spectra to a stacking AE for bearing fault diagnosis 
under variable working conditions.

(2)	 Transfer learning based method
		  Transfer learning based methods have been widely 

used in mechanical fault diagnosis under variable 
working conditions. The existing transfer learning 
methods for transferring the learned knowledge 
between multiple working conditions can mainly 
be divided into four categories [167], that is, the 
model-based transfer learning methods, instanced-
based transfer learning methods, mapping-based 
transfer learning methods, and adversarial-based 
transfer learning methods.

Model-based transfer learning methods mean that 
the model first uses the data in the source domain for 
pre-training, and then fine-tunes the partial network 
parameters using the data in target domain. Hasan 
et  al. [168] used a discrete orthonormal Stockwell 
transform to process the raw signal, and trained a CNN 
model with the obtained vibration images under differ-
ent working conditions. Then partial parameters of pre-
trained CNN were frozen and transferred to the target 
network for fault diagnosis. Du et  al. [169] employed 
STFT to transform bearing vibration signals to time-
frequency images, and used the processed data as the 
input of a deep residual network. Then, the model-
based transfer learning strategy was used to achieve 
the high performance in another working condition. He 
et al. [170] trained the model using sufficient auxiliary 
data in the source domain and used multi-wavelet as an 
activation function for discriminative feature extrac-
tion, and then the model parameters were transferred 
to the target domain. Wu et al. [171] proposed a model 
based few-shot transfer learning method by consider-
ing the variability of working conditions and the scar-
city of fault samples in the real working condition. Shao 
et  al. [172] developed a novel DL framework using 

transfer learning and the pre-trained network was fin-
tuned by time-frequency images of vibration signals.

Instance-based transfer learning methods explore 
the way to reweight instances in the source domain to 
improve the diagnostic accuracy or align the distribu-
tion between the target domain and source domain. For 
example, Zhang et  al. [173] used wide kernels in the 
first layer to extract more informative features and used 
small convolutional kernels in the latter layers for the 
multi-layer nonlinear mapping. Xiao et al. [174] trained 
a CNN with data from the target domain and source 
domain, and used a modified TrAdaBoost algorithm 
to update the weight of each training sample to form a 
stronger diagnostic model.

Mapping-based transfer learning methods refer to 
mapping the data from the source and target domains 
into the same feature space. For example, Azamfar et al. 
[175] and Singh et  al. [176] used a DL-based domain 
adaption method for intelligent fault diagnosis by mini-
mizing the cross-entropy loss in the source domain and 
maximum mean discrepancies between the source and 
target domains, simultaneously. Che et  al. [177] and 
An et al. [178] used multi-kernel maximum mean dis-
crepancies to match features between the source and 
target domain, and optimized with a combined trans-
fer learning method. Qian et al. [179] reduced the input 
dimension by sparse filtering, and proposed a joint 
distribution adaptation to align the data distribution 
of the source and target domain, which helps capture 
discriminative features. Li et al. [180] proposed a repre-
sentation clustering algorithm to minimize the distance 
between intra-class and maximize the distance between 
the inter-class simultaneously, and domain adapta-
tion was used to adapt the maximum mean discrepan-
cies between source and target domains. Li et al. [181] 
used knowledge mapping to explore domain-invariant 
knowledge between the source domain and the tar-
get domain, which helps to obtain a powerful feature 
extractor.

Adversarial-based transfer learning methods refer 
to using adversarial training to enable the domain dis-
criminator to reduce the feature distribution of the 
source and the target domain, which makes the feature 
extractor can extract more robust features [182, 183]. 
For example, Lu et  al. [184] and Han et  al. [185] used 
adversarial domain adaptation to train the proposed 
DNN to extract representative information. Xu et  al. 
[186] used adversarial domain adaptation to train a 
two-branch network to extract domain-invariant fea-
tures, and used a scaled exponential linear unit activa-
tion function for the nonlinear activation.
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3.2.4 � Fault Diagnosis for Low Signal‑to‑Noise Ratio Signals
In real industrial scenario, the fault patterns are often 
overwhelmed by heavy background noise. As a result, 
algorithms with excellent performance under ideal con-
ditions are often severely degraded in practical applica-
tions, showing weak generalization ability. Therefore, it is 
necessary to develop some advanced methods to enhance 
generalization ability of current algorithms. According to 
the current publications, there are two mainstreams to 
address this issue, that is, robust feature extraction based 
methods and building robust models. In real industrial 
scenario, the fault patterns are often overwhelmed by 
heavy background noise. As a result, algorithms with 
excellent performance under ideal conditions are often 
severely degraded in practical applications, showing 
weak generalization ability. Therefore, it is necessary to 
develop some advanced methods to enhance generaliza-
tion ability of current algorithms. According to the cur-
rent publications, there are two mainstreams to address 
this issue, that is, robust feature extraction based meth-
ods and building robust models.

(1)	 Robust feature extraction based methods
		  AE has strong ability for feature extraction, recently, 

researchers have developed many AE variants, such 
as deep auto-encoder (DAE), SDAE, and contrac-
tive auto-encoder (CAE), to automatically extract 
high-level representative features from data col-
lected under the noisy environment.

		  For example, Chen et  al. [187] used a deep SAE 
trained with Gaussian noise to avoid over-fitting 
and learned more robust features from a noisy 
working environment. Guo et  al. [188] employed 
the SDAE to denoise random noise and to extract 
fault features from the vibration signals. Jiang et al. 
[189] proposed a feature learning approach named 
stacked multilevel-denoising AE, which is able to 
learn more robust and discriminative fault features 
to improve diagnosis accuracy on vibration signals 
with abundant noise. Shen et al. [190] constructed 
a stacked CAE model to extract more robust fea-
tures than a standard stacked AE. Wang et al. [191] 
proposed a hybrid method by combining GAN and 
SDAE, where SDAE was used as the discriminator 
of GAN to automatically extract effective fault fea-
tures from input samples and to discriminate their 
authenticity. Liu et al. [192] trained an 1D denois-
ing convolutional AE model with noisy signals to 
perform fault classification. Qi et  al. [193] com-
bined SAE and CAE to obtain sparser and robust 
features under noise interference. Zhang et al. [194] 

designed a deep CAE to automatically learn invari-
ant feature representation from raw signals.

(2)	 Constructing robust model
		  Extracting highly robust features from low signal-

to-noise ratio signals are time-consuming and 
labor-intensive. Therefore, it is necessary to estab-
lish an end-to-end fault diagnosis model with high 
robustness. For example, Gan et al. [195] proposed 
a hierarchical diagnostic network, which stacked 
multiple DBN layers to overcome the overlapping 
problem caused by noise or other interference. 
Shao et  al. [196] proposed an improved convolu-
tional deep placement network with compressed 
sensing to improve the generalization performance 
of the constructed deep model. You et  al. [197] 
proposed a hybrid technique, which used CNN as 
feature extraction under noise environment and 
SVM as the classifier. Zhang et  al. [173] proposed 
a deep CNN with wide first-layer kernels, which 
used the wide kernels to extract features and to 
suppress high-frequency noise. Zhang et  al. [198] 
designed a deep CNN with new training methods 
to achieve pretty high accuracy in a noisy environ-
ment. Peng(a) et al. [199] constructed a deep resid-
ual learning network, which can adaptively learn 
the deep fault features from the original vibration 
signals to achieve high diagnostic accuracy under a 
strong noise environment. Peng(b) et al. [200] pro-
posed a deep CNN to identify the failure modes of 
rotating vector reducer under strong background 
noise. Zan et  al. [201] presented a fault diagnosis 
model based on a multi-dimension input CNN, 
which used multiple input layers to fuse the original 
signal and to learn the signal characteristics auto-
matically for improving recognition accuracy and 
anti-jamming ability. Jin et  al. [202] designed an 
adaptive anti-noise DNN framework to deal with 
the diagnosis problem under heavy noise without 
manual feature selection or denoising procedures. 
Peng(a) et  al. [162] proposed a multi-branch and 
multi-scale CNN that could automatically learn and 
fuse abundant and complementary fault informa-
tion from high complexity, strong coupling, and low 
signal-to-noise ratio vibration signals.

3.3 � Open Source Datasets and Codes
3.3.1 � Open Source Datasets
In the field of AI-enabled fault diagnosis, it is quite dif-
ficult to obtain high-quality datasets from real industrial 
scenarios and it also lacks open source codes. Fortu-
nately, some institutions have released the datasets and 
codes for research and applications. Therefore, we collect 
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these commonly used datasets and the description of 
these datasets are listed in Table 3.

3.3.2 � Open Source Codes
There are relatively a few open source codes for intelli-
gent diagnosis. In this subsection, we summarize some 
online available codes of related papers as follows. A 
CNN-based method for bearing fault diagnosis was pro-
vided by Ref. [207], and in Ref. [208], the author released 
a code for rolling bearing faults. In Ref. [209], the author 
released an interpretable DNN for industrial intelligent 
diagnosis. In Ref. [210], the author released a multi-
receptive field graph convolutional network for machine 
fault diagnosis. In Ref. [172], the author released a code 
for few-shot transfer learning for intelligent fault diagno-
sis of machine. In Ref. [168], the author released a unified 
intelligent fault diagnosis library based on unsupervised 
deep transfer learning and provided the corresponding 
comparative study. Besides, in Ref. [211], the author pro-
vided the baseline (lower bound) accuracy and released a 
unified intelligent fault diagnosis library based on various 
DL-based models. In Ref. [212], a CNN based on LeNet-5 
was proposed for fault diagnosis.

3.4 � Challenges
AI-enabled diagnosis has achieved great development, it 
releases the dependence of manpower and can automati-
cally identify the health states from the past to the pre-
sent. However, there are still some issues that need to be 
further discussed. In this section, we attempt to discuss 
the challenges and give some feasible solutions.

3.4.1 � Interpretability
Interpretability helps users understand the results gen-
erated by the model. A main limitation of AI-enabled 
methods in mechanical fault diagnosis is that they oper-
ate as a “black box” and are not interpretable, which does 
not offer insight into how and why they can make the 
final decision. To bridge the gap, there are two research 
interests worthy of further study:

(1)	 Most of the current AI-enabled diagnosis algo-
rithms are migrated from the field of image pro-
cessing and lack expert knowledge in the field of 
fault diagnosis. Therefore, we can combine prior 
knowledge commonly used in fault diagnosis to 
design our network. For example, we can design 
a convolution kernel that can extract useful fea-
tures in vibration signals [209], or design a network 
structure that can be interpreted.

(2)	 We can combine signal processing methods or 
traditional ML algorithms with DL algorithms 
to obtain a deep model with interpretable out-
put. Sparse coding [213] may be a good choice to 
achieve this goal.

3.4.2 � Transfer Learning
Transfer learning based methods have achieved a break-
through in fault diagnosis under variable working condi-
tions. However, there are still some challenges that need 
to be further discussed:

Table 3  Publications about the application of CNN in fault diagnosis

Dataset Name Research Object Description

CWRU [65] Bearing This dataset consists of four sub-datasets, and the operating conditions of each sub-dataset are 0 hp – 1797 r/
min, 1 hp - 1772 r/min, 2 hp - 1750 r/min, and 3 hp - 1730 r/min, respectively. Single-point motor bearing faults 
include ball fault, inner ring fault, and outer ring fault

MFPT [203] Bearing This dataset consists of four sets of bearing vibration data. In the first sub-dataset, it contains three baseline 
conditions. In the second sub-dataset, it contains three outer race fault conditions. In the third sub-dataset, it 
contains seven outer race fault conditions for seven different loads. In the fourth sub-dataset, it contains seven 
inner race fault conditions for seven different loads

PU [204] Bearing It contains 32 sub- les, that is, 26 faulty bearings and 6 healthy bearings. The faulty bearings consist of 12 artificial 
damages generated by electrical discharge machining and 14 real damages caused by accelerated lifetime test

JNU [205] Bearing This dataset contains four kinds of bearing fault type, including normal state, ball fault, inner ring fault, and outer 
ring fault. Three different working conditions are investigated with the motor rotate speed set to 600, 800, and 
1000, respectively

SEU [67] Gearbox This dataset contains two subsets, that is, a gear dataset, and a bearing dataset. The gear dataset contains four 
kinds of fault types, i.e., chipped tooth, missing tooth, root crack, and tooth surface wear. The bearing dataset 
consist of four kinds of fault types, including ball fault, inner ring fault, outer ring fault, and a mixed fault

UoC [206] Gearbox In this data set, nine different gear conditions are introduced into the pinion on the input shaft, including root 
cracks, health conditions, spalling, missing teeth, and sharpening with

five different severity levels
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(1)	 The backbones of transfer learning based algo-
rithms are often different, which makes it difficult 
to directly compare the results, and the impact of 
different backbones has not been thoroughly stud-
ied.

(2)	 If the assumptions related to the source and tar-
get domains are invalid, transfer learning based 
algorithms might use diagnosis knowledge from 
the source domain to carry out a negative transfer, 
thereby reducing the transfer performance of the 
model.

3.4.3 � Class Imbalance and Few‑Shot Learning
In real engineering scenarios, the collected data, espe-
cially for the key components, is far from the big data and 
the amount of data is highly imbalanced, which makes it 
difficult to train AI-enabled models. Although, there are 
many algorithms to solve a class-imbalanced problem, 
it is still difficult to synthesize data with only a few sam-
ples. Therefore, how to use few-shot learning to solve the 
imbalanced problem still needs to be further discussed.

4 � AI‑Enabled Prognosis
4.1 � Introduction to AI‑Enabled Prognosis
Prognosis aims to evaluate the current health state of 
the equipment, which is known as degradation assess-
ment (DA) and predicts its future failure time, which 
is known as remaining useful life (RUL) estimation, so 
as to provide the basis for subsequent predictive main-
tenance. In the industry, the operating condition of the 
critical equipment is highly concerned, as its sudden 
shutdown or failure would bring huge economic losses, 
and even endanger the life safety of operators. Compared 
with the traditional scheduled maintenance strategy, the 
prognostic based maintenance strategy provides proac-
tive decision making capability that can effectively avoid 
downtime and costs, improve manufacturing productiv-
ity, and more importantly, provide early warning for cata-
strophic system failure.

According to the literature statistics, the progno-
sis methods generally fall into four groups, i.e. physics-
based, statistics-based, data-driven, and hybrid methods. 
Physics-based methods usually rely on dynamic mod-
eling, such as the finite element model [214] and simu-
lation [215], etc., to calculate the dynamic response and 
degradation process of the system with a given input. 
However, physics-based methods require accurate 
mathematical models and expert knowledge about the 
specific system, which is difficult to implement on com-
plex mechanical equipment. Statistics-based methods 
commonly assume that the RUL of equipment obeys an 
empirical distribution, such as a Weibull distribution 

[216]. It is worth noting that statistics-based methods 
need data to update the parameters of the empirical dis-
tribution to fit the degradation process of the device, 
which is in fact data-dependent. Data-driven methods 
mine the characteristics of the device degradation pro-
cess from the historical run-to-failure data to identify the 
degradation pattern of current equipment. The hybrid 
methods are formed by the combination of the above 
three methods, thus obtaining the corresponding merits.

The focus of this section is to review the data-driven 
DA and RUL estimation methods based on AI, especially 
those based on DL. Since the research areas of DA and 
RUL estimation partially overlap, this section will sum-
marize these problems from different horizons, to pro-
vide more diverse information and discussions. For the 
former aspect, a hierarchical overview is given by catego-
ries of DA methods. For the latter aspect, the motivations 
of the RUL approaches are discussed. Additionally, a brief 
introduction to the open source datasets and codes will 
be given since we believe the open source behavior will 
drive the prognostic community to grow rapidly. Last but 
not least, to provide more accurate information for the 
predictive maintenance, many pain points deserve atten-
tion, so the challenges of prognosis will be given at the 
end of this section.

4.2 � Degradation Assessment
4.2.1 � Overview
Mechanical equipment usually has four states: nor-
mal state, performance degradation state, maintenance 
state, and decommissioning state. From the deteriora-
tion of equipment performance to the complete failure 
of equipment, it usually goes through a series of differ-
ent performance degradation stages. DA of mechanical 
equipment is to synthesize the state indexes of mechani-
cal equipment, evaluate the degree of performance deg-
radation, formulate maintenance plan, and make targeted 
treatment. Scholars in the field of mechanical equip-
ment health management have done a lot of research on 
DA. This subsection will review the methods of DA for 
mechanical equipment, which can be divided into two 
categories: traditional ML-based methods and DL-based 
methods, and summarize the merits and shortcomings of 
these methods simultaneously.

4.2.2 � Traditional ML‑Based Methods
Since ML algorithms play an important role in most 
respects of DA, scholars engaged in prognosis have car-
ried out a lot of research in this area. From the analysis of 
the experimental results, the ML techniques, such as data 
dimension reduction, feature fusion and pattern recogni-
tion, etc., are very effective for DA problems.
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(1)	 Fuzzy C-means clustering
		  Tong et  al. [217] proposed a bearing DA model 

based on information theory metric learning and 
fuzzy C-means (FCM) clustering. The constructed 
degradation index showed superior performance. 
To solve the instability problem of bearing in the 
initial stage of operation, Liu et al. [218] proposed 
a method based on wavelet packet decomposition 
and autoregressive (AR) model to calculate the 
entropy of the health factor index, through FCM 
of bearing performance degradation process. Zhou 
et al. [219] proposed a rolling bearing DA method 
based on auto-associative neural network (AANN) 
and FCM. The features were extracted by wave-
let packet decomposition and AR, and the features 
after dimension reduction were input into AANN. 
Then, the difference between the output vector and 
the input vector of AANN was input into FCM as 
the feature vector. In order to find the bearing fault 
in real-time, Zhou et  al. [220] proposed a method 
based on wavelet packet Tsallis entropy and FCM to 
evaluate the performance degradation state of bear-
ings.

(2)	 HMM
		  Jiang et  al. [221] proposed a bearing DA method 

based on HMM and nuisance attribute projection 
(NAP). Aiming at the problem of poor robust-
ness in DA, Jiang et  al. [222] proposed a method 
of NAP based on student t-hidden Markov model, 
and removed interference components from perfor-
mance degradation features by NAP. Hu et al. [223] 
proposed a first-order Markov state space model. 
For better expression in the state space model, the 
degraded state was transformed into PDF which 
formed HMM and Bayesian recursive estimation 
mechanism. Wang et  al. [224] proposed a method 
of bearing DA based on hierarchical Dirichlet 
process (HDP)-HMM, in which HDP was used to 
obtain the state number of equipment in opera-
tion and HMM was used to evaluate performance 
degradation. To establish the index with an obvious 
trend, Li et al. [225] proposed the negative log like-
lihood probability based on the two-dimensional 
HMM as the bearing performance degradation 
index, showing the sensitivity to weak defects. Liu 
et  al. [226] proposed a bearing DA method based 
on orthogonal local preserving projection (OLPP) 
and continuous HMM. The continuous HMM was 
used to train the data after dimension reduction by 
OLPP, and then the performance could be evalu-
ated quantitatively by calculating the logarithmic 
likelihood of the data.

(3)	 PCA
		  To adapt the application of signal decomposition 

and feature extraction to wind turbine under high 
background noise, Pan et  al. [227] proposed a DA 
method of vibration signal denoising fusion per-
formance based on complete ensemble EMD with 
adaptive noise and kernel PCA. Ma et al. [228] pro-
posed a DA method based on multi-sensor infor-
mation fusion, which was extracted by the pro-
posed method, to extract features and to establish 
the relevant DA model. Feng et al. [229] proposed a 
bearing DA method based on integrated EMD and 
PCA, which showed good effect in denoising and 
degradation evaluation.

(4)	 SVDD
		  Wang et al. [230] proposed a DA method of the roll-

ing bearing based on VMD and SVDD. The charac-
teristic vectors combined with VMD singular val-
ues, root mean square values, and sample entropy 
values, were selected as the evaluation indexes of 
the degradation degree, and then the performance 
degradation index of the test samples could be 
obtained by SVDD. Zhou et  al. [231] proposed a 
bearing DA method based on lifting wavelet packet 
symbolic entropy (LWPSE) and SVDD. The SVDD 
was trained by fitting the hyper-sphere around 
the normal samples, and then the relative distance 
between LWPSE and the hyper-sphere boundary 
of the test signal was calculated as the bearing DA 
indicator.

(5)	 Clustering
		  Ding et al. [232] used manifold learning to extract 

features, achieved the comparison between abnor-
mal data and health data, and calculated the feature 
clustering index to evaluate the degree of perfor-
mance degradation. Tiwari et  al. [233] proposed a 
DA method based on local mean decomposition 
(LMD) and spectral clustering to solve the prob-
lem of the high-dimensional feature space in rolling 
bearing DA. LMD was used to decompose signals, 
and spectral clustering was used to classify features. 
Lu et  al. [234] proposed a compact Gaussian mix-
ture clustering algorithm based on complementary 
ensemble EMD, which could distinguish the scat-
tered features and obtain better DA results. Zhang 
et al. [235] proposed a bearing DA model based on 
the multi-scale entropy and K-medians clustering. 
The multi-scale entropy of bearing vibration sig-
nals was extracted from the original data, and the 
test data was input into the established K-medians 
clustering model, then the bearing failure degree 
could be quantitatively evaluated by the member-
ship degree of the model output. Wang et al. [236] 
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proposed a bearing DA method based on the basic 
scale entropy and Gath-Geva fuzzy clustering. 
Gath-Geva fuzzy clustering was used to divide the 
degradation stage and further to evaluate the deg-
radation degree of bearing performance. Akhand 
et al. [237] proposed an evaluation method of bear-
ing performance degradation based on EMD and 
K-medians clustering. The K-medians clustering 
was applied to features extracted from bearing sig-
nals by EMD, and then the dissimilarity between 
the test data and normal state was taken as the 
bearing performance degradation index.

(6)	 Hybrid methods
		  Zhou et al. [238] proposed a performance degrada-

tion evaluation method of the wind turbine bearing 
based on HMM and FCM. The FCM and HMM 
models were constructed via using the features 
extracted by wavelet packet and AR, and could bet-
ter describe the decline trend of the bearing.

(7)	 Other methods
		  Prashant et al. [239] proposed a method for evalu-

ating the performance degradation of ball bear-
ings based on curve component analysis and self-
organizing mapping (SOM) network, which was 
more sensitive to weak degradation. Akhand et  al. 
[240] proposed a kind of bearing DA index based 
on SOM. The time-domain and frequency-domain 
features were extracted from the original bearing 
vibration signals and input into the SOM classifier 
to achieve the degradation metric by minimizing 
the quantization error of SOM. Because the global 
trend of the signal could not accurately reflect 
the running state of the rolling bearing, Zhu et  al. 
[241] proposed a bearing DA method based on the 
improved fuzzy entropy. The baseline part was not 
removed when calculating the fuzzy entropy, but 
used as the index of DA of rolling bearing. Qin et al. 
[242] proposed a method based on segmentation 
vote and SVM. LMD and PCA were used to obtain 
effective indexes of bearing performance degrada-
tion.

4.2.3 � DL‑Based Methods
Many scholars verified the effectiveness of DL algo-
rithms, such as CNN and RNN, in DA. Here, we review 
DL-based methods from four perspectives, including 
CNN, RNN, hybrid methods, and other methods.

(1)	 CNN
		  For better DA, Zhang et  al. [243] proposed a 

method for health index (HI) construction based 

on deep multi-layer perceptron CNN. In order 
to improve the DA of rolling bearings, Dong et al. 
[244] proposed a method based on the DAE, t-dis-
tribution stochastic neighborhood embedding 
(t-SNE) and improved CNN. The features were con-
structed by the DAE and t-SNE, and the degree of 
bearing performance degradation was character-
ized by Mahalanobis distance. In order to solve the 
problem of outliers in HI, Zhang et  al. [245] pro-
posed a method combining deep convolution inner 
ensemble learning with outlier removal to evaluate 
the degradation degree of bearing performance. 
The deep convolution internal integration learning 
was used to extract features from the original vibra-
tion signals, and then outlier removal based on the 
sliding threshold was used to remove outliers in HI. 
Guo et al. [246] proposed a method of bearing HI 
construction based on deep convolution feature 
learning, which used convolution kernels to extract 
features from the original vibration signals, and 
mapped the features into HI through the nonlinear 
transformation.

(2)	 RNN
		  Akpudo et  al. [247] proposed a LSTM model, and 

the root mean square (RMS) statistical features in 
time domain were used as the key features to evalu-
ate the degree of bearing degradation. Zhang et al. 
[248] proposed a bearing DA method based on 
RNN, which evaluated the bearing performance 
degradation degree through the waveform entropy 
index, and identified the bearing running state via 
inputting the waveform entropy index into RNN. 
Cheng et  al. [249] proposed a DA method based 
on adaptive kernel spectral clustering (AKSC) and 
RNN. The DA method constructed a DA feature 
based on Euclidean distance, and used AKSC and 
RNN to identify machine faults. Shi et al. [52] pro-
posed a bearing failure DA method based on SDAE. 
SDAE was used to reconstruct the rolling bearing 
signal processed by the sliding window. LSTM was 
used to predict the vibration value of rolling bearing 
in the next cycle based on the reconstructed signals. 
Meanwhile, the performance degradation degree of 
a bearing was evaluated by the reconstructed error.

(3)	 Hybrid methods
		  Wang et  al. [250] proposed a structure based on 

CNN and LSTM. CNN was used to extract local 
features of the original sensor, and LSTM was used 
to extract the sequence features of the original 
signals. H-statistics calculated by d-statistics and 
q-statistics were used to evaluate the performance 
degradation of rolling bearings.
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(4)	 Other methods
		  Xu et al. [251] proposed an improved unsupervised 

deep trust network model named median filter-
ing DBN. The absolute amplitude of the original 
vibration signals was used as the direct input for 
less dependence on the artificial experience. Pan 
et al. [252] proposed a DA method based on DBN 
and SOM, which defined the minimum quantiza-
tion error as the HI of early fault detection of the 
wind power transmission. Tu et al. [253] proposed 
a method combining ANN and AR to evaluate 
the degradation degree of rolling bearing. ANN 
was used to evaluate the performance degradation 
degree of bearing, and AR was used to evaluate 
the bearing performance according to the bear-
ing DA results. Gai et al. [254] proposed a bearing 
DA method combining EMD-SVD (singular value 
decomposition) and the fuzzy neural network. Li 
et al. [255] proposed a DA method based on DNN 
and wavelet packet decomposition. After extracting 
wavelet coefficients and energy features from vibra-
tion signals, DNN was used to predict the perfor-
mance degradation degree of rotating machinery.

4.3 � RUL Estimation
Several definitions of RUL estimation have been intro-
duced in Refs. [256–258]. To avoid confusion, this 
paper followed the definition from the International 
Standard Organization, that the RUL estimation is 
defined as the estimation of the time to failure. Data-
driven RUL estimation methods can be divided into 
two strategies: matching-based and regression-based. 
For the former one, the library of HI (also called degra-
dation index) needs to be constructed offline firstly, and 
then the HI is calculated and matched from the library 
[259–264]. The key point of the matching-based RUL 
estimation is to construct a monotone, smooth and 
obviously trending HI library. Since the construction 
of HI has been discussed in the previous subsection in 
detail, matching-based RUL estimation methods will 
not be included in this subsection.

The regression-based data-driven RUL estimation 
methods mainly leverage the historical run-to-failure 
data to model the degradation process of equipment, 
and then evaluate the health status of the current oper-
ating equipment.

As shown in Figure  5, the regression-based data-
driven RUL estimation framework generally includes 
the following aspects:

1)	 Data acquisition: This procedure is to collect and save 
data measured by appropriate sensors.

2)	 Data processing: Data needs to be cleaned at this 
stage for a higher data quality, and common methods 
include denoising and interpolation.

3)	 Feature extraction and selection: Features are 
extracted and selected to reflect the degradation 
trend. Traditional methods often use statistical fea-
tures, such as Kurtosis, RMS, while DL-based meth-
ods can use unsupervised learning to extract deep 
features automatically.

4)	 States partition: This step is to divide the run-to- fail-
ure data into the health state and degradation state, 
which is also called the determination of first predict-
ing time [265] or fault occurrence time [266].

5)	 HI construction: This procedure is to fuse the pre-
viously extracted features to construct a monotone, 
smooth and obviously trending HI. Some methods 
take HI as the label of the regression model, while 
others directly take the RUL as the label. There- fore, 
HI construction is not necessary for the RUL estima-
tion. It is worth noting that there may be a confusing 
concept that the HI is not the same as the RUL, and 
there is still a mapping relationship between them. 
The HI is usually represented as a curve with jitter, 
while the RUL is represented as a linear function or 
piecewise linear function.

6)	 Model building and optimization: This process is to 
build the regression model offline based on histori-
cal data, and then the trained model will be deployed 
online.

7)	 Performance evaluation: This procedure is to evalu-
ate the performance of the model. For the RUL 

Figure 5  Flowchart of RUL Estimation
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estimation, common evaluation metrics include 
mean square error (MSE), root mean square error 
(RMSE), mean absolute error (MAE), mean rela-
tive error (MRE), scoring function (SF) and some 
other variants. Evaluation metrics guide the train-
ing of the model. Elsheikh et  al. [267] proposed a 
safety-oriented metric which was biased towards the 
earlier estimation. Therefore, an appropriate evalua-
tion metric should be designed according to various 
application scenarios.

4.3.1 � Traditional ML‑Based Methods
The RUL estimation based on traditional ML methods 
has been developed for more than 20 years and a variety 
of traditional ML methods, like SVM [268–270], HMM 
[271, 272], and ANN [273–276], have been widely stud-
ied to solve this task. Since the theories and applications 
of these technologies are relatively mature, there have 
been many excellent reviews for traditional ML-based 
RUL estimation [13, 14]. Moreover, this section focuses 
on DL-based RUL estimation, so only the recent ML-
based RUL prediction methods are briefly introduced.

Traditional ML-based RUL estimation generally 
consists of two steps. The primary step is to extract 
high-quality features from the original signals. The sec-
ondary step is to train the regression model based on the 
extracted features. Since the model theory is mature to 
a large extent, the difficulty of applying the model lies in 
how to match the specific task, to achieve better accuracy 
and efficiency, and to interpret the results.

In addition to the aforementioned classic methods, 
some scholars have done valuable works based on the 
pain points of the RUL estimation task. Considering the 
small sample size of run-to-failure data, transfer learning 
was used to solve the problem of inconsistent data distri-
butions [266, 277]. Zhang et  al. [278] proposed a prog-
nostic method based on the dynamic Bayesian network 
with mixture of Gaussian output to deal with missing 
data in real scenarios. Compared with DL-based meth-
ods, traditional ML-based methods are more interpreta-
ble. However, due to the limitation of the model capacity, 
it is difficult for traditional ML-based methods to fit the 
massive and high-dimensional data.

4.3.2 � DL‑Based Methods
There have been several insightful reviews of the RUL 
estimation based on DL, such as Ref. [279]. Most of lit-
eratures were classified and reviewed according to the 
types of DL models, which made the paper hierarchical, 
but also easy to create an illusion. Although different 
DL-based models can accomplish specific tasks, being 
addicted to various DL models tends to ignore the RUL 

estimation task itself. Therefore, this paper will not make 
a classification review according to the categories of DL 
models, but according to the motivations.

(1)	 Spatial-temporal feature extraction
		  DL-based methods can realize the automatic fea-

ture extraction and easily combine the extracted 
features with the subsequent regression model to 
construct an end-to-end optimization pipeline. As 
a result, most of DL-based RUL estimation meth-
ods leverage its powerful spatial-temporal feature 
extraction ability. These methods extract spatial-
temporal features from the time domain, the fre-
quency domain, and the time-frequency domain, in 
which spatial-temporal features benefit from CNN 
and RNN, respectively.

		  Original signal: It is feasible and convenient to 
directly input the original signal into DL models 
for the RUL estimation. Li et al. [280] directly input 
multi-source sensor signals into a LSTM. The CNN 
also showed the potential of processing raw signals 
for the RUL task [281]. With the exploration of the 
ability of 1D CNN to extract local features of time 
series, some scholars found that the spatial-feature 
extraction capability of CNN and the temporal-fea-
ture extraction capability of RNN can be obtained 
simultaneously via connecting the structures of 
CNN and RNN sequentially [282, 283]. For better 
feature representation, more complex parallel net-
works have been designed. Li et al. [284] built two 
feature extraction branches with LSTM and CNN 
respectively, and then modeled the fusion features 
with another LSTM. Thanks to CNN and LSTM, 
these methods combined spatial and temporal 
features by designing a network structure to auto-
matically extract features from the original signals. 
Benefiting from the end-to-end training mode of 
DL methods, the feature extraction networks and 
prediction networks are optimized synchronously, 
which improves the efficiency and accuracy of fault 
prognosis.

		  Signal processing: Although the sliding window 
sampling strategy preserves partial non-stationary 
relations between different windows, the calcula-
tion of statistical features will lose non-stationary 
information in a single window. Zhao et  al. [285] 
extracted manual features to form the feature 
sequences, and then modeled the sequences with 
a Gated Recurrent Unit network. Although more 
non-stationary relations can be retained by reduc-
ing the window length, the feature quality and 
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the window length are against each other, and the 
dense sliding window will bring a huge computa-
tion. Therefore, the introduction of time-frequency 
analysis is a natural idea, as this technology could 
relatively preserve the non-stationary relation-
ship within a single sliding window, such as enve-
lope spectrum [286], discrete wavelet transform 
[287], continuous wavelet transform [288], and 
STFT [289, 290]. In addition to these classical time-
frequency analysis techniques, there were also 
some methods to extract frequency domain fea-
tures directly [291–293]. These methods combined 
the advantages of both signal processing and DL, 
including more domain priors, and performed well 
in the RUL estimation task.

		  Unsupervised learning: Unsupervised learning can 
extract a good data representation without label 
information, and with the efforts of a large number 
of papers, the performance of unsupervised learn-
ing on some tasks has approached or surpassed that 
of supervised learning.

		  Thus, in addition to the above supervised learning 
methods to specifically extract features, unsuper-
vised learning can also obtain excellent feature rep-
resentation, mainly including DBN [294, 295], AE, 
and its variants [244, 296–299].

(2)	 Multi-modal and multi-task
		  Different types of data (temperature, pressure, 

vibration, etc.) from the same equipment are col-
lected by several sensors simultaneously, and dif-
ferent sensors reflect various condition informa-
tion, which requires the model to be able to process 
multi-modal data. As the task division of PHM 
becomes more and more elaborate, modeling each 
task separately is time-consuming, and there may 
be a problem that the decision results by two mod-
els for highly similar tasks are inconsistent, so using 
a unified model to accomplish multiple tasks is a 
promising approach. Multi-modal learning and 
multi-task learning both share a common trunk 
model respectively, despite their different motiva-
tions. For the former one, the trunk model requires 
multiple sources of the input to extract redundant 
features from a broad perspective, and this strat-
egy ensures the model can work effectively in the 
absence of some modal data. For the latter one, the 
trunk model has multiple output branches, each 
of which corresponds to a specific task, while the 
trunk model provides a shared feature subspace.

		  Multi-modal learning: In most methods with algo-
rithm validation on C-MAPSS dataset, multi-

sensor data was basically used as the input of the 
trunk model. However, the concept of multi-modal 
was vague in these papers, and this concept was 
only highlighted in a few papers [300, 301]. The 
C-MAPSS dataset had 21 sensors and 3 operational 
conditions (altitude, Mach number, and sea-level 
temperature), so it was natural to consider multi-
modal on this dataset. For other specific tasks, the 
multi-modal data based approach was less popu-
lar because collecting additional data often meant 
higher costs. Herp et al. [302] proposed a prognos-
tic model for the wind turbine main bearing based 
on multi-modal data (actual wind speed, tempera-
ture, active power, etc.). He et al. [303] considered 
6 sensors data and 5 operational setting data in the 
RUL estimation task for the ion mill etching flow-
cool system.

		  Multi-task learning: The purpose of multi-task 
learning is to explore the common feature subspace 
between tasks with a joint model. Miao et al. [304] 
completed the RUL estimation task together with 
the DA task, and trained a trunk LSTM network via 
weighting two loss items. Liu et al. [305] combined 
the RUL estimation task with the fault recognition 
task based on a trunk CNN model. Aggarwal et al. 
[256] discussed the relationship between short-
term failure prediction and long-term RUL esti-
mation, arguing that a joint model could prevent 
inconsistent results.

(3)	 States partition
		  The difficulty for the RUL estimation is to deter-

mine the label for the input at each time step. Some 
methods take the HI as the label for the regression 
model. However, there is still a mapping relation-
ship between the HI and the actual RUL, and since 
most HIs are not completely monotonous, one 
HI point may correspond to several RUL points. 
Therefore, many methods directly use the actual 
RUL as the label, such as linear or piece-wise lin-
ear functions. If the degradation mechanism of a 
physical system is unknown, it is natural to use the 
linear function due to the fact that the actual RUL 
of the system decreases step by step. However, the 
piece-wise linear function will be more consistent 
with the data distribution if we know the degrada-
tion mechanism. The run-to-failure data typically 
contains the health state and degradation state of 
the equipment. Generally, the distribution of health 
state data is concentrated, while the distribution of 
degradation state data tends to be scattered [291]. 
To provide corresponding labels for each state, 
the piece-wise linear function assumes that the 
expected value of the RUL in the health state is con-
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stant and that in the degradation state is linearly 
decreasing.

		  The challenge for the piece-wise linear function is to 
determine the degradation occurrence time, which 
means how to divide run-to-failure data into the 
health state and the degradation state. Most meth-
ods rely on empirical rules to select an appropriate 
threshold, such as observing the trend of HI. How-
ever, the selection of a threshold mainly depends on 
expert experience. Mao et  al. [297] calculated the 
Pearson correlation coefficient between the health 
state and the degradation state based on features 
from SDAE. Although the step of feature extrac-
tion was skipped, the setting of a threshold was still 
inevitable. Therefore, some scholars considered 
how to reduce the impact of expert knowledge on 
states partition to improve the generalization ability 
of the RUL model. Li et al. [265] regarded the state 
partition as an anomaly detection problem and used 
GAN to learn the health state data distribution, and 
then determined the first predicting time. Xia et al. 
[306] divided the run-to-failure data into different 
degradation stages and then classified these states 
by DL models. Yang et al. [307] also regarded states 
partition as a classification problem, but added 
more rules of engineering experience, such as rapid 
or slow degradation patterns, and a “3/5” principle. 
States partition is still challenging for the RUL esti-
mation task as it is impossible to construct a com-
mon model or rule for all devices and application 
scenarios.

(4)	 Transfer learning
		  In general, the RUL estimation task constructs an 

offline model on existing historical run-to-failure 
data and then makes an online prediction for a 
new object. However, collecting large amounts of 
run-to-failure data in the real-world scenario is 
expensive and time-consuming. For industry, major 
equipment would not be allowed to operate in a 
near-failure condition, which means it is also dif-
ficult to collect complete degradation process data. 
As a result, the RUL estimation task naturally faces 
a few-shot sample and generalization problem.

		  Therefore, some scholars have conducted research 
on this issue based on transfer learning. In the 
relatively early study, Zhang et  al. [308] adopted 
the fine-tuned strategy, that the model was pre-
trained with a related dataset with a large data size, 
and then the pre-trained model was fine-tuned in 
the target dataset with only few samples. Sun et al. 
[296] proposed a deep transfer learning method 
based on SAE using three transfer strategies (weight 

transfer, feature transfer, and weight update) for the 
tool RUL estimation. Mao et  al. [297] aligned the 
features of source and target domains by the trans-
fer component analysis. Yu et al. [309] proposed a 
transfer learning method to reduce the distribution 
discrepancy between source and target domains 
based on maximum mean discrepancy for the RUL 
estimation. Meanwhile, the feature alignment strat-
egy based on adversarial learning for RUL estima-
tion has been applied in Refs. [265, 310].

(5)	 Uncertainty modeling
		  If the cost and risk of decision need to be consid-

ered, it is necessary to estimate the uncertainty 
of the RUL estimation. Sankararaman et  al. [311] 
argued that the traditional source classification of 
uncertainty (physical variability and lack of knowl-
edge) may not be applicable to the RUL estimation, 
so he proposed a different classification method, 
that the sources of uncertainty in the RUL estima-
tion were as follows: the current unknown state 
of the system, future uncertainty (i.e., the loading, 
operating, environmental, and usage conditions), 
modeling uncertainty, and the actual data distri-
bution. Purposeful modeling can be performed if 
the factors are clearly known. The wandering set-
points, input current, and fault magnitude were 
used to model the uncertainty for the sensor prog-
nosis based on Gaussian process in Ref. [312]. Wie-
ner process is also a common uncertainty modeling 
method [313, 314]. If the uncertainty factors are too 
complex to be recognized, latent modeling can be 
carried out, and the mainstream method is based 
on the Bayesian theory. Peng et al. [315] and Wang 
et al. [316] proposed to quantify the uncertainty of 
the RUL estimation using the Bayesian DL network 
based on Monte Carlo (MC) dropout, which was 
proved to be an effective Bayesian approximation in 
Ref. [317]. In addition to the Bayesian method, the 
sampling-based ensemble learning can also real-
ize the uncertainty modeling and quantification 
for the RUL estimation [318, 319]. By training the 
sub-models with various sub-datasets, an ensem-
ble learning method can be formed, and the actual 
distribution of few-shot data can be estimated 
effectively. In fact, latent modeling avoids the chal-
lenge of identifying the source of uncertainty, but it 
becomes more difficult to interpret the uncertainty. 
Sankararaman et  al. [311] discussed in detail the 
significance, interpretation, and quantification of 
uncertainty in the RUL estimation, and then com-
pared several methods of uncertainty propagation.
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4.4 � Open Source Datasets and Codes
4.4.1 � Open Source Datasets
The AI-enabled prognosis requires a large amount of 
high-quality run-to-failure data, which is difficult to sat-
isfy in real-world scenarios. There are several factors as 
follows:

1)	 The device will not be allowed to operate near the 
failure time for security and economic reasons, 
which means that the full degradation process is rare;

2)	 Different conditions and fault types will produce var-
ious degradation processes, and the cost of traversal 
experiments is obviously unacceptable;

3)	 Individual differences lead to inconsistencies in the 
distribution of data from historically failed equip-
ment and those from current operating equipment, 
and it is expensive to perform experiments on a large 
number of subjects.

Fortunately, as shown in Table  4, several mechanical 
prognosis datasets have been shared from a few institu-
tions, and NASA collected some of the open source data-
sets to build the Prognostics Center of Excellence (PCoE) 
database [320]. Additionally, the open source datasets 
provide a baseline standard for validation of various 
algorithms.

4.4.2 � Open Source Codes
The open source code behavior in the prognosis field is 
very necessary and important to promote the theoreti-
cal research and application, and will also have a posi-
tive effect on the upstream and downstream tasks of 
PHM. However, there are only a few open source projects 
for prognosis because of the difficulty of this research. 
Oyharcabal et  al. [325] coupled the convolution kernel 
to the operation of RNN and verified it on the C-MAPSS 
dataset. Lahiru et al. [326] described the overall process 
of the RUL estimation for C-MAPSS dataset in detail, 

including data structures, labels, data augmentation, 
etc. Libera et  al. [327] applied Bayesian and Frequen-
tist DL models to the RUL estimation. Chen et al. [328] 
used attention mechanism to model the importance of 
extracted features and also released the source codes.

4.5 � Challenges
4.5.1 � Generalization Ability
As previously mentioned, the few-shot data makes it 
difficult to accurately predict the RUL of a new object. 
Transfer learning has been used to enhance the generali-
zation ability of the RUL estimation, but mainly from the 
feature or model perspective. A natural way to enhance 
this ability is to increase the data volume. So how to 
generate more high-quality samples based on the exist-
ing data is still a challenge. Although it is impossible to 
obtain the actual data distribution, we can estimate the 
data distribution, such as using the resampling strategy 
or adversarial learning strategy to generate high-quality 
virtual samples. Additionally, with the digital twin model 
of a specific mechanical system, a large number of degra-
dation processes under different conditions can be gener-
ated by changing the working conditions, fault types, and 
other variables.

4.5.2 � Prognosis in Real‑World Scenarios
There are many limitations and uncertainties in the real 
open world, such as restricted computing resources, vari-
able working conditions, unknown failure modes, etc. 
The lack of computational power means that AI-enabled 
prognosis methods cannot be directly applied to the real 
scenario. Meanwhile, to ensure real-time prognosis, it is 
necessary to design a lightweight model, and common 
methods include model compression and pruning. Addi-
tionally, the open scenario requires the model to be able 
to continuously update parameters online, since the data 
distribution of the open scenario and that of training data 
are often inconsistent.

Table 4  Publications about the application of CNN in fault diagnosis

Dataset Name Research Object Description

C-MAPSS [321] Simulated
Turbofan engine

Engine degradation simulation was carried out using C-MAPSS. Four different sets were simulated under 
different combinations of operational conditions and fault modes. The dataset was provided by the PCoE 
at NASA Ames

Milling Dataset [322] Actual milling insert Experiments on a milling machine for different speeds, feeds, and depth of cut. The dataset was provided 
by the BEST lab at UC Berkeley

IMS Dataset [68] Actual bearings The dataset with bearing run-to-failure experiments was provided by the Center for Intelligent Mainte-
nance Systems (IMS), University of Cincinnati

FEMTO Dataset [323] Actual bearings Experiments on bearing accelerated life tests provided by FEMTO-ST Institute, Besancon, France

XJTU-SY [324] Actual bearings Experiments on bearing accelerated life tests containing complete run-to-failure data of 15 rolling element 
bearings. The dataset was provided by the Xi’an Jiaotong University and the Changxing Sumyoung 
Technology Company
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4.5.3 � Combination of Data‑Driven and Model‑Driven 
Methods

As equipment becomes increasingly complex, a single 
method is usually difficult to accurately evaluate and 
predict the RUL. Combining multiple models based 
on data-driven and model-driven methods to establish 
more effective health indicators, we can make full use 
of the powerful feature extraction ability based on data-
driven methods and the advantages of interpretability 
of model-driven methods. For example, Yucesan et  al. 
[329] designed a physics-informed layer based on dam-
age increment within deep neural networks to predict 
wind turbine main bearing fatigue. In addition, Wang 
et al. [330] proposed a cross physics-data fusion scheme 
and a loss function which embeds physical discipline for 
machine tool wear prediction.

5 � Conclusions
In this paper, we mainly review the current develop-
ment of AI-enabled approaches, especially DL-based 
approaches in monitoring, diagnosis, and prognosis, 
which are three essential ingredients of PHM. Besides, we 
emphasize the importance of open source datasets and 
codes for the benign development of the research com-
munity of AI-enabled PHM. For monitoring, we sum-
marize the main challenges, containing balance between 
recall and precision, unified benchmark datasets, quick 
alarm for early failure, and adaptability under variable 
working conditions. For diagnosis, we conclude that 
the main challenges are interpretability, transfer learn-
ing, class imbalance learning, and few-shot learning. For 
prognosis, we further summarize the challenges as gen-
eralization ability, prognosis in real-world scenarios, and 
combination of data-driven and model-driven methods. 
We hope this review paper could provide some valuable 
discussions of future research and attract enough atten-
tion from researchers to the construction of the open 
source community.
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