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Abstract 

Irregular honeycomb structures occur abundantly in nature and in man-made products, and are an active area of 
research. In this paper, according to the optimization of regular honeycomb structures, two types of irregular hon-
eycomb structures with both positive and negative Poisson’s ratios are presented. The elastic properties of irregular 
honeycombs with varying structure angles were investigated through a combination of material mechanics and 
structural mechanics methods, in which the axial deformation of the rods was considered. The numerical results show 
that axial deformation has a significant influence on the elastic properties of irregular honeycomb structures. The 
elastic properties of the structure can be considered by the enclosed area of the unit structure, the shape of the unit 
structure, and the elastic properties of the original materials. The elastic properties considering the axial deformation 
of rods studied in this study can provide a reference for other scholars.
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1  Introduction
Honeycomb structures have many excellent character-
istics, such as a higher elastic modulus [1], higher shear 
modulus [2], and higher energy absorption [3–6]. There-
fore, negative Poisson’s ratio materials are widely used 
in aerospace [7, 8], automobiles, ships [9, 10], and other 
fields. Zhang et  al. [11] studied a hierarchical regular 
hexagonal honeycomb structure. Mukhopadhyay and 
Adhikari [12] found that the elastic modulus of irregu-
lar honeycombs was highly influenced by the structural 
irregularity in auxetic honeycombs. Yang and Deng [13] 
reviewed the development of materials and structures 
with a negative Poisson’s ratio and the prospect devel-
opment of porous materials. Lan et  al. [14] analyzed a 
thin-walled honeycomb structure and investigated the 
effects of its structural and material parameters. Upreti 
et al. [15] studied honeycomb sandwich composites with 
a hexagonal honeycomb core and found that deforma-
tion decreased with increasing face sheet thickness. Thus, 

honeycomb structures have always been of profound 
interest to the research community.

Compared with traditional regular structures, irregu-
lar structures are more widely used in engineering appli-
cations owing to their better compressibility [16, 17] 
and higher buckling [18, 19]. Other important research 
areas related to the study of different honeycomb struc-
tures are their thermal and acoustic properties [20–23]. 
Therefore, much research has been carried out to pre-
dict the elastic properties of irregular honeycombs [24, 
25]. Deng and Yang [26] investigated the behaviors of 
functionally graded structures in three different types 
of elastic moduli. In the numerical results, it was found 
that Poisson’s ratio exhibits appreciable effects on bear-
ing capacity, which indicates that static properties can 
be improved by optimal design of cell shape material 
distribution and computational methodology. Hu et  al. 
[27] studied the Poisson’s ratio of re-entrant honeycombs 
using numerical and structural methods. Huang et  al. 
[28] presented a novel zero in-plane Poisson’s ratio hon-
eycomb designed for large out-of-plane deformations 
and studied the relationship between in-plane stiffness 
and geometric parameters. Wang et al. [29] analyzed the 
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elastic modulus and Poisson’s ratio of the re-entrant aux-
etic cellular structure in two principal directions. Bubert 
et  al. [30] fabricated a skin supported by an accordion 
honeycomb and analyzed the in-plane equivalent elastic 
moduli in two directions without discussing the modulus 
in the third direction. Li et al. [31] studied the dynamic 
crushing response of irregular honeycomb structures and 
found that the propagation velocity of the stress wave is 
different in different honeycomb structures. Liu et al. [32] 
analyzed the effect of Poisson’s ratios on the crashwor-
thiness of in-plane honeycombs. Therefore, honeycomb 
structures [33], especially irregular structures [34], have 
wide research prospects.

In this study, the equivalent elastic modulus and Pois-
son’s ratio of an irregular honeycomb in the σ1 and σ2 
directions are derived using Castigliano’s second theo-
rem, and the internal bending moment, axial defor-
mation, and Poisson’s ratio of the original material are 
considered. Finally, the results in this paper are verified 
with the results reported in Ref. [24], and the effects of 
different structural shapes and axial deformation of rods 
on the elastic properties are analyzed. The results show 
that when considering the axial deformation, the abso-
lute value of Poisson’s ratio is lower than that without 
considering the axial deformation, and the variation in 
the structural shape has a slight influence on the elastic 
properties.

2 � Irregular Honeycomb Structure
Figure  1 shows two types of regular structures: (a) and 
(b) are regular honeycomb structures with both positive 
and negative Poisson’s ratios. Figure 2 shows two types of 
irregular structures: (a) and (b) are irregular honeycomb 
structures with both positive and negative Poisson’s 
ratios.

3 � Irregular Honeycomb Structures with Positive 
Poisson’s Ratio

Figure 3 shows irregular honeycomb structures loaded in 
two different directions, where σ1 and σ2 are uniformly dis-
tributed loads in two mutually perpendicular directions.

3.1 � Elastic Modulus in the σ1 Direction
Figure 4 shows the structural parameters and force analysis 
of rod AB, where b is the thickness of the unit structure, t 
is the depth of the unit structure, li and h are the lengths 
of the inclined cell walls with inclination angle θ and the 
length of the vertical rod, respectively. The moment M1 of 
rod AB can be expressed as

where P1 = σ(h+ l1 sin θ1)b is the force in the σ1 
direction.

From the standard beam theory [33], the deflection δAB 
of rod AB can be expressed as

Axial force F ′ along rod AB is

Axial deformation �l can be expressed as

(1)M1=
P1l1 sin θ1

2
,

(2)δAB =
p1l

3
1 sin θ1

12EI
.

(3)F ′
= p1 cos θ1.

(4)�l =
F ′L

EA
=

p1 cos θ1l1

Ebt
,

Figure 1  Regular structures
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where E is the elastic moduli of the original materials, 
and the total deformation δ1 of rod AB along the σ1 direc-
tion is

(5)
δ1 = δAB sin θ1 +�l cos θ1 =

p1l
3
1 sin

2 θ1

12EI
+

p1 cos
2 θ1l1

Ebt
.

Similarly, the total deformation δ2 of rod BC along the σ1 
direction can be expressed as follows:

(6)
δ2 = δBC sin θ2 +�l cos θ2 =

p1l
3
2 sin

2 θ2

12EI
+

p1 cos
2 θ2l2

Ebt
.

Figure 2  Irregular structures

Figure 3  Applied tensile stresses in the (a) σ1 and (b) σ2 directions
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Combing Eqs. (2)–(6), the strain ε1 parallel to the σ1 
direction is given by

where

Thus, the elastic modulus E1U in the σ1 direction can be 
expressed as follows:

3.2 � Elastic Modulus in the σ2 Direction
To derive the expression of the transverse elastic modulus, 
stress σ2 is applied, as shown in Figure 3(b). Figure 5 shows 
that the deflection of rod BD consists of two parts: bend-
ing deformation and rotational deformation. The bending 
deformation δ2vb caused by the moment M1 in the σ2 direc-
tion can be expressed as

(7)ε1 =
δ1 + δ2

l1 cos θ1 + l2 cos θ2
=

σγ

l1 cos θ1 + l2 cos θ2
,

(8)

γ = b

[

(h+ l1 sin θ1)

(

l
3
1 sin

2 θ1

12EI
+

cos2 θ1l1

Ebt

)

+(h+ l2 sin θ2)

(

l
3
2 sin

2 θ2

12EI
+

cos2 θ2l2

Ebt

)]

.

(9)E1U =
(l1 cos θ1 + l2 cos θ2)

γ
.

(10)δ2vb =

(

w cosα
(

s1
sin α

)3

3EI

)

cosα,

where

Because the rotation angles of the three rods connected 
to point B are identical, the rotation angle φ of joint B can 
be written as

Thus, the deformation δ2vr of the cell wall with an inclina-
tion angle α in the σ2 direction is given by:

(11)















w = σ2(l1 cos θ1 + l2 cos θ2)b,

I = bt3
�

12,

M1 = ws1 cot α.

(12)φ =
M1l1

l1 + l2

l1

6EI
.

Figure 4  Irregular structure diagram and force analysis of rod AB 

Figure 5  Force analysis of rod BD 
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Therefore, the total deformations of rod BD and rod FH 
in the σ2 direction are

Now, the axial deformations of rod BD and rod FH in the 
σ2 direction can be expressed as

The deflections δvBD and δvGF of rods AB and GF (Fig-
ure 6) in the σ2 direction can be expressed as

(13)δ2vr = φ

( s1

sin α

)

cosα.

(14)

δ2BD =

(

w cosα
(

s1
sin α

)3

3EI

)

cosα +
M1l1

l1 + l2

l1

6EI

( s1

sin α

)

cosα,

(15)

δv2FH =







w cosβ

�

s2
sin β

�3

3EI






cosβ

+
M1l4

l3 + l4

l4

6EI

�

s2

sin β

�

cosβ .

(16)�l2BD =
ws1

Ebt
sin α,

(17)�l2FH =
ws2

Ebt
sin β .

The axial deformation of rods AB and GF in the σ2 direc-
tion can be expressed as

Thus, the total deformation δ2 of the structure in the σ2 
direction can be expressed as

while Eq. (22) can be rewritten as follows:

where

Strain ε2 in the σ2 direction can be obtained as

where w = σ2(l1 cos θ1 + l2 cos θ2)b ; thus, the elas-
tic modulus in the σ2 direction of the structure can be 
expressed as

(18)δvAB =

(

l1w
l1+l2

cos θ1

)

l31

12EI
cos θ1,

(19)δvGF =

(

l4w
l3+l4

cos θ4

)

l34

12EI
cos θ4.

(20)�l′2 =

l1w
l1+l2

sin θ1l1

Ebt
sin θ1,

(21)�l′3 =

l4w
l3+l4

sin θ4l4

Ebt
sin θ4.

(22)

δ2 = δv2BD + δv2FH +�l2BD +�l2FH

+ δvAB + δvGF +�l
′

2 +�l
′

3,

(23)δ2 = wϕ,

(24)

ϕ =

��

cosα
�

s1
sin α

�3

3EI

�

cosα +
s1 cot αl1

l1 + l2

l1

6EI

�

s1

sin α

�

cosα

+







cosβ

�

s2
sin β

�3

3EI






cosβ +

s1 cot αl4

l3 + l4

l4

6EI

�

s2

sin β

�

cosβ

+
s1

Ebt
sin α +

s2

Ebt
sin β +

�

l1
l1+l2

cos θ1

�

l
3
1

12EI
cos θ1

+

�

l4
l3+l4

cos θ4

�

l
3
4

12EI
cos θ4 +

l1
l1+l2

sin θ1l1

Ebt
sin θ1

+

l4
l3+l4

sin θ4l4

Ebt
sin θ4

�

,

(25)

ε2 =
δ2

h+ s1 + s2 + l1 sin θ1 + l4 sin θ4

=
wϕ

h+ s1 + s2 + l1 sin θ1 + l4 sin θ4
,

Figure 6  Force analysis of rod GF 
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3.3 � Poisson’s Ratio v12
Poisson’s ratios were calculated by taking the negative 
ratios of strains normal to and parallel to the loading direc-
tion. Poisson’s ratio v12 of the unit structure can be defined 
as

where ε1 and ε2 are strains in the σ1 and σ2 directions, 
respectively, due to the load in the σ1 direction. In addi-
tion, ε1 can be obtained from Eq. (7) and ε2 can be 
expressed as

where

The Poisson’s ratio of a structure in the σ1 direction can 
be expressed as

(26)E2U =
σ2

ε2
=

h+ s1 + s2 + l1 sin θ1 + l4 sin θ4

(l1 cos θ1 + l2 cos θ2)bϕ
.

(27)v12 = −
ε2

ε1
,

(28)ε2 = −
δ′1 + δ′2

h+ s1 + s2 + l1 sin θ1 + l4 sin θ4
,

(29)
{

δ′1 = δAB cos θ1 +�l sin θ1 =
p1l

3
1
sin θ1 cos θ1
12EI +

p1l1 sin θ1 cos θ1
Ebt

,

δ′2 = δGF cos θ4 +�l sin θ4 =
p2l

3
4
sin θ4 cos θ4
12EI +

p2l4 sin θ4 cos θ4
Ebt

.

(30)

v12 =

(

δ′1 + δ′2

)

(l1 cos θ1 + l2 cos θ2)

(δ1 + δ2)(h+ s1 + s2 + l2 sin θ2 + l3 sin θ3)
.

3.4 � Poisson’s Ratio v21
Poisson’s ratio of a structure for loading in the σ2 direc-
tion can be expressed as

where ε′1 and ε′2 are the strains in the σ1 and σ2 directions, 
respectively. ε′2 can be obtained from Eq. (23) as

where w = σ2(l1 cos θ1 + l2 cos θ2)b , and ε′1 can be 
obtained as

where δvAB1 and δvBC1 are the deformations in the σ1 
direction due to the load in the σ2 direction

(31)v21 = −
ε′1

ε′2
,

(32)ε′2 =
wϕ

h+ s1 + s2 + l1 sin θ1 + l4 sin θ4
,

(33)

ε′1 = −
δvAB1 + δvBC1

l1 cos θ1 + l2 cos θ2
= −

wϕ′

l1 cos θ1 + l2 cos θ2
,

(34)

ϕ′
=

(

l1
l1+l2

cos θ1

)

l31

12EI
sin θ1 +

(

l2
l1+l2

cos θ2

)

l32

12EI
sin θ2

+

l1
l1+l2

sin θ1

Ebt
cos θ1 +

l2
l1+l2

sin θ2

Ebt
cos θ2.

Figure 7  Tensile stresses along the (a) σ1 and (b) σ2 directions
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Thus, Poisson’s ratio v21 of a structure in the σ2 direc-
tion can be expressed as

4 � Irregular Honeycomb Structure with Negative 
Poisson’s Ratio

Figure  7 shows the irregular honeycomb structures 
loaded in two different directions. σ1 and σ2 are uni-
formly distributed loads in two mutually perpendicular 
directions.

4.1 � Elastic Modulus in σ1 Direction
Figure  8 shows the force analysis of rods AB and GF in 
the σ1 and σ2 directions, respectively. E′

1 is the elastic 
modulus of an irregular structure with a negative Pois-
son’s ratio and has the same value as an irregular struc-
ture with a positive Poisson’s ratio. The elastic modulus 
E′

1 in the σ1 direction can be obtained as described in 
Section 3.1:

where

(35)v21 =
ϕ′(h+ s1 + s2 + l2 sin θ2 + l3 sin θ3)

ϕ(l1 cos θ1 + l2 cos θ2)
.

(36)E′

1 =
(l1 cos θ1 + l2 cos θ2)

γ
,

(37)

γ = b

[

(h− l1 sin θ1)

(

l
3
1 sin

2 θ1

12EI
+

cos2 θ1l1

Ebt

)

+(h− l2 sin θ2)

(

l
3
2 sin

2 θ2

12EI
+

cos2 θ2l2

Ebt

)]

.

4.2 � Elastic Modulus in the σ2 Direction
The elastic modulus of structures with a negative Pois-
son’s ratio can be obtained as described in Section  3.2. 
Thus, the strain ε21 in the σ2 direction can be obtained as 
follows:

where w = σ2(l1 cos θ1 + l2 cos θ2)b.
Thus, the elastic modulus of E′

2 in the σ2 direction can 
be expressed as

where

(38)

ε21 =
δ

h+ s1 + s2 − l1 sin θ1 − l4 sin θ4

=
wϕ

h+ s1 + s2 − l1 sin θ1 − l4 sin θ4
,

(39)E′

2 =
σ21

ε21
=

h+ s1 + s2 − l1 sin θ1 − l4 sin θ4

(l1 cos θ1 + l2 cos θ2)bϕ
,

(40)

ϕ =

��

cosα
�

s1
sin α

�3

3EI

�

cosα +
s1 cot αl1

l1 + l2

l1

6EI

�

s1

sin α

�

cosα

+







cosβ

�

s2
sin β

�3

3EI






cosβ +

s1 cot αl4

l3 + l4

l4

6EI

�

s2

sin β

�

cosβ

+
s1

Ebt
sin α +

s2

Ebt
sin β +

�

l1
l1+l2

cos θ1

�

l
3
1

12EI
cos θ1

+

�

l4
l3+l4

cos θ4

�

l
3
4

12EI
cos θ4 +

l1
l1+l2

sin θ1l1

Ebt
sin θ1

+

l4
l3+l4

sin θ4l4

Ebt
sin θ4

�

.

Figure 8  Force analysis of rods AB and GF in the σ1 and σ2 directions, respectively
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4.3 � Poisson’s Ratio v ′
12

To derive Poisson’s ratio for an irregular structure, the 
mechanics formula is calculated to obtain Poisson’s 
ratio in the σ1 direction:

where ε′′1 and ε′′2 are strains in the σ1 and σ2 directions, 
respectively, due to the load in the σ1 direction. v′12 is 
Poisson’s ratio in the σ1 direction, ε′′1 can be obtained 
from Eq. (7), and ε′′2 can be expressed as

where δ′′1 and δ′′2 can be expressed as

Thus, Poisson’s ratio v′12 of a structure in the σ1 direc-
tion can be expressed as

4.4 � Poisson’s Ratio v ′
21

Poisson’s ratio v′21 of a unit structure in the σ2 direction 
can be obtained from Section 3.4, as follows:

(41)v′12 = −
ε′′2

ε′′1
,

(42)ε′′2 =
δ′′1 + δ′′2

h+ s1 + s2 − l2 sin θ2 − l3 sin θ3
,

(43)
{

δ′′1 = δAB cos θ1 +�l sin θ1 =
p1l

3
1
sin θ1 cos θ1
12EI +

p1l1 sin θ1 cos θ1
Ebt

,

δ′′2 = δGF cos θ4 +�l sin θ4 =
p2l

3
4
sin θ4 cos θ4
12EI +

p2l4 sin θ4 cos θ4
Ebt

.

(44)

v′12 = −

(

δ′′1 + δ′′2

)

(l1 cos θ1 + l2 cos θ2)

(δ1 + δ2)(h+ s1 + s2 − l2 sin θ2 − l3 sin θ3)
.

(45)v′21 = −
ϕ′(h+ s1 + s2 − l2 sin θ2 − l3 sin θ3)

ϕ(l1 cos θ1 + l2 cos θ2)
,

where

5 � Results and Discussions
In this study, the geometric configuration of the unit 
structure with a fixed enclosed area is defined, as shown 
in Figure 9.

(46)

ϕ′
=

(

l1
l1+l2

cos θ1

)

l31

12EI
sin θ1 +

(

l2
l1+l2

cos θ2

)

l32

12EI
sin θ2

+

l1
l1+l2

sin θ1

Ebt
cos θ1 +

l2
l1+l2

sin θ2

Ebt
cos θ2.

Figure 9  Structure parameter geometry with the same enclosed area

Figure 10  Elastic modulus E1 with variation of angle θ1 in the σ1 
direction
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Figure  9 shows two structures: a positive and a nega-
tive Poisson’s ratio structure, which are analyzed with 
the same enclosed area, where b =  0.01 m, t =  0.01 m, 
the original material is aluminum, and the elastic modu-
lus is 70× 109 Pa . To obtain the elastic properties, the 
enclosed area of the structure is fixed in this study, so 
the variation in θ1 can only influence the structure shape. 
According to the structure in Figure  9, when the value 
of θ1 is 30°, 34.3°, 40.9°, 45°, and 49.1°, θ2 becomes 90°, 
75°, 60°, 53.8°, and 49.1°, respectively, and the irregular 
structure becomes symmetrical when θ1 = θ2 = 49.1°, 
which has the same structure as the regular honeycomb 
structure.

5.1 � Elastic Properties of Structure with Positive Poisson’s 
Ratio

The equivalent elastic modulus of the positive Poisson’s 
ratio structure due to changes in θ1 is shown in Figure 10, 
where E1 is the equivalent elastic modulus in the σ1 direc-
tion, Ex is the equivalent elastic modulus of the regular 
structure obtained from Ref. [24], and E1x is the equiva-
lent elastic modulus without considering axial deforma-
tion of rods. It can be seen that when θ1 = θ2 = 49.1◦ 
(structure becomes regular), the equivalent elastic mod-
ulus reaches the maximum value, and E1x has the same 
value as Ex . Because the structures are identical when 
θ1 = θ2 = 49.1◦ , the correctness of the results obtained in 
this study is verified. When the axial deformation of the 
rods is considered, the elastic modulus in the σ1 direction 

is lower than that without considering the axial deforma-
tion of the rods. When θ1 changes, the values of the elas-
tic modulus of the regular structure are higher than those 
of the irregular structure.

Figure 11 shows the equivalent elastic modulus of the 
positive Poisson’s ratio structure due to changes in θ1 in 
the σ2 direction. Ey is the equivalent elastic modulus of 
the regular structure obtained from Ref. [24]. E2y is the 
equivalent elastic modulus calculated without consider-
ing the axial deformation in the σ2 direction. When the 
θ1 angle is 49.1° (structure becomes a regular structure), 
the equivalent elastic modulus reaches the maximum 
value and E2y has the same value with Ey ; this proves the 
validity of the calculation results of this study. With the 
increase of structural irregularity, differences between Ey 
and E2y decrease gradually. It can be seen that structure 
shape and axial deformation have a significant influence 
on elastic modulus.

Poisson’s ratio in the σ1 direction with variation in 
θ1 is shown in Figure  12. vx is the Poisson’s ratio of the 
regular structure obtained from Ref. [24]. v12x is the 
Poisson’s ratio without considering axial deformation 
in the σ1 direction. When the θ1 angle is 49.1° (structure 
becomes regular), v12x has the same value as vx and the 
results obtained from Ref. [24] are the same as the values 
obtained in this study; this verifies the correctness of the 
obtained results. It can be seen that when θ1 is lower than 
49.1°, Poisson’s ratio gradually decreases. Axial deforma-
tion has a significant influence on Poisson’s ratio, and 

Figure 11  Elastic modulus E2 with varying θ1 angle in the σ2 direction

Figure 12  Poisson’s ratio v12 with varying θ1 angle in the σ1 direction

Figure 13  Poisson’s ratio with varying θ1 angle in the σ2 direction

Figure 14  Elastic modulus E ′
1
 with varying θ1 angle in the σ1 direction
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when the θ1 angle is 49.1°, the Poisson’s ratio of the struc-
tures reaches the minimum value.

Figure 13 shows the variation of v21 with different struc-
tural shapes in the σ2 direction. vy is the Poisson’s ratio of 
the regular structure obtained from Ref. [24]. v21y is the 
Poisson’s ratio without considering the axial deformation 
in the σ2 direction. When the θ1 angle is 49.1° (structure 
becomes regular), v21y and vy have the same value; this 
verifies the validity of this study. It can be observed that 
cell angle θ1 influences v21 . Poisson’s ratio considering 
axial deformation is lower than that without considering 
axial deformation, and positive Poisson’s ratio structures 
reach the maximum value in 49.1 °.

5.2 � Elastic Properties of Structure with Negative Poisson’s 
Ratio

The equivalent elastic modulus of the positive Poisson’s 
ratio structure due to changes in θ1 is shown in Figure 14, 
where E′

x is the equivalent elastic modulus of the regular 
structure obtained from Ref. [24], E′

1x is the equivalent 
elastic modulus of the irregular structure without con-
sidering axial deformation, and E′

1 is the equivalent elas-
tic modulus of an irregular structure considering axial 
deformation. It can be seen that E′

1x and E′
x have the same 

value when θ1 = θ2 = 49.1°, which verifies the correct-
ness of the results in this study, and the equivalent elastic 
modulus of the structures reaches the maximum value at 
θ1 = 49.1°. When the θ1 angle changes, the elastic modu-
lus decreases with an increase in structural irregularity.

Figure 15 shows the equivalent elastic modulus of the 
negative Poisson’s ratio structure due to changes in θ1 in 
the σ2 direction. E′

y is the equivalent elastic modulus of 
the regular structure obtained from Ref. [24]. E′

2y is the 
equivalent elastic modulus calculated without consid-
ering axial deformation in the σ2 direction. When the 
θ1 angle is 49.1°, the equivalent elastic modulus reaches 
the maximum value and E′

2y is the same value with the 
result reported in Ref. [24]; this verifies the correctness 
of the results obtained in this study. The elastic modulus 
considering axial deformation is lower than that with-
out considering axial deformation, and the difference 
between them reaches the maximum value when θ1 = 
49.1°. Whether or not the axial deformation of the rod is 
considered has a great influence on the equivalent elastic 
modulus.

The Poisson’s ratio of the negative Poisson’s ratio struc-
ture in the σ1 direction is shown in Figure  16. v′x is the 
Poisson’s ratio of the regular structure obtained from Ref. 
[24]. v′12x is the Poisson’s ratio without considering the 
axial deformation in the σ1 direction. v′12 is the Poisson’s 
ratio considering the axial deformation in the σ1 direc-
tion. When θ1 = θ2 = 49.1°, the Poisson’s ratios of the 
structure reaches the maximum value and v′12x has the 

Figure 15  Elastic modulus E ′
2
 with varying θ1 angle in the σ2 direction

Figure 16  Poisson’s ratio with the variation of angle θ1 in σ1 direction

Figure 17  Poisson’s ratio with varying θ1 angle in the σ2 direction

Figure 18  Equivalent elastic modulus of two structures in the σ1 and 
σ2 directions
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same value as v′x , verifying the correctness of the results 
obtained in this study. The consideration of axial defor-
mation has a negligible influence on Poisson’s ratio in the 
σ1 direction. When the θ1 angle is lower than 49.1°, v′12x 
increases with an increase in the θ1 angle, and when θ1 is 
higher than 49.1°, v′12x decreases with an increase in the 
θ1 angle.

Figure  17 shows the variation in v21 with different 
structural shapes in the σ2 direction. v′y is the Poisson’s 
ratio of the regular structure obtained from Ref. [24]. v′12y 
is the Poisson’s ratio without considering the axial defor-
mation in the σ2 direction. When the cell angle θ1 is 49.1°, 
v′21 and v′12y reach their minimum values. The value of 
v′12y without considering axial deformation is the same as 
the results of Ref. [24] at an angle of 49.1°. Figure 17 also 
shows that the Poisson’s ratio considering axial deforma-
tion is higher than that without considering axial defor-
mation, and the difference between them reaches the 
maximum value when θ1 = 49.1°.

Figure  18 shows the equivalent elastic moduli of the 
irregular structures in the σ1 and σ2 directions. E1 , E1x , 
E2 , E1y , E′

1 , E
′

1x , E
′

2 and E′

2y are the equivalent elastic mod-
uli obtained from Figures 10, 11, 12, 13, 14, 15, 16 and 17. 
It can be seen that the equivalent elastic moduli in the σ2 
direction is higher than those in the σ1 direction. When θ1 
= θ2 = 49.1°, the equivalent elastic moduli in the σ2 direc-
tion reach the maximum value, and E′

2y is the same value 
with E1y . The axial deformation of rods has a significant 
influence on the equivalent elastic moduli. The equiva-
lent elastic moduli in the σ1 direction have insignificant 
variation when θ1 varies.

Figure  19 shows the Poisson’s ratio of the irregular 
structures in the σ1 and σ2 directions. v12 , v12x , v21 , v21y , 
v′12 , v

′

12x,v
′

21 , and v′21y are the equivalent elastic moduli 
obtained from Figures  10, 11, 12, 13, 14, 15, 16 and 17. 
Notably, the value of v21y is higher than the rest. The 

absolute value of the Poisson’s ratio in two structures 
reaches the maximum value. Moreover, v12 , v12x and v′12 , 
v′12x have similar values, respectively. Whether or not the 
axial deformation is considered has little influence on the 
Poisson’s ratio of the structure.

6 � Conclusions
In this study, two types of irregular honeycomb struc-
tures were studied using material mechanics and struc-
tural mechanics methods. Considering axial deformation 
of rods, the elastic properties of irregular structures with 
different structure shapes were studied. Compared with 
the results reported in Ref. [24], the results were in good 
agreement.

The results show that when the enclosed area of the 
irregular honeycomb structure is fixed, the equivalent 
elastic modulus and Poisson’s ratio of the structure will 
vary with varying structure shape. The θ1 angle has a 
significant influence on the equivalent elastic modulus. 
When the structure is regular, the absolute value of the 
elastic modulus and Poisson’s ratio in the σ2 direction 
reaches the maximum value, and the Poisson’s ratio in 
the σ1 direction reaches the minimum value. The elastic 
properties of the structure considering axial deforma-
tion are higher than those without considering the axial 
deformation. Therefore, the elastic properties of irregu-
lar structures can be achieved by the axial deformation of 
the rods, structural shapes, and original materials.
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