
Wang et al. Chin. J. Mech. Eng.           (2021) 34:57  
https://doi.org/10.1186/s10033-021-00577-0

REVIEW

Application of Digital Twin in Smart Battery 
Management Systems
Wenwen Wang, Jun Wang, Jinpeng Tian, Jiahuan Lu and Rui Xiong*   

Abstract 

Lithium-ion batteries have always been a focus of research on new energy vehicles, however, their internal reactions 
are complex, and problems such as battery aging and safety have not been fully understood. In view of the research 
and preliminary application of the digital twin in complex systems such as aerospace, we will have the opportunity 
to use the digital twin to solve the bottleneck of current battery research. Firstly, this paper arranges the develop-
ment history, basic concepts and key technologies of the digital twin, and summarizes current research methods and 
challenges in battery modeling, state estimation, remaining useful life prediction, battery safety and control. Further-
more, based on digital twin we describe the solutions for battery digital modeling, real-time state estimation, dynamic 
charging control, dynamic thermal management, and dynamic equalization control in the intelligent battery manage-
ment system. We also give development opportunities for digital twin in the battery field. Finally we summarize the 
development trends and challenges of smart battery management.

Keywords:  Digital twin, Battery management system, Battery model, Remaining useful life prediction, Dynamic 
control

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

1  Introduction
Global oil resources are drying up and environmental 
pollution is increasing. Reducing greenhouse gas emis-
sions is one of the most global concerns. Many countries 
have issued relevant regulations about banning the sale of 
fuel vehicles, therefore related fields of new energy vehi-
cles become a research hot spot [1, 2]. The development 
and management of batteries is the key technology of 
new energy vehicles. Lithium ion batteries have become 
the most promising choice thanks to their high energy 
density, long cycle life and low self-discharge rates [3, 4].

To maximize the performance of lithium-ion batteries 
in the use process, the requirements of the battery man-
agement system (BMS) are getting higher and higher, 
especially in terms of safety and cycle life. However, BMS 
obtains little information from a real battery, making it 
difficult to accurately indicate the aging and safety status 

of a battery, and necessitates full life cycle management. 
In addition, the on-board BMS cannot store or process 
large amounts of data during the operation of a vehicle, 
with poor real-time capability and data utilization rate [5, 
6]. For efficient battery management, it is necessary to in-
depth study the mechanisms, such as battery aging and 
thermal runaway. Besides, the integration of advanced 
technologies like big data, artificial intelligence (AI) into 
the BMS is promising to realize battery life cycle data 
management [6].

As academia has done a lot of researches on emerging 
technologies such as big data, AI, blockchain, and the 
Internet of Things (IoT) [7–9], the concept of digital twin 
(DT) is becoming more and more clear. DT can estab-
lish the mapping between a physical entity and a virtual 
model, which have close interaction with each other. 
DT was originally used in the aerospace field, mainly for 
remaining useful life (RUL) prediction and health man-
agement of aircraft. Ezhilarasu et  al. [10] discussed the 
application of DT to evaluate the operation status of com-
plex systems, such as aeroplanes. Li et al. [11] established 
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the aircraft DT to evaluate the health status of the aircraft 
and analyse the growth of wing fatigue cracks. Although 
the DT technique is still in the developing stage, it has 
shown great value in the prediction and optimization of 
complex systems.

The lithium-ion battery is also a complex system. Its 
internal parameters are highly nonlinear and coupling 
and its life is also closely coupled with a variety of fac-
tors. There are huge challenges in the research of accu-
rate state estimation, fast charging, thermal management, 
and extending useful life [12, 13]. On the other hand, 
there is an opportunity to take advantage of DT to deal 
with complex systems and establish a DT framework for 
battery systems, as shown in Figure  1. The sensors are 
used to collect data of battery voltage, current and tem-
perature, etc. in real battery, and the battery geometric 
model, aging model, thermal model, etc. are established 
in the virtual world. The battery DT is obtained by cou-
pling the real battery data with the virtual model. AI, 
cloud computing, big data, blockchain and other tech-
nologies are used to achieve real-time data monitoring, 
state estimation, RUL prediction, thermal management 
and other functions of the battery full life cycle, as well 
as feedback control of the real battery, while updating the 
virtual model. These functions require the cloud battery 
management system and on-board battery management 
system to work together. Battery DT can also realize the 
visualization of battery information and make the bat-
tery more clearly and transparently. And it can guide 

the intelligent BMS oriented to digital and intelligent 
development.

This paper discusses the application prospects of DT in 
intelligent BMS. Section 2 describes the concept, devel-
opment and key technologies of DT. Section 3 describes 
the methods and challenges of battery modeling, state 
estimation and RUL prediction, and elucidates how to 
solve these challenges based on DT. Battery safety and 
dynamic control based on DT are described in Section 4. 
In Section  5, the development opportunities and chal-
lenges of DT in the field of battery are elucidated. The 
future trends and challenges of intelligent BMS are sum-
marized in Section 6.

2 � Digital Twin
2.1 � Development of Digital Twin
The idea of DT was proposed by Professor Grieves M. W 
in 2003 in the course of Product Lifecycle Management, 
which is called “the virtual digital expression equivalent 
to physical products” [14]. To ensure the safe operation 
of the flight system during its lifetime, NASA introduced 
the concept of DT in the space technology roadmap of 
2010. In 2011, the U.S. Air Force Research Laboratory 
used DT in the conceptual model of aircraft to predict 
structure life and ensure structural integrity [15]. It laid 
the foundation for the application of DTs in the aero-
space field.

In 2014, the DT theory was accepted by the US Depart-
ment of Defense, General Motors Corporation, Siemens 

Figure 1  DT framework for intelligent battery management systems
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and other companies [16, 17]. In 2016, Tao et  al. [18] 
introduced DT into workshop research and explored the 
concept of DT workshop. They analyzed the key technol-
ogies of the DT model from the four system components 
of DT workshop which provided a theory for the reali-
zation of cyber-physical systems in the manufacturing 
workshop. Gartner, a world-famous consulting firm, has 
listed DT as one of the ten strategic technology trends 
for three consecutive years (2017–2019) [19–21]. With 
the support of existing advanced technologies, DT has 
become the key to optimizing product design and main-
tenance processes, realizing product RUL prediction and 
reducing the overall cost of products.

2.2 � Concept of Digital Twin
The basic idea of DT is to accurately and real-time con-
nect the physical world and the virtual world [22]. How-
ever, it is difficult to define the conceptual framework. In 
recent years, a large number of DT concepts and refer-
ence frameworks have been proposed. Zheng et  al. [23] 
discussed the concept and characteristics of DT in a 
broad sense and a narrow sense, respectively. They pro-
posed that the application framework of DT consists of 
physical space, virtual space and information processing 
layer. Table  1 tabulates different concepts and under-
standings of DT, summarizes the main points of these 
concepts, and reveals the development trend of DT. 
Most early literatures define DT as high-precision mod-
els or multiscale simulations without considering real-
time connections between the virtual and physical space. 
With the deepening of research, researchers began to pay 

attention to the dynamic changes and bidirectional map-
ping of virtual and physical space.

Although there are different explanations in the lit-
eratures, the basic characteristics of DT have reached a 
consensus. DT is not a specific technology, but a concept 
that can be achieved through many advanced technolo-
gies. Therefore, enough clarity and specific concepts are 
required for different research areas. The DT system can 
rely on specific industrial practices and give full play to its 
advantages. Some researchers have also given a brief con-
cept in the field of lithium-ion batteries, however, most of 
them focus on the use of DT to establish high-precision 
models and to estimate state of charge (SOC) and state of 
health (SOH) [24–26]. The mutual mapping and control 
of the virtual and physical batteries are neglected. With 
the further research of DT in the field of batteries, the 
concept of DT will become clearer.

2.3 � Key Technologies of Digital Twin
From digital modeling to realize intelligent control, DT 
needs big data, AI, IoT, cloud computing, blockchain and 
other powerful platforms. These technologies are not 
independent of each other, and their relationship with 
DT is shown in Figure 2. This section will introduce the 
application and integration of these key technologies in 
DT.

2.3.1 � Digital Twin and Big Data
Big data is a term utilized to refer to the increase in 
the volume of data that are difficult to store, process, 
and analyze through traditional database technolo-
gies. The nature of big data is indistinct and it involves 

Table 1  Concept of DT

Institutions / Authors Year Concept Key Point

NASA [27] 2010 DT is an integrated multi-physics, multi-scale, probabilistic simulation of a vehicle 
or system that uses the best available physical models, sensor updates, fleet his-
tory, etc., to mirror the life of its flying twin.

Integration, simulation

Rosen et al. [28] 2014 DT is a kind of life cycle management through model and simulation which 
include the state information and historical information of the aircraft when 
manufacturing and using to realize the high-fidelity modeling of the aircraft in 
the full life cycle.

High-fidelity model

Schluse et al. [29] 2016 DT is virtual substitutes for the real world and contains virtual presentation and 
communication capabilities, constituting smart objects as intelligent nodes 
within the IoT and services.

Virtual substitutes

Söderberg et al. [30] 2017 DT uses faster optimization algorithms, powerful computing power and big data 
to realize real-time control and product optimization in the field of simulation.

Real-time control and optimization

Xu et al. [31] 2018 DT dynamically represents a physical entity and its functions, behaviors, and rules. Dynamic model

Wang et al. [32] 2019 DT dynamically transmits selected online measurement data to the simulation 
world so that the running simulation model can reversely and adaptively control 
the real world.

Dynamic, feedback control

Wu et al. [24] 2020 DT is a digital replica of a physical entity, and there is a close connection between 
the two.

Data, model, AI
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considerable processes to identify and translate the data 
into new insights [33]. IBM proposed the 5V characteris-
tics of big data: Volume, Variety, Value, Velocity, Veracity 
[34]. The big data platforms should have the performance 
of integration, storage, management, interactive analy-
sis, visualization, and security. The twin data integrate 
the massive data of multiple sources, multiple types, and 
multiple structures, such as sensor data, model genera-
tion data, virtual and real fusion data [35]. Big data can 
extract more valuable information from the massive 
data generated by the DT to explain and predict the 
results and processes of real events. There is consistency 
between the DT model and big data in data type and so 
on. To a certain extent, it can be considered that the DT 
is a bridge between big data and the physical world.

2.3.2 � Digital Twin and AI
AI is a machine’s simulation of human consciousness and 
mind. The four main sub-fields of AI include machine 
learning, natural language processing, speech processing 
and machine vision. AI has a wide range of applications 
and machine learning is one of the most important algo-
rithms in battery field [36]. Machine learning is an algo-
rithm that automatically analyzes and obtains rules from 
data, and uses the rules to make inferences or predic-
tions. Therefore, AI and big data often go hand in hand. 
The DT uses its high-fidelity virtual model, massive twin 
data, and real-time two-way dynamic interaction to real-
ize functions such as simulation, diagnosis, prediction, 
and optimization control. AI analyzes, integrates and 
deeply mines twin data by matching the best intelligent 
algorithms to complete services with different needs. 
With the support of AI, DT can greatly improve the value 
of data and the responsiveness and accuracy of various 
functions.

2.3.3 � Digital Twin and Internet of Thing
The IoT mainly connects real-world objects to the Inter-
net through the interfaces of various devices (such as 

RFID, sensors, etc.), or connects them to each other to 
achieve information transmission and processing [37]. 
IoT devices and services act as “ladders” to collect, gener-
ate, analyze, and transmit digital data from the physical 
world to the virtual world. Twin data often have big data 
characteristics, and battery DT uses these data to predict 
the future state of the battery through machine learning 
technology in the case of incomplete physical mechanism 
and incomplete input data.

2.3.4 � Digital Twin and Cloud
Due to the large amount of data and diversity, daily stor-
age devices cannot meet the demand, and need to use 
cloud storage information. In addition, DT requires 
real-time model simulation optimization, behavior pre-
diction, etc., and these processes require a lot of calcu-
lations for complex physical systems. Slow calculation 
speed will cause poor follow-up of the virtual model and 
the physical system too late to respond. In modern con-
trol systems, algorithm complexity and data amount are 
increasing. Thus the on-board processors are not able to 
meet the demand. The powerful cloud computing pro-
vides the possibility for real-time updates of the system. 
In the future, information processing, analysis and con-
trol decisions will all be carried out on the cloud plat-
form. At present, researchers have devoted themselves to 
the research of cloud BMS, and believe that cloud BMS 
is an inevitable trend of future development [38]. Due to 
the large amount of data and the complexity of the algo-
rithm, DT will rely on the cloud computing platform.

2.3.5 � Digital Twin and Blockchain
Blockchain is a new type of application scheme realized 
through technologies, such as distributed data storage 
and point-to-point transmission. Blockchain is a com-
bination of distributed ledger, consensus mechanism, 
smart contract and cryptography [39]. Essentially, it can 
be regarded as a database, which is a series of interrelated 
data blocks formed by a specific encryption method. 
Each data block contains a string of data and can be used 
to verify whether the transaction information is valid. 
The core of DT is the integration and analysis of data, and 
aspect of data management may have risks such as data 
leakage and malicious tampering. To achieve trust in the 
system, the problem of data credibility must be solved. 
The advantages of the combination of DT and blockchain 
are mainly reflected in ensuring that data are not tam-
pered with during storage and transmission, and realiz-
ing the interaction between DTs.

The realization of DT cannot be separated from these 
new technologies. They cooperate to realize the com-
prehensive perception of physical world, multi-scale and 
high-fidelity physical modeling, efficient and safe data Figure 2  Relationship between DT and key technologies
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transmission, intelligent and personalized functions, and 
real-time and dynamic two-way coupling between virtual 
model and physical world.

2.4 � Summary
Although the idea of DT was put forward at the begin-
ning of the 21th century, due to technical limitations, it 
has started to attract attention in recent years. At pre-
sent, DT is still in the developing stage. The use of DT to 
fully realize the interconnection of the virtual world and 
the physical world still faces many challenges, such as the 
development of intelligent algorithms, the use of high-
precision sensors, and the integration of cloud comput-
ing, big data, IoT and other technologies. However, the 
preliminary application of the DT in aerospace, intelli-
gent manufacturing and other fields has proved its strong 
ability to deal with complex systems, and it also has huge 
potential in state prediction, fault maintenance, and opti-
mized control.

3 � Battery Digital Twin: Modeling and State 
Estimation

In recent years, the research of batteries is more and 
more extensive and mature, however, there are still many 
problems to be solved. To solve the problem of state esti-
mation and RUL prediction of lithium ion batteries, the 
model is usually used to describe the voltage response 
curve, capacity and internal resistance of the battery. 
However, due to the high nonlinearity and coupling of 
the internal relations of batteries, it has been challenging 
to accurately establish the lithium-ion battery model [40]. 
DT has made excellent performance in the aerospace 
field, especially in RUL prediction and optimal control. 
This shows that we can use DT to solve the battery man-
agement problems. In the next two sections, we discuss 
the challenges of battery management and what kind of 
solutions DT can provide.

3.1 � Battery Modeling
At present, the widely used battery models mainly 
include the equivalent circuit model (ECM), data-driven 
model (DDM) and electrochemical model [41, 42]. ECM 
uses different combinations of electrical components 
such as resistance, capacitance, voltage source to simu-
late the charge and discharge characteristics of lithium-
ion batteries [43, 44]. Because of the simple mathematical 
expression of ECMs, adaptive filtering algorithms such 
as recursive least squares can be implemented to iden-
tify parameters, making ECM the most popular choice 
[45, 46]. However, as the ECM lacks physical meaning, 
it cannot characterize the internal reactions of the bat-
tery. Therefore, it is not suitable for control that needs 
to estimate the internal physical state. In recent years, 

fractional-order ECMs have been extensively studied. 
Xiong et al. [47] proposed a novel fractional-order model 
which considers both the Butler-Volmer equation and a 
fractional order constant phase element for SOC estima-
tion. The DDM has been widely used in the development 
of battery models. It has a very high learning ability and 
is often used for battery state estimation and RUL pre-
diction. Zhang et al. [48] proposed a novel data-driven-
enabled battery states estimation method by combining 
recurrent neural network modeling and particle-filtering-
based errors redress.

The electrochemical model considers the internal 
electrochemical reactions, heat transfer, ionic diffusion 
and other reactions in the battery. It uses partial differ-
ential equations and algebraic equations to describe the 
charge and discharge behavior of lithium-ion batteries 
at a mechanism level. Common electrochemical models 
include the Pseudo-2D (P2D) model and the single par-
ticle model (SPM). The P2D model is based on theory of 
concentrated solution and porous electrode [49, 50], and 
can describe the local behavior in the thickness direc-
tion of the battery. However, due to the large number of 
parameters, high complexity and long simulation time, 
the equations should be simplified to reduce the dimen-
sion [51]. A single particle is used to represent an elec-
trode in the SPM. It is considered that the solid phase 
diffusion and migration only occur inside the particles, 
and the influence of liquid phase concentration and liq-
uid phase potential on the battery terminal voltage is 
ignored [52, 53]. SPM is easy to be online implemented 
due to its simple structure and little computational bur-
den. However, the assumption regarding the simplifica-
tions does not hold in the case of large current rates, and 
the application of SPM is usually limited within 2C [54].

Although the electrochemical models can describe the 
changes in the internal state of the battery, these mod-
els usually have many parameters which are difficult to 
obtain. The acquisition of some parameters sometimes 
requires destructive testing. Ecker et  al. [55] intro-
duced the parameterization process of an electrochemi-
cal model of a Kokam 7.5Ah battery, and verified the 
measured parameter set through experiments. Similarly, 
Johannes et  al. [56, 57] measured and experimentally 
verified the electrochemical and thermal parameters of a 
28 Ah high-power battery, and assembled a coin cell to 
determine the electrochemical performance of the elec-
trode material.

But not all parameters affect the accuracy of the elec-
trochemical model equally. Li et  al. [58] divided the 
electrochemical model parameters into geometric 
parameters, transportation parameters, kinetic param-
eters, and concentration parameters. The sensitivity of 
26 parameters was separately analyzed under constant 
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current and constant voltage (CC-CV) charging and the 
actual operating load of electric vehicles, and the influ-
ence of different charging rate and discharge inter-
val parameters was discussed. Electrochemical model 
parameter identification generally uses biomimetic opti-
mization algorithms, such as genetic algorithm, particle 
swarm optimization, and colony foraging optimization 
[59, 60]. These algorithms can obtain a global optimal 
solution through an intelligent search. Yan et  al. [61] 
used a bacterial foraging optimization algorithm with a 
shorter calculation convergence time to identify parame-
ters of SPM, such as electrode active surface area, lithium 
ion solid phase diffusion coefficient, and reaction rate 
constant.

3.2 � State Estimation and Remaining Useful Life Prediction
In order to make electric vehicles operate safely and 
efficiently, the battery SOC, SOH estimation and RUL 
prediction are important, which can provide a basis for 
the energy management and safety management of elec-
tric vehicles. The electrochemical reaction process and 
reaction stage of the battery are complex and difficult 
to determine, and the complexity of the working condi-
tions during the vehicle operation. In addition, there is a 
coupling relationship between SOC and SOH, and their 
changes will affect the battery model parameters, result-
ing in an inaccurate battery model. These reasons make it 
difficult to obtain accurate values of SOC and SOH.

The simplest method of SOC estimation is the 
Ampere-hour integration method, however, the initial 
SOC is difficult to obtain, and the estimation accu-
racy is subject to the current sensor. In order to solve 
the influence of sensor signal noise, adaptive filtering 
algorithms are usually used to improve the estimation 
accuracy, such as the extended Kalman filter (EKF), 
cubature Kalman filter (CKF), unscented Kalman filter 
(UKF) and particle filter [62, 63]. Xia et  al. [64] pro-
posed a SOC estimation algorithm based on an adap-
tive cubature Kalman filter (ACKF), and two typical 
driving cycles are applied to evaluate the performance 
of the proposed method by comparing with the tradi-
tional EKF and CKF algorithms. Experimental results 
show that the ACKF algorithm has better performance 
in terms of SOC estimation accuracy, convergence to 
different initial SOC errors and robustness against volt-
age measurement noise. In order to reduce the impact 
of constant parameters on the accuracy of SOC estima-
tion in the battery model, Xiong et  al. [65] proposed 
a joint SOC estimation method, in which the H infin-
ity filter is used to online estimate the battery model 
parameters, and the UKF is used to estimate the SOC. 
The proposed joint SOC estimation algorithm has 
high accuracy, fast convergence, and high robustness. 

However, this method cannot be applied to the situ-
ation of small current discharge and small sampling 
interval. Although filtering algorithms are widely used 
for SOC estimation, they do not consider the influence 
of battery aging and other factors on SOC.

Therefore, researchers began to investigate the joint 
estimation of SOC and SOH to improve the accuracy of 
both. Based on the simplified P2D model, Liu et al. [66] 
jointly constructed the relationship between SOC and 
SOH and the average lithium-ion concentration based 
on full consideration of electrolyte dynamics and electro-
lyte dependence. The SOH of the battery was calibrated 
with the average lithium-ion concentration predicted by 
the lower cut-off voltage. The accuracy of online SOC 
estimation can be maintained during battery aging. How-
ever, the accuracy of the above model-based estimation 
methods is subject to model parameters.

In response to the challenges of model parameteriza-
tion and the highly nonlinear and coupled nature of the 
battery degradation process, researchers have tried a 
variety of data-driven methods, such as neural networks, 
support vector machines, Gaussian process regression to 
solve state estimation, RUL prediction and other prob-
lems [67, 68]. Machine learning uses a large amount of 
data to train the mapping between voltage, current, 
temperature, etc. and SOC, SOH. Khaleghi et  al. [69] 
proposed a data-driven algorithm based on multi-state 
indicators, in which time-domain and frequency-domain 
condition indicators were extracted from on-board data 
at certain time intervals and fed into Gaussian process 
regression estimators to estimate SOH. However, data-
driven methods are computationally heavy and depend-
ent on training data. Therefore, researchers have selected 
two or more methods to improve accuracy. Chen et  al. 
[70, 71] proposed a SOC estimation method based on a 
feedforward neural network (FFNN). Firstly, an improved 
battery model was established using FFNN, and then the 
SOC was estimated based on the FFNN model and EKF. 
Experiments proved the applicability of this method in 
the case of incorrect initial SOC, initial capacity and low 
temperature, and the SOC estimation error can be sta-
bilized within 2%. However, the real-time performance, 
robustness and stability of the system cannot be guaran-
teed from the perspective of computational complexity 
and accuracy.

Curve-based methods are often used in aging diagno-
sis, Zhang et al. [72] proposed a feature extraction-based 
method based on the charging voltage curve to estimate 
battery SOH. Similarly, Severson et al. [73] found the fea-
tures with the highest correlation from features such as 
the early cycle discharge voltage when the capacity deg-
radation has not emerged. Incremental capacity analysis 
(ICA) and differential voltage analysis (DVA) based on 
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battery OCV curves are also used for the calibration of 
SOH. Both IC and DV curves can be obtained by trans-
formation of constant current charge-discharge data 
[74]. The former is described as dQ/dV-V relation, while 
the latter is described as dV/dQ-Q relation (V and Q 
denote battery voltage and charge amount, respectively). 
The curve needs to deal with noise. Besides, IC and DV 
curve acquisition usually requires a small current rate, 
which can be difficult in practical applications. Riviere 
et al. [75] proposed an online estimator, in which a But-
terworth filter was used to obtain clean datasets for ICA.

Battery aging is governed by various factors. Xiong 
et al. [76] summarized the aging mechanisms of lithium-
ion batteries, and discussed the evolution of the domi-
nant aging mechanism under different external factors. 
This study provides a theoretical basis for RUL prediction 
and aging test design. RUL prediction methods mainly 
include empirical prediction method, filtering prediction 
method and time series prediction method [77–79]. The 
empirical prediction method uses historical experimental 
data to fit the aging trajectory, such as polynomial model, 
exponential model and Verhulst model [80–82]. This 
method is simple, and light-weight, however, the fitting 
is sensitive to the fluctuation of the sample data, and the 
prediction results are easy to diverge. The filtering pre-
diction method is based on the idea of state estimation. 
Wang et al. [83] proposed a state space model based on 
a spherical container particle filter for RUL prediction 
of 26 lithium-ion batteries and proved that the model is 
superior to the particle filter in terms of prediction accu-
racy. Filtering algorithm can improve the accuracy of 
RUL prediction, however, the accuracy is easily affected 
by external temperature.

Time series prediction methods include gray predic-
tion, neural network, relevance vector machine and 
other methods. The historical capacity data are used for 
training and learning, and the trained model is used for 
future battery capacity changes. Rezvani et al. [42] stud-
ied an adaptive neural network method, which takes the 
battery capacity as input to predict the RUL. Simulation 
experiments proved that the prediction method achieves 
a better single-step prediction. Zhang et al. [84] proposed 
a recurrent neural network (RNN) based on long-term 
short-term memory (LSTM) to predict RUL. The model 
was trained using experimental data of lithium-ion bat-
teries at different current rates and temperatures and has 
good results in RUL predictions trained on offline data. 
However, these methods based on AI algorithms rely 
heavily on training data.

There are many methods for battery modeling, state 
estimation, and RUL prediction, each has its advantages, 
disadvantages or limitations. Table 2 shows a comparison 
of various methods.

3.3 � Challenges
Although researchers have done a lot of research work 
on the parameterization of electrochemical models, they 
still face another challenges. The model parameters can 
be obtained by using different methods. It is difficult 
to accurately estimate the variation of battery internal 
parameters during battery aging. Understanding the reg-
ularity of electrochemical parameters and establishing a 
parameter estimation method suitable for different bat-
teries are very important for the future research of BMS. 
In terms of RUL prediction, the current research on the 
aging mechanism is not thorough enough to accurately 
describe all changes in the battery, and it is difficult to 
predict the inflection point of the life curve.

On-board BMS data can hardly meet the demand. The 
data-driven based state estimation and RUL prediction 
methods are attracting more and more attention and 
require mass of data. Like all big data problems, there 
are data collection, application, sharing, security, privacy 
and other issues [85]. The massive data generated dur-
ing driving which may be stored on a big data platform 
or distributed on the onboard BMS, terminals and other 
equipment. As the current network attacks continue to 
change, any equipment safety issues can trigger a data 
leak risk.

3.4 � Battery Digital Twin Model
DT models require multi-scale physical models of all 
aspects of the battery and real-time updates of the mod-
els. It is worth noting that the focus of the DT model is 
the reduction of the model. Instead of coupling multiple 
physical models together, multiple individual models rep-
resent the various properties of the battery. The internal 
behavior of the battery should be described transparently, 
including the electrical characteristics, thermal charac-
teristics, and aging characteristics of the battery. There-
fore, a complete battery DT requires the establishment of 
various models at first, however, all battery models have 
key points and limitations. They will play different roles 
in the battery DT system, and when necessary, different 
models need to be combined.

The difference with the traditional model is that DT 
model is updated in real time. For the ECM, the model 
can be updated by on-line parameter identification. How-
ever, it is difficult to update the electrochemical model 
in real time due to the problem of parameterization. 
Researchers have made continuous efforts to try to find 
the trajectory of the internal parameters by combining 
with data-driven models and to update the electrochemi-
cal model in real time. Chun et al. [86] proposed a real-
time parameter estimation of an  electrochemical model 
based on neural networks. First, according to the general 
chemical reaction rate formula, the parameters related to 
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aging mechanisms are selected to indicate the progress 
of performance degradation and the shortening of bat-
tery life. After the specified parameter values are applied 
to the electrochemical lithium-ion battery model, the 
actual measurable data such as voltage, current, tempera-
ture, and SOC can be synthesized. Then it is used to train 
an RNN. The trained RNN directly provides estimated 
parameters after inputting external characteristic data, 
such as voltage, current and temperature. It can solve the 
problem of long convergence time for parameter identifi-
cation using genetic algorithm and particle swarm opti-
mization, and provide ideas for real-time updating of 
model parameters.

In the battery DT framework, researchers have also 
been exploring the use of reduced-order models and a 
certain degree of offline processing to make full use of 
the P2D model. Sancarlos et  al. [87] used a data-driven 
model based on dynamic pattern decomposition to reap-
pear battery behavior and obtained accurate results. In 
order to simulate real driving conditions, a hybrid twin 
model based on vehicle dynamics and battery is proposed 
to update the P2D model in real time. It has been veri-
fied that the maximum error of SOC and terminal volt-
age can be within 0.035% and 0.5% respectively. Figure 3 
illustrates the process of establishing a real-time updated 
battery twin model based on the P2D model in literature 
[86].

It takes a lot of time to obtain battery aging data under 
laboratory conditions, and it will produce high economic 
costs. This requires that battery model has good transfer-
ability. DT can use historical data for theoretical analysis 
and simulation. Through a small number of experiments, 
combined with electrochemical models and prediction 
models, the changes of internal parameters, cycle life 
and safety of different batteries can be obtained. Ma et al. 
[88] proposed a hybrid prediction method, which com-
bines the average Euclidean distance, the transfer learn-
ing method based on stacked noise reduction automatic 
encoder and the improved Arrhenius model. The model 
estimates the life of the same battery formulation tested 
at high temperature, and introduces the error correc-
tion coefficient into the original acceleration model to 
improve the prediction accuracy. The test cycle of nearly 
60% can be optimized for different battery formulations. 
The battery model that can be transplanted to other types 
of batteries has been studied by researchers, which pro-
vides ideas for the DT transferable battery model.

However, mature digital twins need to establish a vari-
ety of fusion models to solve different problems. In the 
field of aerospace, Rossman et al. [89] in the virtual simu-
lation platform of the new satellite concept that virtual 
simulation should use multi-physical fields, combining 
orbital mechanics, jet simulation, rigid-body dynam-
ics, laser-sensor simulation, camera simulation, robot 

Table 2  Comparison of battery modeling, state estimation, and RUL prediction methods

Category Methods Advantages Disadvantages

Battery modeling ECM Simple parameter identification, small model 
computation and good real-time performance

Lack of physical meaning

Electrochemical model High precision, clear physical meaning Large amount of calculation, model parameteriza-
tion difficult, extreme conditions not applicable

DDM High precision, suitable for dealing with nonlin-
ear problems

Large amount of calculation, high dependence on 
training data

SOC estimation Ampere-hour integral Simple calculation, low cost, good real-time 
performance

High accuracy of sensors and accurate initial SOC

Model-based method High precision, strong adaptability and real-time 
performance

High dependence on models

Adaptive filtering method Reducing the influence of sensor noise, high 
precision

High computational cost

Data-driven method High precision, suitable for dealing with nonlin-
ear problems

Large amount of computation

SOH estimation SOC-SOH joint estimation High precision High dependence on models

ICA/DVA High precision, can react to the internal mecha-
nism of the battery

The operation is difficult and time-consuming

Data driven method The model is simple and suitable for different 
working conditions

A lot of data is needed, low efficiency of model 
updating

RUL prediction Empirical prediction method Simple process and less computation Sensitive to the fluctuation of sample data, the 
results are easy to diverge.

Filter prediction method Reducing the influence of sensor noise, high 
precision

High dependent on the accuracy of empirical 
models

Time series forecasting No need to consider the rationality of the model High dependence of training data



Page 9 of 19Wang et al. Chin. J. Mech. Eng.           (2021) 34:57 	

simulation, drive simulation, contact simulation, etc. In 
the battery DT system, it is a combination of the elec-
tric model, thermal model, aging model, force model, 
etc. However, there is still a long way to go to establish 
a battery DT model in an all-round way. More in-depth 
research is needed on the electrical characteristics, ther-
mal characteristics and aging characteristics.

3.5 � Real‑time State Estimation and RUL Prediction Based 
on DT

Battery modeling is the basis of DT, and battery charg-
ing and balancing strategies need to consider state and 
aging tracking of the battery, so real-time state estima-
tion is also the basis of battery feedback control. The big-
gest advantage of the DT is that it can realize the online 
state estimation and then realize dynamic management 
of the battery. The DT is continuously updated follow-
ing the battery aging process. It can combine data-driven 
algorithms and battery aging models, use historical data 
information and real-time data information to esti-
mate the battery aging state, and the current maximum 
available capacity of the battery is fed back to the SOC 

estimation in real time to achieve accurate SOC estima-
tion. Using the Internet of Vehicles to realize the cloud 
transmission of vehicle information, we can realize high-
precision and high-following SOC and SOH estimations 
based on the cloud computing platform.

Li et al. [26] proposed a cloud battery management sys-
tem based on DT, as shown in Figure 4. It consists of six 
subsystems: a battery system for data generation, a BMS 
slave control for data sensing, an IoT component for data 
collection, a cloud for data storage, and an application 
programming interface for data analysis, and user inter-
face for data visualization. The measured battery-related 
data are transmitted to the cloud BMS using IoT compo-
nents, and a battery DT model is constructed based on 
the second-order RC model. The adaptive extended H 
infinite filtering is used for SOC estimation, and the par-
ticle swarm optimization is used for SOH estimates and 
updates the battery model in real time to achieve online 
battery SOC and SOH estimation. Finally, experiments 
have shown that the mean-square error (MAE) of volt-
age and SOC is maintained within 0.01V and 0.49%, 
respectively. The MAE of the SOH indicating the bat-
tery’s capacity fade, SOHC, and the SOH indicating the 

Figure 3  DT model establishment process based on P2D model
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battery’s power fade, SOHR, estimated without sensor 
noise are 0.74% and 0.89%, respectively. The MAEs of 
SOHC and SOHR estimated with sensor noise are 1.7% 
and 2.3% respectively. Baumann et  al. [90] proposed a 
DT system to estimate and display the SOH of the bat-
tery, using different models in the cloud BMS to estimate 
the battery system state and predict RUL. Qu et al. [25] 
established a DT model that mainly focuses on the bat-
tery performance degradation estimation by accurate 
battery discharge process simulation. The lithium-ion 
battery digital twin model that is proposed in this paper 
is driven by on-line measurable parameters, including 
terminal voltage, electric current and sample time. The 
health indicator is first extracted during the partially dis-
charge process. And then, this health indicator is used as 
one of the inputs for the DT model and used an LSTM 
network to describe the relationship between battery ter-
minal voltage and SOC.

Due to the uncertainty of future working conditions in 
real vehicle operation, it is required to predict the future 
based on incomplete information. DT can complete the 
prediction of unknown working conditions by virtue of 
the strong learning ability of big data and AI. Ren et al. 
[91] proposed a new method for estimating the remain-
ing discharge energy of the battery based on accurate 
prediction of future working conditions. First, predict-
ing the future power output and temperature change 

rate of the battery based on historical data, and using the 
recursive least squares algorithm to estimate the ECM 
parameters to simulate the battery voltage response. 
Then, based on the iterative prediction of the battery 
state (including charge state, temperature, battery model 
parameter changes and voltage response) in the future 
discharge process to estimate the remaining discharge 
energy of the battery, which provides ideas for the pre-
diction of unknown operating conditions.

In addition, most of the RUL prediction methods only 
consider single cell and battery cycle aging, while ignor-
ing the different battery pack states and battery calendar 
aging. In DT, multiple single-cell models can be inte-
grated into the battery pack model, which can clearly 
describe the inconsistencies of cell capacity, voltage, 
internal resistance, and internal parameters through dif-
ferent cell models. Since then, it can not only accurately 
predict the aging state of the battery cell, but also realize 
the state estimation and aging trajectory prediction of the 
battery pack.

4 � Battery Digital Twin: Safety and Control
In recent years, battery fire still accounts for a large part 
of electric vehicle accidents, and the safety of electric 
vehicles has always been the primary concern of consum-
ers [92]. Battery fault diagnosis, thermal management, 
charge/discharge control and balanced management play 

Figure 4  Cloud battery management system based on digital twin [26]
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a critical role in ensuring battery safety and extending 
battery useful life. Under the premise of ensuring battery 
safety, achieving extremely fast charging is also a major 
problem at present.

4.1 � Thermal Safety
The safety problem of lithium-ion batteries boils down 
to the thermal runaway. Many factors can cause thermal 
runaway, which can be divided into mechanical abuse 
(squeeze, acupuncture), electrical abuse (overcharge, 
overdischarge, external short circuit) and thermal abuse 
(local overheating). Feng et  al. [93] specifically analyzed 
the propagation path of thermal runaway and the method 
of cutting off the thermal runaway. In order to improve 
the safety of lithium-ion batteries, battery manufacturers 
are looking for safer electrolyte and electrode materials, 
such as using additives and coatings to improve the ther-
mal stability of the battery. In addition, the battery struc-
ture can also be changed to improve safety, such as the 
blade battery launched by BYD recently. It was reported 
not to heat up sharply under battery puncture tests [94]. 
Although battery safety can be improved from its struc-
ture, the prediction and control of thermal runaway in 
the use process is still the key to battery research.

The prediction of the initial stage of thermal runaway 
is extremely critical. If reasonable control is not used to 
intervene, the internal temperature of the battery will 
continue to rise rapidly, which will cause the electrolyte 
to dry up, the solid electrolyte interphase (SEI) to decom-
pose, and the separator to melt, accompanied by produc-
ing gas and large amounts of heat. This finally leads to 
thermal runaway [95]. The thermal abuse model is used 
to describe the temperature and battery performance 
under abnormal working conditions, and to warn of the 
danger of thermal runaway during battery operation. 
Kim et al. [96] presented the chemical reactions in lith-
ium-ion batteries at high temperatures and applied them 
to a three-dimensional lithium-ion battery thermal abuse 
model. Lee et al. [97] proposed a two-way nonlinear elec-
tro-electrochemical-thermal coupling method to analyze 
the internal short circuit caused by quasi-static indenta-
tion and predict the pressure drop and temperature rise.

The prediction of thermal runaway focuses on tem-
perature monitoring. Ouyang et al. [98] summed up the 
three characteristic temperatures of battery thermal run-
away: self-heating starting temperature T1, temperature 
T2 that causes thermal runaway, maximum temperature 
T3 of thermal runaway. Thermistor or thermocouples 
are usually used to monitor the surface temperature of 
lithium-ion batteries. However, these two temperature 
sensors have low detection accuracy and are susceptible 
to environmental changes. In order to improve the detec-
tion accuracy of surface temperature and the reliability of 

data, Nascimento et al. [99] used fiber sensors to moni-
tor the surface temperature of lithium-ion batteries in 
real time. Due to the heat conduction effect, there is a 
difference between the internal and external tempera-
ture of the battery, especially under high current rate or 
overcharging and overdischarging in extreme conditions. 
These conditions can easily cause safety problems, such 
as thermal runaway. Therefore, the measurement of the 
internal temperature of the battery is very important. 
Mutyala et al. [100] proposed a method of embedding a 
flexible polymer film thermocouple in a lithium-ion bat-
tery for monitoring internal temperature. Nascimento 
et al. [101] proposed a hybrid sensor network composed 
of fiber Bragg grating and Fabry-Perot cavity to monitor 
internal strain and temperature changes.

In the early stage of thermal runaway, the BMS often 
fails to detect faults in the initial stage due to character-
istic signals, such as battery temperature, voltage, and 
current had no significant changes. However, electro-
chemical side reactions occur inside the lithium-ion bat-
tery, a large amount of gas will be produced even in the 
initial stage. Therefore, the use of gas sensors to monitor 
thermal runaway can obtain more sensitive and accurate 
early diagnosis results. Cai et al. [80] presented an early 
detection method of lithium-ion batteries thermal runa-
way based on gas sensing. By monitoring CO2 concen-
trations, which is produced at the early stage of battery 
thermal runaway, early detection of cell failure is possible.

4.2 � Charging Control
Range anxiety and long charging times are often quoted 
among the main issues hindering wider adoption of 
EVs. Fast charging capability for batteries has become 
the focus of battery EV industries. Fast charging is to 
effectively avoid or weaken the polarization, control the 
charging temperature rise, and maximize the current 
acceptance ability of the power battery without affecting 
the battery useful life as much as possible.

Ohmic polarization, electrochemical polarization, 
and concentration polarization generated during charg-
ing are important factors that affect the charging time. 
Therefore, fast charging strategies often use depolariza-
tion method, such as shelve, negative pulse, slow pulse 
to avoid or weaken polarization [102]. In addition, the 
heat generated by fast charging is often difficult to effec-
tively eliminate, thereby accelerating the aging of the bat-
tery. On the above problems, many researchers attempt 
to optimize the charging strategy from the perspectives 
of shortening the charging time, reducing the charging 
temperature rise, improving the charging efficiency, and 
extending the battery useful life [103]. Till now, the fast 
charging methods of batteries mainly include CC-CV 
charging, multi-stage constant current charging, pulse 
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charging, AC charging, etc. [104]. Based on the simpli-
fied electrochemical-thermal model, Perez et  al. [105] 
proposed an optimal battery charging control method, 
in which the Gauss-Legendre method was used for non-
destructive charging under the limitation of phase con-
centration and temperature.

Lithium plating at the negative electrode is the bot-
tleneck of the fast charging technology of lithium-ion 
batteries, especially in low-temperature environments. 
Lithium plating not only accelerates the aging of the bat-
tery, but also triggers internal short circuit and thermal 
runaway accidents by penetrating the separator. Lithium 
plating is affected by many factors, such as lithium-ion 
liquid/solid phase diffusivity, ionic conductivity of the 
electrolyte, electronic conductivity of the electrode. It is 
believed that when the sum of the equilibrium potential 
and the overpotential is smaller than 0 relative to Li+/
Li, the lithium plating will occur. However, there is no 
in-depth study of the factors affecting lithium plating. 
In order to solve the problem of lithium plating during 
charging, researchers have developed many model-based 
methods to minimize the probability of lithium plating.

The negative electrode potential is the most obvious 
sign of whether lithium plating occurs. It can be moni-
tored by inserting a reference electrode in the lithium ion 
battery. Mai et al. [106] estimated the negative electrode 
potential based on the P2D model to study the lithium 
plating limit of the standard CC-CV charging method. 
Subsequently, they used this method to propose another 
alternative charging conFigureuration file. However, 
some researchers have found that the negative electrode 
potential threshold for lithium plating is not always 0 V. 
Wu et al. [107] used metal foil as a reference electrode to 
study the influence of the capacity ratio of the negative 
electrode to the positive electrode of the soft pack battery 
on the negative electrode potential. When the ratio is 0.9 
and the negative electrode potential drops to 0.1 V under 
0.2C charging rate, lithium plating occurs. When the 
ratio reaches 1.05, the critical negative electrode poten-
tial for lithium plating is still above 0 V. This also proves 
that the battery design and charging conditions (such as 
temperature and charging rate) have a great influence 
on the lithium plating. Chu et  al. [108] established an 
electrochemical model of a closed-loop observer based 
on the control-oriented lithium deposition state. Based 
on this model, a non-destructive fast charging strategy 
was proposed to ensure that the battery can be quickly 
charged while reducing damage to the battery.

4.3 � Battery Balancing
Due to the accumulation of errors in the production pro-
cess, transportation and storage, and electronic compo-
nents, there will inevitably be inconsistencies among 

battery cells [109]. The balanced control strategy can 
be divided into working voltage based, SOC based, and 
capacity based [110, 111].

The target of a balancing strategy based on the work-
ing voltage is to make the working voltage of each single 
cell in the battery pack reach the same or within a limited 
threshold range. Lee et  al. [112] proposed an improved 
Cuk converter as a battery balanced circuit and used a 
fuzzy algorithm to control the circuit according to the 
voltage difference between the battery cells. The advan-
tages of the balancing strategy based on the working 
voltage are that the working voltage is easy to obtain and 
the control strategy is simple. At present, this method 
is mostly used in engineering practice. However, due to 
the existence of over-potential, the consistency of battery 
operating voltage does not represent the consistency of 
the real state of the battery. In addition, if the active bal-
ancing circuit is used, due to the different load current of 
each cell, the working voltage of the cell in the discharged 
state is lower than the cell in the charging state. At this 
time, the working voltage of the battery will provide error 
judgment information.

The target of a balanced strategy based on SOC is to 
make the SOC of every single cell in the battery pack 
reach the same or within a limited threshold range. Lai 
et al. [113] used BMS to estimate the SOC and SOH of 
each cell as the control basis of the active balancing cir-
cuit to balance each cell in the battery pack. Compared 
with the balancing strategy based on the working voltage, 
the SOC based one can better reflect the battery state. 
Besides, the inconsistency of the SOC between each cell 
can quantify the balanced electricity, which makes it con-
venient to apply various intelligent control algorithms to 
optimize the balancing strategy. However, this method 
relies on an accurate estimation of SOC. Einhorn et  al. 
[114] compared and analyzed the equalization effect of 
voltage and SOC as balancing variables under the same 
conditions. The results showed that the latter has a better 

Figure 5  Optimization of charging strategy with digital twin
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control effect under the premise that accurate SOC esti-
mation can be achieved.

The balancing strategy based on battery capacity is 
based on total capacity, rechargeable capacity or releas-
able capacity, and its target is to maximize the capacity of 
the battery pack. Zheng et al. [115, 116] proposed a bat-
tery pack online balancing algorithm based on the bat-
tery charging voltage curve. The target of the algorithm is 
to maximize the battery pack capacity. Firstly, the charg-
ing voltage curve is used to estimate the charging capac-
ity online, and then the energy consumption balancing 
based on the estimation of charging capacity is proposed. 
However, there is still a small deviation between the bal-
anced results based on the rechargeable capacity estima-
tion and the theoretical capacity of the battery pack, and 
the fuzzy logic algorithm is further used to effectively 
reduce the capacity deviation of the battery pack. The 
balancing strategy based on battery capacity can maxi-
mize the capacity of the battery pack and can effectively 
avoid the occurrence of over-balance problems. Because 
this method is based on capacity, it better represents the 
real inconsistencies of the battery, but this method still 
cannot avoid the problems of online estimation of SOC 
and capacity.

4.4 � Challenges
The first challenge is data acquisition. For research on 
thermal runaway, lithium plating, etc., battery stress, 
internal temperature and other information are required. 
Under laboratory conditions, it can be obtained by using 
high-precision sensors such as fiber sensors, pressure 
sensors, and built-in thermocouple sensors. However, in 
real vehicles applications, it will increase the cost, and the 
built-in sensor may also affect the electrochemical reac-
tion process of a battery, and even cause other side reac-
tions. In the future, it is necessary to solve the problem 
of using a limited number of sensors to diagnose battery 
faults.

Lithium plating models based on electrochemical mod-
els also face the problem of model parameterization. In 
addition, many lithium plating models are concentrated 
in one-dimensional or pseudo-two-dimensional space. 
These methods ignore the influence of concentration gra-
dient and thermal gradient in the direction perpendicu-
lar to the pseudo-two-dimensional plane, which further 
leads to inaccurate results. And the three-dimensional 
thermal model will face the challenge of calculation and 
model delay. In terms of charging and balancing control 
strategies, it is impossible to achieve real-time and per-
sonalized control in the case of different requirements 
under different working conditions.

4.5 � Dynamic Control and Fault Diagnosis Based on DT
4.5.1 � Optimization of Charging, Thermal Management 

and Balance Management
The thermal management and charging strategy based 
on battery DT mainly lies in real-time optimization 
and updating. In some special working conditions, bat-
tery status, and different demands, targeted adjustments 
can be made by considering consistency between bat-
tery cells. The optimization idea of charging strategy 
and thermal management strategy based on battery DT 
is shown in Figure 5. The left half of the process can be 
regarded as the establishment of a DT model. Based on 
the correction algorithm and the historical running state 
data stored in the battery data storage platform, the gen-
eral battery simulation model is updated. And through 
the real-time running state data of the real battery, the 
battery DT is updated in real time.

Battery digital twins are used to optimize the charging 
strategy. Firstly, the optimized charging strategy is deter-
mined, such as multi-stage constant current charging, 
pulse charging, multi-stage constant heat charging and 
AC charging [117]. According to the demand set optimi-
zation objectives, such as charging time, battery remain-
ing  useful life, and based on the mechanism of battery 
reaction set boundary conditions, such as the maximum 
charging rate, maximum charging temperature rise. The 
charging parameters are input into the DT to simulate 
and predict the charging time, aging and temperature of 
the battery. The genetic algorithm and particle swarm 
optimization are used to maximize the optimization 
objective and select the best parameters. The charging 

Figure 6  Optimization of balanced strategy with digital twin
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current is generated according to the optimized param-
eters and the feedback control is completed.

The thermal management strategy is similar to the 
optimized charging strategy. The thermal management 
strategy can choose convection heating, conduction 
heating, short-circuit heating and mutual pulse heating, 
etc. [118]. The limit conditions are set as maximum or 
minimum temperature, maximum temperature rise or 
cooling rate. Finally, the real-time update and feedback 
control of the thermal management strategy are realized. 
It can be seen from the idea and flow chart of DT that 
compared with the traditional strategy optimization, the 
biggest advantage of strategy optimization based on DT 
is to realize the bidirectional dynamic mapping and con-
trol of the real battery and virtual model. It is not limited 
to the use of offline battery data management but can 
realize dynamic online management.

In addition, the inconsistency of battery cells will lead 
to the loss of capacity, the shortening of RUL and the 
increase of internal resistance. If not controlled, it will 
further increase battery inconsistency and aggravate bat-
tery aging [119]. In order to reduce the impact of battery 
charging and discharging on inconsistency, balanced 
control is required. Because the balance of the battery 
involves multiple battery cells, accurate analysis and opti-
mization control will burden the amount of calculation.

At the same time, the actual operation data and sim-
ulated operation data are collected for analysis and cal-
culation, which can not only reduce the inconsistency of 
the current battery cells, but also predict and control the 
inconsistency of the future battery cells. Compared with 
the research on battery charging and thermal manage-
ment, it is necessary to establish a battery pack model 
when optimizing the balanced strategy, and analyze and 
mine the balance data. The balanced control strategy 
method and the optimization strategy algorithm calcu-
late the equilibrium control strategy of the specified time 
step in the future. The commonly used balanced control 
strategies include model predictive control methods, 
generalized predictive control methods, PID control 
methods, etc., as shown in Figure 6.

Compared with the current battery management, the 
control strategy based on DT can adapt to complex work-
ing conditions and can be updated in real time according 
to user needs. In the face of low temperature environ-
ment, fast charging and other needs, the performance 
and useful life of the battery are guaranteed to a greater 
extent with DT.

4.5.2 � Fault Prediction and Diagnosis
Traditional fault diagnosis is to detect over-voltage, 
over-current, over-temperature. However, a simple fault 
strategy can not achieve all-around fault tracking, fault 

warning and other advanced functions [6]. In recent 
years, some scholars have devoted themselves to the 
study of thermal runaway fault and sensor faults [120]. 
Battery fault diagnosis based on DT lays more emphasis 
on the establishment of battery comprehensive fault sys-
tem including thermal fault, sensor fault, electrical fault, 
etc. which is constructed by combining fault diagnosis 
results with big data statistics using the artificial intel-
ligence algorithm. In the future, fault diagnosis based 
on new technologies can realize the detection, location, 
traceability and prediction of battery system faults.

Another important role of DT in thermal runaway is to 
find the boundary conditions of thermal runaway, analyze 
the factors that cause thermal runaway, such as charge\
discharge rate, temperature, lithium plating degree, and 
SEI growth. Through thermal runaway experiments on 
batteries, a more accurate thermal runaway model is 
established by using an AI algorithm. Combined with 
DT, a large number of simulation tests of thermal runa-
way can be carried out to find the boundary conditions 
of thermal runaway under different test conditions, guide 
the control strategy under different working conditions 
of the battery, and reduce the occurrence of thermal run-
away from the root.

Figure 7  Interaction between C-MBS and V-BMS
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5 � Development Opportunities and Challenges 
of Battery DT

Data are extremely important in DT, we need a lot of 
offline and online data to realize dynamic control and 
fault diagnosis. Battery online data, such as voltage, 
current, temperature, are collected by the sensor. These 
information are simply processed by the BMS in vehi-
cles (V-BMS) and transmitted to the cloud-based BMS 
(C-BMS) through the IoT for data cleaning and data 
mining. In C-BMS, use historical and online data for 
battery modeling, state estimation, management strat-
egy, etc. C-BMS transmits the control information to 
V-BMS main control circuit to realize the feedback 
control of the battery. The data interaction between 
C-BMS and V-BMS is shown in Figure  7[38]. C-BMS 
cannot be separated from the IoT and big data. In the 
future, some functions of V-BMS will be completely 
replaced by the C-BMS. The two cooperate to create a 
new generation of battery management system.

The establishment of DT model requires a large 
amount of historical data. For the battery commonly 
used in the market, there are already many open source 
data, such as the NASA battery data set, which can be 
used to fuse different data vectors together to create 
deeper electrochemical insights and increase the identi-
fiability of these systems. These huge amounts of offline 
data that are extremely important to build DT system to 
achieve reliable battery management. However, in the 
future, if a new type of battery does not have enough 
data, smart algorithms will need to be used for trans-
fer learning when building DT to speed up research 
on battery characteristics [121]. In addition, due to the 
limitations of on-board sensors, the amount and type of 
data collected in practical applications are not as good 
as in laboratory conditions, for example, battery inter-
nal multi-point temperature cannot collected through 
sensors, which also poses challenge to effective and sta-
ble battery management. Therefore, it is necessary to 
use more powerful AI algorithm to realize the deriva-
tion from single information to multiple information to 
make up for the vacancy of battery data. It also poses a 
challenge to AI algorithms. Therefore, data and AI are 
very important in realizing battery DT.

Although the battery DT presents challenges in terms 
of data and intelligent algorithms, however, battery mod-
eling, state estimation and control are already possible 
based on DT. In addition, DT combined with blockchain 
technology can realize the full life cycle management of 
batteries. Aenugu et  al. [122] used blockchain technol-
ogy in a battery full life cycle data management platform, 
which includes client, multi-channel blockchain net-
work, and data processing, data analysis and visualization 
modules. Blockchain technology is also used to manage 

the health status of decommissioned lithium batteries, 
which reliably records the health status information of 
decommissioned lithium-ion power batteries, and forms 
a decentralized, trustless distributed system. These appli-
cations can be used as a part of the battery DT, bringing 
great convenience to the battery full life cycle manage-
ment. The ultimate goal of DT is to establish a physical 
world corresponding to the real world. For the DT of 
power battery, it is necessary to complete the intercon-
nection with vehicle DT, and then connect with road and 
traffic digital twins. When the battery DT interacts with 
other DTs, it involves a lot of information transmission 
and storage. Setting the individual operation mechanism 
of many DTs, transmitting the data parameters between 
DTs and physical entities, and designing the contents of 
various interactive modes between DTs are difficult to 
be completed by centralization. The distributed system 
of blockchain can disperse the huge workload of DTs for 
interaction. The distributed system of the blockchain can 
disperse the huge workload of DT interacting. Through 
the cooperation of many nodes, it can be used as a 
medium for information communication between DT 
and create a completely virtual world.

Decommissioned batteries are also used for energy 
storage, including wind and solar energy storage, peak 
shaving and valley filling of smart grid and frequency bal-
ance. Some researchers have introduced the DT frame-
work into the online analysis of smart grid, and used 
DT to analyze the power flow in the grid [123]. The bat-
tery DT system can not only quickly screen and group 
decommissioned batteries that can be used for echelon 
utilization, but also combine with the smart grid to ana-
lyze real-time storage capacity and the surplus of the grid 
to achieve efficient use of batteries for energy storage.

DT technology can also be used for battery produc-
tion and assembly except in the use phase. The virtual 
assembly of battery based on DT is similar to the aircraft 
assembly workshop. The data can be transmitted by vari-
ous types of sensors installed in the equipment produc-
tion line and workshop and the host computer. Through 
big data analysis, the data integration and analysis 
between equipment and equipment, equipment and sys-
tem, system and system are completed, so that the digi-
tization and visualization of the whole process of power 
battery assembly and manufacturing are realized.

In general, the battery DT incorporates new technolo-
gies in the future has the following functions and oppor-
tunities in the BMS:

(1) The advanced diagnostic algorithms and powerful 
computing capabilities are used to continuously and 
accurately monitor the battery state,  and realize the 
life cycle management of batteries;
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(2) Management strategies, including charging strat-
egy, thermal management strategy and balanced 
strategy, are optimized in real time. And the sim-
ple and efficient dynamic control of the battery is 
realized to maximize battery life, performance and 
safety. At the same time, the visualization of safe 
heat and life is realized;
(3) A comprehensive fault diagnosis system can 
be  established with DT, and the thermal runaway 
prediction is realized by finding  the thermal runa-
way boundary to improve the safety and reliability of 
the battery system;
(4) The battery DT is integrated with the vehicle DT 
and the road DT to realize the coordinated develop-
ment of vehicle-road-cloud.

6 � Conclusions
This paper summarizes the development history, applica-
tion fields and current research of DT. New technologies 
such as AI, cloud computing, IoT, and blockchain provide 
the technical foundation for DT, and promote the process 
of battery research. And summarizes the problems of bat-
tery modeling, RUL prediction, and thermal runaway in 
the research of power BMS and DT can provide ideas for 
solving these problems. The establishment process of the 
battery digital twin and the methods of charging strat-
egy, thermal management strategy and balanced strategy 
based on DT are introduced. And it lays a foundation for 
the active management of the battery which realizes the 
battery safety, long cycle life and high efficiency charging/
discharging.

The developing trend of the battery management sys-
tem is intelligent, networking, more integrated and 
universal. Relying on high-precision sensors, cloud com-
puting, machine learning and software technology, it can 
realize the full life cycle management of batteries from 
manufacturing, loading applications, fault maintenance 
and recycling. This management level is very important 
for energy storage equipment as it can achieve fast charg-
ing, and adapt to a variety of complex working conditions 
and other functions. DT has been initially applied to SOC 
and SOH estimation in the battery field, and has achieved 
satisfying estimation accuracy. Although DT research is 
in its infancy, there are still many technical challenges 
that need to be resolved, such as battery aging mecha-
nism, lithium plating, data management\sharing and 
privacy, deep integration of AI, big data and cloud com-
puting, the transferability of the model, etc. However, it 
has great value in predicting and optimizing products, 
which can provide some solutions for the optimization of 
smart BMS functions.
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