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Abstract 

For a single-structure deep learning fault diagnosis model, its disadvantages are an insufficient feature extraction and 
weak fault classification capability. This paper proposes a multi-scale deep feature fusion intelligent fault diagnosis 
method based on information entropy. First, a normal autoencoder, denoising autoencoder, sparse autoencoder, 
and contractive autoencoder are used in parallel to construct a multi-scale deep neural network feature extrac-
tion structure. A deep feature fusion strategy based on information entropy is proposed to obtain low-dimensional 
features and ensure the robustness of the model and the quality of deep features. Finally, the advantage of the deep 
belief network probability model is used as the fault classifier to identify the faults. The effectiveness of the proposed 
method was verified by a gearbox test-bed. Experimental results show that, compared with traditional and existing 
intelligent fault diagnosis methods, the proposed method can obtain representative information and features from 
the raw data with higher classification accuracy.
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1  Introduction
With the development of machine learning, includ-
ing artificial neural networks (ANNs), support vector 
machines (SVMs), random forest (RF), and other algo-
rithms, research on intelligent fault diagnosis that com-
bines shallow learning with a fault diagnosis has gradually 
emerged. Compared with a traditional fault diagnosis, an 
intelligent fault diagnosis significantly improves recog-
nition accuracy and efficiency. However, an intelligent 
fault diagnosis based on shallow learning has certain 
limitations. According to the literature [1–8], an excellent 
diagnostic performance depends directly on the quality 
of the extracted features. This limitation indirectly leads 
us to a significant amount of energy on tedious feature 

extraction and feature selection. This results in a low effi-
ciency and weak generalization of the fault diagnosis.

As a sub-problem of machine learning, deep learning 
overcomes the limitations of traditional machine learn-
ing [9]. Deep learning can learn effective feature expres-
sions from raw data through unsupervised learning to 
avoid feature extraction and feature selection, which not 
relies on signal processing technology and fault diagno-
sis knowledge. Therefore, deep learning has attracted 
increasing attention and has been applied in vari-
ous fields. At present, the deep learning model mainly 
includes the following models: deep belief network 
(DBN), deep autoencoders, convolutional neural net-
works (CNNs), and recurrent neural networks (RNNs).

In recent years, deep learning models have been widely 
used for fault diagnosis. Wang et  al. [10] proposed an 
enhanced intelligent diagnosis method based on multi-
sensor data fusion and improved deep convolution 
neural network models, which enhances the sample fea-
ture learning, expands the discrepancy of different fault 
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features, and achieves higher prediction accuracy. In 
addition, Jia et  al. [11] obtained frequency domain data 
through a Fourier transform of the vibration signal of the 
planetary gearbox and then input it into a deep autoen-
coder for fault identification. Zhang et al. [12] proposed 
using a stacked sparse autoencoder for the fault diagno-
sis of robust oxide fuel cell systems. Yu [13] used parti-
cle swarm optimization to improve the coding stage 
of the stack denoising autoencoder (SDAE) such that it 
can evolve the structure and parameters of the SDAEs 
simultaneously. This method can realize manifold regu-
larization learning and feature selection, and realize 
a gearbox fault diagnosis. Shao et  al. [14] proposed the 
use of a wavelet function for the activation function of 
an autoencoder to construct a deep wavelet autoencoder 
and enhance the feature extraction of the original signal, 
and then combined it with an extreme learning machine 
to realize an intelligent fault diagnosis of the rolling 
bearings. Shang et  al. [15] extracted the features of the 
time domain, frequency domain, and time-frequency 
domain from vibration signals as the input of the DBN 
model. They then recognized the fault severity of the 
rolling bearings. Guo et  al. [16] proposed a hierarchical 
learning rate-adaptive deep convolution neural network 
(ADCNN) based on a CNN model for fault pattern rec-
ognition and fault severity assessment. Compared with 
the traditional CNN model, an ADCNN can automati-
cally select an appropriate learning rate and higher accu-
racy. Yang et al. [17] used a CNN, gated recurrent units, 
and an attention mechanism to construct a deep neural 
network to monitor and diagnose the bearing condition. 
Furthermore, Zhang et  al. [18] proposed a CNN model 
for training intervention, which improved the anti-noise 
ability and regional adaptability of the model by using the 
dropout rule and minimal batch training. This method 
also effectively solves the problem of bearing fault identi-
fication under noisy environments and different working 
loads.

According to previous analyses [10–18], the current 
research on the deep neural network in the field of fault 
diagnosis has mainly focused on the performance of a 
single-structure model. However, because the collected 
signals often contain noise, a fault diagnosis of the gear-
box using a single neural network model has low accu-
racy, poor stability, and low generalization ability. As a 
new machine learning technology, ensemble learning 
achieves a better learning effect than a single learner by 
combining multiple learners. It can effectively solve the 
shortcomings of a single-structure deep-learning model. 
Shao et al. [19] used different activation functions to con-
struct multiple autoencoders and combined them with 
ensemble learning to design a combination strategy to 
achieve a fault diagnosis of the rolling bearings. It was 

proved that this method achieves higher accuracy and 
stability than a single deep autoencoder. Chen et al. [20] 
used a feature-level multi-mode fusion method to extract 
features from vibration signals, and combined it with 
deep learning to realize a rolling bearing fault diagnosis. 
Xiao [21] designed a combination strategy of ensemble 
learning for traffic accident detection, which combines 
a KNN with an SVM to obtain a better final output and 
improve the robustness of the model. In addition, Wu 
et  al. [22] proposed a multi-view fault diagnosis struc-
ture based on variational pattern decomposition and 
multiscale convolutional neural networks. The structure 
can adaptively extract signal characteristics from differ-
ent angles and realize the fault diagnosis of high-speed 
trains. Zheng et al. [23] used a feature extraction method 
applying composite multi-scale fuzzy entropy and com-
bined it with an ensemble support vector machine 
(ESVM) to detect and diagnose rolling bearings. In addi-
tion, most feature fusion methods adopt simple and easy-
to-understand voting and averaging methods. However, 
these methods treat all feature extraction models with 
the same weight, ignoring the differences in the indi-
vidual models [19]. This disadvantage weakens features 
with more significant contributions and strengthens the 
features with smaller contributions, resulting in more 
irrelevant information in the fused features and insuf-
ficient representation capability, thereby affecting the 
subsequent fault identification. As a quantitative index 
to measure the information content of the system, infor-
mation entropy can be used as a criterion for parameter 
selection [24]. Therefore, this study uses different autoen-
coders and combines with information entropy to design 
a novel feature fusion strategy, and builds a multi-scale 
feature extraction structure, which enhances the feature 
learning ability of the raw signal and improves the accu-
racy of fault diagnosis and stability.

In this paper, a novel intelligent fault diagnosis 
method is proposed, which is a multi-scale deep fea-
ture fusion method based on information entropy. The 
proposed method was mainly divided into three steps. 
First, autoencoders with different working principles 
were stacked to form multiple deep neural networks. 
A multi-scale feature extraction structure is then con-
structed using a deep neural network to enhance the 
ability to extract deep features. Second, based on infor-
mation entropy, a feature fusion strategy is designed to 
obtain low-dimensional and high-quality deep features. 
This strategy ensures that the fused features have excel-
lent robustness and representativeness. Finally, the fused 
feature is input into the DBN classifier to identify a fault. 
The vibration signal of the gearbox was analyzed experi-
mentally using the proposed method. The experimental 
results show that the proposed method overcomes the 



Page 3 of 16Shang et al. Chin. J. Mech. Eng.           (2021) 34:58 	

shortcomings of feeble stability, weak generalization, and 
low recognition accuracy of single-structure deep neural 
network model. This method is more effective than exist-
ing intelligent fault diagnosis methods.

The basic framework of this study is as follows: The 
theoretical background of the proposed method is briefly 
introduced in Section  2. In Section  3, the basic flow of 
the proposed method for fault diagnosis is described in 
detail. In Section  4, by collecting the vibration signals 
of the gearbox, the performance of the fault diagnosis 
method proposed in this study is analyzed and com-
pared with shallow learning and standard deep learning 
models. Finally, important conclusions are presented in 
Section 5.

2 � Theoretical Background of the Proposed Method
Because of unsupervised learning and layer-by-layer 
learning, autoencoders are widely used in pattern rec-
ognition, speech recognition, feature extraction, and 
fault diagnosis. In recent years, fault diagnosis based on 
autoencoders has become a hot topic for researchers. 
This section briefly introduces the working principles of 
a normal autoencoder, other autoencoders, and a DBN 
classifier.

2.1 � Normal Autoencoder
Inspired by the structure of a DBN, Bengio et  al. [25] 
proposed a normal autoencoder (NAE). A NAE has 
three layers of neurons: an input layer, a hidden layer, 
and an output layer. The purpose of a three-layer net-
work is to encode the n-dimensional input vector 
x = [x1, x2, · · · , xn] into a p-dimensional expression 
h =

[

h1, h2, · · · , hp
]

 to reconstruct the input vector in the 
expression, as shown in Figure 1. The function of the cod-
ing layer is to form the hidden layer h by the operation 
of the input vector x and weight matrix W. The decoding 
layer reconstructs the output vector x̂ =

[

x̂1, x̂2, · · · , x̂n
]

 
by decoding h. During the process of fault diagnosis, the 
primary purpose of the NAE is to minimize the recon-
struction error between the output vector x̂ and the 
original input vector x. The hidden layer can obtain a fine 
decoding feature h to extract the features of the input 
vector.

The forward training of the NAE includes two steps: an 
encoder and a decoder. The encoding process maps the 
original data to the hidden layer:

In the decoding process, the hidden vector h is used to 
reconstruct the input vector:

(1)h = sigm(Wx + b).

(2)x̂ = sigm(W ′h+ b′),

where W represents the weight matrix of the input layer 
to the hidden layer, W ′ is the weight matrix of the hid-
den layer to the input layer, b and b′ represent the offset 
vectors of the coding and decoding layers, respectively. In 
addition, sigm() is a nonlinear activation function.

The NAE needs to update the parameters W, W ′ , b, and 
b′ to minimize the reconstruction error. The reconstruc-
tion error is defined as follows:

where L(x, x̂) is the loss function used to measure the dif-
ference between the n-dimensional input vector x and the 
output vector x̂ , and xi and x̂i are the ith elements of the 
input vector and the output vector, respectively. The gra-
dient descent algorithm [26] is commonly used to mini-
mize the loss function to update the network parameters.

2.2 � Other Forms of Autoencoder
A sparse autoencoder (SAE) adds a sparse penalty term 
to the loss function to ensure that the extracted features 
have a sparse response. It usually uses the KL distance 
to introduce a sparse penalty term to constrain the loss 
function [27]. The loss function is defined as follows:

(3)

JNAE(x, x̂) = L(x, x̂)

= −

n
∑

i=1

[xi log(x̂i)+ (1− xi) log(1− x̂i)],

Figure 1  Structure of normal autoencoder
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where β is the parameter of sparse penalty constraints, p 
is the number of hidden neurons, and KL(·) is the Kull-
back–Leibler divergence to improve the sparsity of hid-
den layer features.

A denoising autoencoder (DAE) allows the hidden layer 
to learn more robust deep features by adding random noise 
to the input vector. Gaussian noise is typically added to the 
input vector x to construct the damaged input vector x̃ . 
The loss function of the DAE is defined as follows:

where x̂ represents the reconstructed input vector, and xi 
and x̂i are the ith elements of the input and output vec-
tors, respectively.

The contractive autoencoder (CAE) is a variant of the 
NAE that learns the robustness by adding the Jacobian 
matrix Jh(x) of the input and output of the hidden layer 
to the loss function. The loss function of the contractive 
autoencoder can be expressed as follows:

(4)JSAE(x, x̂) = L(x, x̂)+ β

p
∑

j=1

KL(ρ||ρ̂j),

(5)h̃ = sigm(Wx̃ + b),

(6)x̂ = sigm(W ′h̃+ b′),

(7)

JDAE(x, x̂) = L(x, x̂)

= −

n
∑

i=1

[xi log(x̂i)+ (1− xi) log(1− x̂i)],

(8)JCAE(x, x̂) = L(x, x̂)+ �||Jh(x)||
2
F ,

where � is the regularization coefficient of the CAE, 
which controls the hyperparameter of the regularization 
strength.

The network structures of SAE, DAE, and CAE were 
the same as those of NAE. Likewise, they all used the gra-
dient descent algorithm to minimize the loss function to 
achieve the purpose of learning the model parameters.

2.3 � DBN Classifier
The DBN classifier is a deep neural network formed by a 
stacked restricted boltzmann machine (RBM). Its struc-
ture is shown in Figure  2 and consists of the first layer 
(data input) and the second layer (hidden layer 1). The 
second layer (hidden layer 1) and the third layer (hidden 
layer 2) constitute RBM 2. The third layer (hidden layer 
2) and fourth layer (hidden layer 3) constitute three RBM 
stacks of RBM 3. The RBM consists of two layers of neu-
rons (visual layer v and hidden layer h), and neurons of 
the same layer are independent of each other [28].

The training process of the DBN is divided into pre-
training and fine-tuning stages. First, the parameters of 
the model are initialized to the optimal value through the 
layer-by-layer pre-training of the RBM learning rules. 
The parameters are then fine-tuned using a back-propa-
gation algorithm according to the expected label. In the 
pre-training stage, the RBM of each layer was trained 
from the bottom to the top. Assuming that the RBM of 
the first layer has been trained, the conditional probabil-
ity of the hidden variable is as follows:

(9)
p(h(i)|h(i−1)) = sigm(b(i) +W (i)h(i−1)), 1 ≤ i ≤ (l − 1),

Figure 2  Structure of DBN classifier
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where b(i) and W (i) are the bias and weight of the ith layer 
RBM, respectively, and when i = 0, h(0) = v is the input 
raw data.

After pre-training, the back-propagation algorithm is 
used to fine-tune the network according to the expected 
label, such that the model parameters reach the optimal 
solution.

3 � Proposed Method
The primary content of this section is divided into three 
parts: the construction of the feature extraction structure 
of a multi-scale deep neural network, the design of the 
feature fusion strategy based on information entropy, and 
the implementation process of the proposed method.

3.1 � Feature Extraction Structure of Multi‑Scale Deep 
Neural Network

Owing to the simple structure of a single deep neural 
network (DNN), the stability and generalization ability of 
gearbox fault diagnosis are poor. To overcome the weak-
nesses mentioned above, this paper proposes a feature 
extraction structure for a multi-scale deep neural net-
work based on different properties of the autoencoder. As 
shown in Figure  3, the hidden layer of the autoencoder 
with different characteristics extracts the deep features 
of the raw data. The hidden layer units are then super-
imposed to form a deep neural network in order of train-
ing. Finally, multiple deep neural network models were 
combined in parallel to form a multi-scale deep feature 
extraction structure.

As shown in Figure 3, each deep autoencoder contains 
a plurality of hidden layers and the last layer is used as the 
output of the deep features. The multi-scale deep feature 
extraction structure is constructed based on the differ-
ence in the feature extraction ability of the autoencoder 
with different characteristics. Compared with a single 
deep neural network structure, this structure can extract 
all features of the vibration signal to the greatest extent 
possible. In this study, we utilize NAE, DAE, SAE, and 
CAE to create a deep normal autoencoder (DNAE), deep 
denoising autoencoder (DDAE), deep sparse autoencoder 
(DSAE), and deep contractive autoencoder (DCAE) in a 
stack form. These deep neural networks are combined in 
parallel to construct a multi-scale deep feature extraction 
structure to achieve feature extraction.

3.2 � Design of Feature Fusion Strategy
A multi-scale deep neural network feature extraction 
structure was constructed to extract the features. The 
next step is to design a feature fusion strategy to obtain 
the fused features. Data fusion is generally divided into 
three levels: data, feature, and decision fusion. In differ-
ent stages of fusion, the majority voting method and the 
average method are easy to understand and are widely 
used. However, as the main disadvantage of majority vot-
ing and averaging methods, all individual models have 
the same weight and are treated equally [19]. This weak-
ens the feature with larger contribution and enhances 
the features with smaller contribution, which results 
in more irrelevant information in the fused feature and 
insufficient performance, affecting the subsequent fault 

Figure 3  Feature extraction structure of multi-scale deep neural network
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recognition. Information entropy can be used as a cri-
terion for parameter selection as a quantitative index of 
information content in a system [24]. Therefore, a new 
weight allocation method based on information entropy 
is proposed in this study to effectively fuse the extracted 
deep features.

In this study, based on information entropy, different 
entropy weights are allocated according to the accuracy 
of each model, which avoids redundant information con-
tained in fusion features, enhances the expression abil-
ity of deep features, and improves the quality of such 
features. This combination strategy includes the follow-
ing three points. (1) Evaluation matrix A is constructed 
according to the exact values corresponding to different 
fault types in each DNN model. (2) The entropy weight 
of each DNN model is calculated for the fusion feature 
according to evaluation matrix A. (3) Fusion features are 
calculated according to the feature fusion formula. A flow 
chart of the designed feature fusion strategy is shown in 
Figure 4, and the detailed steps are described as follows:

Step 1: Assuming that the number of DNNs in the 
multi-scale feature extraction model is C and the type 
of fault is d, the training samples X = [x1, x2, · · · , xn] 

and the training labels Y = [y1, y2, · · · , yn] are input 
into the multi-scale feature extraction model for fea-
ture learning, and the evaluation matrix A ∈ ℜd×C is 
calculated, where is xi the sample data and yi is the 
label data corresponding to xi:

where Aij represents the accuracy of the ith 
( i = 1, 2, · · · , d ) fault corresponding to the jth 
( j = 1, 2, · · · ,C ) DNN model.
Step 2: According to A, the information entropy of 
the jth DNN model is defined as follows:

	 Based on information entropy, the entropy 
weight of the jth DNN is defined as follows:

(10)A =









A11 A12 · · · A1C

A21 A22 · · · A2C

...
...

. . .
...

Ad1 Ad2 · · · AdC









,

(11)Dj = −
1

ln d

d
∑

i=1

Aij lnAij , j = 1, 2, · · ·C ,

Figure 4  Algorithmic framework of feature fusion strategy



Page 7 of 16Shang et al. Chin. J. Mech. Eng.           (2021) 34:58 	

where wj satisfies 0 ≤ wj ≤ 1 , 
w1 + w2 + · · · + wC = 1.
Step 3: Calculate the fused feature H:

where Hj is the deep feature learned by the jth DNN 
model.

After the above three steps, the fused feature is input 
into the DBN classifier to complete the fault diagnosis of 
the gearbox. 

3.3 � General Procedure of the Proposed Method
In this paper, a multi-scale deep feature fusion method 
based on information entropy is proposed for the intelli-
gent fault diagnosis of a gearbox. The general framework 
of the proposed method is shown in Figure  5, and the 
general steps are as follows.

Step 1: The acceleration sensor is installed on the 
experimental device, and the signal acquisition 
device collects the vibration signal of the gearbox. 
The vibration signals were then divided into training 
and testing samples.
Step 2: NAE, DAE, SAE, and CAE are stacked to 
generate DNAE, DDAE, DSAE, and DCAE, respec-
tively, and then construct a multi-scale feature 
extraction structure and a feature fusion strategy 
based on information entropy.
Step 3: The multi-scale deep neural network feature 
extraction structure is used to learn the deep fea-
tures of the training samples, and obtain the fused 
features according to the proposed feature fusion 
strategy.
Step 4: The DBN classifier is trained using the fused 
feature and training labels to obtain the trained 
DBN classifier.
Step 5: The testing samples are used to verify the 
effectiveness of the proposed method.

4 � Experimental Verification and Discussion
4.1 � Data Description
In this experiment, the data of the gearbox are collected 
using the test-bed shown in Figure 6. The test-bed con-
sists of a three-phase 3-hp motor, a two-stage planetary 
gearbox, a two-stage fixed shaft gearbox supported by 
rolling bearings and a programmable magnetic brake. 

(12)
wj =

1− Dj

C −
C
∑

j=1

Dj

, j = 1, 2, · · · ,C ,

(13)H =

C
∑

j=1

wjH j ,

The frequency of the motor was 30 Hz, and the sampling 
frequency of the acceleration sensor was 3 kHz. One end 
of the accelerometer was installed in the vertical radial 
direction of the base of the fixed axle gear box, and the 
other end was connected to the acquisition device.

The detailed parameters of the faulty working con-
ditions of the fixed shaft gearbox are shown in Table  1, 
and the locations of the faults in the gearbox are shown 
in Figure  7. During this experiment, six working condi-
tions are considered. The time-domain and frequency-
domain waveforms of the vibration signals (the first 3000 
data points) under six working conditions were acquired, 
as shown in Figure 8. Figures 8(a)–(f ) represent the time-
domain and frequency-domain diagrams of the normal 
signal, gear hub crack signal, broken teeth signal, com-
pound fault 1, compound fault 2, and compound fault 3, 
respectively. Each working condition contained 300 sam-
ples, and the vibration signal of each sample was com-
posed of 300 consecutive sampling data points. To verify 
the accuracy and reliability of the proposed method, the 
training samples and test samples of each working condi-
tion were divided into 70% and 30% respectively.

4.2 � Results and Analysis of Fault Diagnosis
To verify the effectiveness and advancement of the pro-
posed method, the same dataset was validated using 
BPNN [2], Softmax classifier [3], SVM [4], and RF [6] 
fault diagnosis methods based on the shallow learn-
ing method. In addition, DNAE [29], DDAE [30], DSAE 
[31], DCAE [32] and CNN [33] models are also used to 
diagnose the faults of fixed axle gearboxes. The following 
points need further explanation.

1)	 The proposed method only needs to segment the 
collected vibration signals, and there are no feature 
extraction technologies for processing the vibration 
signals.

2)	 The inputs of DNAE, DDAE, DSAE and DCAE 
belong to the same dataset as the input of the 
proposed method, and the input of the CNN is 
400-dimensional sample.

3)	 The BPNN, SVM, RF, and Softmax classifier have 
only one form of input. That is, 28 features were 
extracted using signal processing technology, includ-
ing 10 time-domain features, 10 frequency-domain 
features, and 8 time-frequency domain features. The 
detailed parameters of these 28 features are refer-
enced in Refs. [34] and [15].

In addition, to ensure the reliability of the experimen-
tal results of the proposed method, 10 experiments were 
conducted on the dataset of the fixed shaft gearbox. 
The average test accuracy and standard deviation of the 
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Figure 5  The proposed method implements a framework for fault diagnosis of gearboxes
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proposed method and other fault-diagnosis methods are 
listed in Table 2. It can be concluded that compared with 
other methods, the proposed method achieves higher 
testing accuracy (94.31%) and lower standard variance 
(0.3187). Compared with the shallow learning of the 

BPNN, SVM, RF, and Softmax classifier, the average 
accuracy of the proposed method is higher than 84.07%, 
89.39%, 90.40%, and 83.14%, respectively. Therefore, this 
method can directly extract fault features from vibra-
tion signals for a fault diagnosis, eliminating the tedious 
process of manual participation in feature extraction. 
Compared with the standard deep learning model, the 
accuracy of the proposed method is also higher than 
88.19% for DNAE, 90.13% for DDAE, 90.69% for DSAE, 
90.94% for DCAE and 90.74% for the CNN. Moreover, 
the standard deviation of the diagnostic results of the 
proposed method in the test samples is 0.3187, which 
is much lower than the values of 1.3593, 1.2359, 1.2823, 
1.0287, 0.6171, 1.4211, 0.8097, 1.3824, and 1.7112 of the 
Methods 2–10, respectively. The proposed method can 
improve the recognition accuracy and enhance the stabil-
ity of the recognition when a fault diagnosis is carried out 
for the vibration signals of the gearboxes.

Figure  9 shows the detailed diagnosis results of the 
test samples verified by different methods during 10 tri-
als, which are shown in an intuitive form. The accuracy 
of the 10 experimental tests of the proposed method are 
94.07%, 93.86%, 94.26%, 94.44%, 94.44%, 94.81%, 94.26%, 
94.07%, 94.81%, and 94.07%, respectively. In addition, 
the time cost of the proposed method was compared 
with that of DNAE, DDAE, DSAE and DCAE, as shown 
in Figure 10. In Figure 10, the time cost of DNAE, DSAE 
and DCAE are approximately equal, and the time cost of 
DDAE is greater than that of DNAE, DSAE and DCAE. 
Moreover, the time cost of the proposed method is larger 
than that of DNAE, DDAE, DSAE and DCAE. However, 
with the rapid development of computers, the cost gap 
of the proposed method is narrow. The test accuracy of 
the proposed method is significantly higher than that 
of the other fault diagnosis methods. Table  3 lists the 
main parameters of the proposed method. The four deep 

Figure 6  Test bench for vibration signal acquisition of gearbox

Table 1  Detailed description of the six gearbox conditions

Notes: Compound faults 1, wheel cracks, gear wear, and rolling bearing ball 
damage; compound faults 2, wheel cracks, broken teeth and rolling bearing ball 
damage; compound faults 3, gear wear, broken teeth and rolling bearing ball 
damage

Fixed-axis gearbox operating 
conditions

Size of training/testing 
samples

Condition 
label

Normal 210/90 1

Gear hub crack 210/90 2

Gear broken teeth 210/90 3

Compound faults 1 210/90 4

Compound faults 2 210/90 5

Compound faults 3 210/90 6

Figure 7  Parts failure of gearbox
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autoencoder architectures of the multi-scale deep feature 
extraction structure were 300-200-100-80. The feature 
learning among them is independent and does not expe-
riences interference. The model structure of the DBN 
classifier is 80-40-40-40-6, which includes the input layer, 
hidden layers, and output layer.

The main parameters of the other methods are 
described as follows: (1) For Method 2 (DNAE), the 
structure is 300-200-100-80. The learning rate is 0.01, 
and the number of pre-training iterations for each NAE is 
500. (2) For Method 3 (DDAE), the structure is 300-200-
100-80, and the learning rate and noise loss coefficient 
are 0.017 and 0.1, respectively. In addition, the number 
of pre-training iterations per DAE is 500. (3) For Method 

4 (DSAE), the structure is 300-200-100-80. The learn-
ing rate, sparse penalty constraints, and sparsity param-
eters are 0.016, 0.1, and 0.15, respectively. In addition, 
the number of pre-training iterations per SAE is 500. (4) 
For Method 5 (DCAE), the structure is 300-200-100-80, 
and the learning rate and regularization coefficient are 
0.025 and 0.05, respectively. The number of pre-training 
iterations for each CAE is 500. (5) For Method 6 (CNN), 
the structure of the CNN consists of an input layer, two 
convolutional layers, two pooling layers, and a fully con-
nected layer. The size of the input layer is 20 × 20, and 
the number of convolution kernels of the first and second 
convolution layers are 3 and 4, respectively. In addition, 
the step size of the two pooling layers is set to 2, and the 

Figure 8  Vibration signals of gearbox under six working conditions: a normal, b gear hub crack, c gear broken teeth, d compound faults 1, e 
compound faults 2, f compound faults 3
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learning rate and the numbers of iterations are 0.01 and 
500, respectively. (6) For Method 7 (BPNN), the structure 
is 28-40-6, the learning rate is 0.15, and the number of 
iterations is 1000. (7) For Method 8 (SVM), the type of 
kernel function is a Gaussian function, and the penalty 
coefficient of the loss function is 0.54. (8) For Method 9 
(RF), the number of trees is 400, the maximum depth of 
the trees is 70, the minimum number of samples required 
for splitting the internal nodes is 70, and the minimum 
number of samples required for the leaf nodes is 80. (9) 
For Method 10 (Softmax classifier), the learning rate is 
0.25 and the number of iterations is 1000.

The multi-class confusion matrix is a method for meas-
uring the performance of deep learning models. In the 
first experiment, Figures  11 and 12 show the multiclass 
confusion matrix of the test set used in the proposed 
method and the other deep autoencoders, respectively. 
The horizontal axis in Figure 11 represents the prediction 
label of the fault, the vertical axis represents the actual 
label of the fault, and the diagonal element indicates that 
the probability prediction value is equal to the real value. 
The color bar on the right corresponds to the value of 
the multiclass confusion matrix. The multiclass confu-
sion matrix can visually express the accuracy of the label 
predictions and the actual labels. Compared with Fig-
ure  12, Figure  11 shows that the prediction accuracy of 
the proposed method in label 1 is significantly improved 
to 0.92. Similarly, the prediction accuracy of labels 3 and 
4 is slightly improved, and the labels 2, 5, and 6 both 
reach the optimal solution. Therefore, in gearbox fault 
diagnosis, the ability to extract deep features using the 
proposed method is higher than that of single-structure 
deep autoencoders and helps to improve the classifica-
tion accuracy.

4.3 � Visual Comparison of Deep Features
Principal component analysis (PCA) is a conventional 
algorithm used to reduce the number of data dimensions. 
It maps high-dimensional data into a low-dimensional 
space by transforming the matrix. The PCA visualizes 
high-dimensional data by giving each high-dimensional 
sample a position with two or three coordinates. The 
deep features are visualized through the PCA, which fur-
ther illustrates the effectiveness of the proposed method 
by infusing deep features and identifying faults. A deep 

Table 2  Diagnostic results of different methods from 10 
experiments

Notes: Method 1, the proposed method with raw data; Method 2, DNAE with 
raw data; Method 3, DDAE with raw data; Method 4, DSAE with raw data; 
Method 5, DCAE with raw data; Method 6, CNN with raw data; Method 7, BP 
with 28 features; Method 8, SVM with 28 features; Method 9, RF with 28 features; 
Method 10, Softmax classifier with 28 features.

Methods Input 
dimensions

Average testing 
accuracy (%)

Standard deviation 
of testing accuracy

Method 1 300 94.31 0.3187

Method 2 300 88.19 1.3593

Method 3 300 90.13 1.2359

Method 4 300 90.69 1.2823

Method 5 300 90.94 1.0287

Method 6 400 90.74 0.6171

Method 7 28 84.07 1.4211

Method 8 28 89.39 0.8097

Method 9 28 90.40 1.3824

Method 10 28 83.14 1.7112

Figure 9  Detailed results of 10 experiments using different methods
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feature is the output value of the third hidden layer of the 
autoencoder. As shown in Figure  13, the deep features 
(80 dimensions) extracted from the third hidden layer 
were mapped into two-dimensional and three-dimen-
sional coordinate systems after PCA dimensionality 
reduction. Among them, PCA1, PCA2, and PCA3 repre-
sent the first three main components of the deep features 
after PCA dimensionality reduction, which correspond 
to the x-axis, y-axis, and z-axis of the coordinate systems, 
respectively. The legend corresponds to the conditional 
labels listed in Table 1.

As shown in Figures 13(a), (b), (c), and (d), in the two-
dimensional coordinate system, most boundaries of the 
features extracted using the DNAE, DDAE, DSAE, and 
DCAE models are clearly distinguishable. However, a 
small part of the boundary still overlaps and is difficult to 
distinguish, which directly increases the difficulty of fault 
identification. Moreover, in the three-dimensional coor-
dinate system, most of the deep features have been sepa-
rated, but there is still a small amount of overlap between 
the boundaries among the different features. This phe-
nomenon shows that the features extracted using the 
DNAE, DDAE, DSAE and DCAE models have redundant 
information. Figure 13(e) shows the feature visualization 
results of the proposed method. Compared with Fig-
ure 13(a), (b), (c), and (d), the fault feature boundary of 
the proposed method in the two-dimensional coordinate 
system is clearer, and the fault features are completely 
separated in the three-dimensional coordinate system. 
Furthermore, the same type of fault feature aggregation 
effect was shown to be excellent. Therefore, the compari-
son results indicate that the proposed method can effi-
ciently reduce the amount of redundant information of 
the deep features and improve the quality of the features.

In summary, compared with single-structure diagnosis 
model, the proposed method constructs the multi-scale 

Figure 10  Detailed results of time cost with different methods for 10 experiments

Table 3  The main parameters of the proposed method

Description Value

The number of hidden layers in each DAE 3

The number of input layers 300

The number of first hidden layers 200

The number of second hidden layers 100

The number of third hidden layers 80

Learning rate of four deep autoencoders 0.025

Number of iterations of four deep autoencoders 500

Penalty parameter of sparse autoencoder 0.2

Corruption parameters of denoising autoencoder 0.15

Regularization coefficient of contractive autoencoder 0.1

Learning rate of DBN classifier 0.02

Momentum of DBN 0.15

Figure 11  Multi-class confusion matrix for the first experiment on 
the proposed method
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deep neural network feature extraction structure by com-
bining NAE, DAE, SAE, and CAE with different charac-
teristics in parallel, and then applies deep feature fusion 
strategy based on information entropy. It solves the prob-
lems of weak feature extraction ability of single-structure 
deep learning models, poor stability of diagnosis models, 
and low accuracy of diagnosis. In addition, comparison 
experiments and feature visualization prove that the pro-
posed method has higher recognition accuracy and bet-
ter stability than traditional and existing intelligent fault 
diagnosis methods.

5 � Conclusions
To address the critical issues regarding the improvement 
of the feature extraction and classification accuracy in 
single-structure deep learning, a multi-scale deep fea-
ture fusion intelligent fault diagnosis method based on 

information entropy was proposed. In this study, NAE, 
DAE, SAE, and CAE with different characteristics were 
used to construct a multi-scale deep neural network fea-
ture extraction structure in parallel to enhance the ability 
of deep feature extraction. In addition, an entropy weight 
deep feature fusion strategy designed based on informa-
tion entropy to capture the representative and robust fea-
tures was described.

To verify the effectiveness of the proposed method, 
in the parallel axis gearbox fault diagnosis experiment, 
compared with the shallow learning model and the 
existing deep learning model, the fault accuracy of the 
proposed method is improved to 94.31% and its stand-
ard deviation is reduced to 0.3187. In addition, the 
proposed method avoids the tedious process of man-
ual extraction of fault features, effectively and auto-
matically extracts valuable fault features directly from 

Figure 12  Other multi-class confusion matrix methods for the first experiment: a DNAE, b DDAE, c DSAE, d DCAE
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Figure 13  Feature visualization of hidden layer: a DNAE, b DDAE, c DSAE, d DCAE, e The proposed method
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vibration signals, and improves the accuracy of fault 
identification. Moreover, through the comparative anal-
ysis of the multi-class confusion matrix and feature vis-
ualization, it is verified that the proposed method can 
improve the quality of deep features and capture robust 
fault features. In conclusion, the method proposed in 
this paper achieves high-quality feature mining capabil-
ity and higher fault recognition accuracy. Considering 
that the selection of model hyper-parameters depends 
on the experiment conducted and artificial experience, 
in the future study, we will introduce intelligent opti-
mization algorithms into deep neural networks to build 
smarter fault diagnosis methods.
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