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Rollover Prevention and Motion Planning 
for an Intelligent Heavy Truck
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Abstract 

It is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently. However, it was 
rarely considered in intelligent vehicle motion planning. To improve rollover stability, a motion planning strategy with 
autonomous anti rollover ability for an intelligent heavy truck is put forward in this paper. Considering the influence 
of unsprung mass in the front axle and the rear axle and the body roll stiffness on vehicle rollover stability, a rollover 
dynamics model is built for the intelligent heavy truck. From the model, a novel rollover index is derived to evaluate 
vehicle rollover risk accurately, and a model predictive control algorithm is applicated to design the motion planning 
strategy for the intelligent heavy truck, which integrates the vehicle rollover stability, the artificial potential field for the 
obstacle avoidance, the path tracking and vehicle dynamics constrains. Then, the optimal path is obtained to meet 
the requirements that the intelligent heavy truck can avoid obstacles and drive stably without rollover. In addition, 
three typical scenarios are designed to numerically simulate the dynamic performance of the intelligent heavy truck. 
The results show that the proposed motion planning strategy can avoid collisions and improve vehicle rollover stabil-
ity effectively even under the worst driving scenarios.
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1  Introduction
1.1 � Motivation
In the past few decades, the autonomous driving tech-
nology has rapidly developed. In the next 30 years, there 
will be more and more intelligent vehicles running on the 
public roads, which not only reflects national technical 
strength, but also helps to alleviate urban traffic conges-
tion [1, 2]. Motion planning is a very important role for 
an intelligent vehicle. Proper motion planning algorithm 
can significantly reduce traffic accidents caused by tired 
driver or drunk driver [3]. Majority of the research-
ers focus on obstacle avoidance in motion planning. 
However, severe steering at high speed may cause vehi-
cle rollover, especially for heavy trucks due to the long 
wheelbase, the large unsprung mass and the high center 
of gravity. In 2016, there were about 6.1 million traffic 

accidents in the United States. Among those crashes, 
vehicle rollover accidents account for only 2.0%, while 
rollover casualties account for 18.9% of traffic accident 
casualties, and most of them came from sport utility 
vehicles and heavy trucks [4]. Therefore, the research on 
motion planning to improve the autonomous anti rollo-
ver ability of intelligent heavy truck is very necessary.

1.2 � Research Background
In recent years, many scholars have studied intelligent 
vehicle motion planning. The published classical motion 
planning algorithms including Dijkstra algorithm [5], 
A∗ algorithm [6] and D∗ algorithm [7], mainly applied 
the graph search approach to divide the environment 
map into a series of discrete grids then find the shortest 
path. However, the obtained shortest path based on the 
graph searching algorithm is discrete. It is hard to inte-
grate with the dynamic characteristics of the vehicle. The 
samples-based approaches have attracted the attention of 
scholars, which randomly sampled the state space to find 
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the connectivity then obtained the optimal path as quick 
as possible, such as Probabilistic Road Maps (PRM) [8] 
and Rapidly-exploring Random Trees (RRT) [9]. To solve 
the problem of path discontinuity, scholars optimized 
the existing trajectories based on interpolation curves 
and generated a new set of data using a previous set of 
nodes to obtain a smoother and more reasonable path, 
including the clothoid curve [10], the Bezier curve [11], 
and the polynomial curve [12]. The artificial potential 
field approach is a typical numerical optimization algo-
rithm that constructs the gravitational and the repulsion 
fields to guide the intelligent vehicle to destination and 
avoid collision [13]. Ji et  al. superimposed the obstacle 
exponential function and the road trigonometric func-
tion, constructed a 3D virtual potential field, generated 
the optimal collision avoidance trajectory, and used the 
multi constraint model predictive control (MPC) to track 
the collision avoidance trajectory [14–16]. With the con-
tinuous application of artificial intelligence technology, 
machine learning is now being used to make decisions 
on autonomous vehicles. David et al. improved the clas-
sical multi-agent reinforcement learning algorithm and 
used the neural network and the kernel smoothing tech-
nology to perform the approximate greedy operation on 
the unknown environment, which could generate mul-
tiple alternative paths [17]. Wolf et al. searched for vari-
ous extreme conditions through reinforcement learning, 
learned driving behavior in simulation and trained the 
autopilot system to plan a safe driving path [18]. To sum 
up, the path planning algorithm included the local path 
planning and the global path planning, also known as 
motion planning. This paper focuses on the motion plan-
ning of the intelligent heavy truck after the global path 
planning data have been obtained.

The main idea to make anti-rollover path planning is 
to take a rollover index that describes the vehicle rollo-
ver risk into consideration as the constraint in the motion 
planning algorithm. The rollover index is used to describe 
and determine whether the vehicle has reached the criti-
cal rollover point. The ratio of center of gravity height 
to half of track width was defined as static stability fac-
tor (SSF) to detect the vehicle rollover risk [19]. Jin et al. 
improved the accuracy of SSF and proposed the dynamic 
stability factor (DSF) to predict the vehicle rollover ten-
dency [20]. The lateral load transfer ratio (LTR) was the 
most commonly used in terms of vehicle rollover obser-
vations in published studies [21, 22]. In order to measure 
rollover tendency of the vehicle under special tripped 
conditions, Jin et al. developed a new rollover index [23], 
and derived an improved vehicle rollover index for the 
triaxle bus [24]. Imine et al. estimated the lateral acceler-
ation, the yaw rate, and the roll angle to evaluate the vehi-
cle rollover stability [25]. Time to rollover (TTR) was an 

efficient indicator for the rollover warning [26]. Zhu et al. 
proposed a TTR warning algorithm and regulated TTR 
online by a back-propagation neural network. Currently, 
some scholars have considered the lateral stability in 
motion planning process [27]. Li et al. used the roll plane 
model to obtain the rollover state of the vehicle, and com-
bined it with the 3D occupancy grid to generate a safe 
path without rollover and collision [28]. Cheng et al. put 
forward a lateral stability coordinated collision avoidance 
control system (LSCACS) [29]. The LSCACS obtained 
the reference values of yaw angle and side deflection 
angle through the linear vehicle model, determined the 
working mode of the system by combining with Time to 
Collision (TTC), and finally obtained the corresponding 
tire force based on the MPC control. He assessed the risk 
related to collision and instability using the dynamic risk 
assessment model based on genetic algorithm and used 
the fifth order polynomial equation to generate the path 
without collision and with high lateral stability [30].

1.3 � Contributions
Despite the large amount of research in path planning, 
there are few researches on the active anti-rolled-over 
motion planning algorithm. Therefore, a motion planning 
strategy considering autonomous anti rollover ability for 
an intelligent heavy truck based on V2V communications 
is proposed in this study. The main contributions are as 
follows:

(1)	 A rollover dynamic model is built and a novel rollo-
ver index is defined for the intelligent heavy truck, 
by considering the influence of unsprung mass in 
the front axle and the rear axle and the body roll 
stiffness on vehicle rollover stability.

(2)	 The motion planning strategy with active anti rollo-
ver ability based on model predictive control is pro-
posed, which integrates the active rollover preven-
tion, the obstacle avoidance and the path tracking 
with multiple dynamic constraints.

(3)	 Three typical danger scenarios are designed to 
numerically simulate the performance of obstacle 
avoidance and the effect of active rollover preven-
tion of the motion planning strategy.

1.4 � Paper Organization
This paper is organized as follows. The framework of the 
intelligent heavy truck motion planning is introduced in 
Section  2. Then, a nonlinear-coupled rollover model is 
established, which considers longitudinal, lateral, yaw, 
and roll motions of unsprung and sprung masses of 
each axle in Section 3. In addition, the motion planning 
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strategy with autonomous anti rollover ability is derived, 
which integrates the vehicle rollover index, the obstacle 
artificial potential field, and the MPC motion planner in 
Section 4. Three typical scenarios are designed to numer-
ically simulate the dynamic performance of the intelligent 
heavy truck in Section 5. Finally, conclusions are summa-
rized in Section 6.

2 � Framework of the Intelligent Heavy Truck 
Motion Planning

The overall framework of the proposed motion plan-
ning strategy with autonomous anti rollover ability for 
the intelligent heavy truck is demonstrated in Figure  1. 
The framework includes motion planning, heavy truck 
dynamic model, state estimator, V2V communications, 
perception and global planning. The perception mod-
ule detects and classifies the static obstacle and the road 
data, determines their location and provides their speed, 
direction and shape using various sensors including 
Lidar, Radar, camera, and GPS. The static obstacle and 
the road data are then sent to the global planning and 
motion planning modules. The motion planning and the 
global planning modules acquire the states of the obsta-
cle vehicles through V2V communications. The global 
planning module combines the environment information 
and the vehicle state (such as vehicle speed, yaw angu-
lar speed, and lateral inclination) from the state estima-
tor module to generate the global path. Then, the MPC 
based motion planning module controls the heavy truck 
to track the global path while avoiding collisions, comply-
ing with the road regulations and preventing the rollover. 

Finally, the decision of the ego-vehicle is broadcast to the 
obstacle vehicles via V2V communications.

This paper focuses on motion planning for heavy truck. 
It is assumed that the data of obstacle vehicles and the 
global path have been obtained from the perception 
module, V2V communications and the global planning 
module.

3 � Rollover Model of the Intelligent Heavy Truck
After the global path planning data is obtained, an 
appropriate vehicle dynamic model needs to be built to 
conduct the motion planning, and the trajectory track-
ing control algorithm for the reference path should be 
designed to achieve the smooth running of the auto-
mated heavy truck. Due to the characteristics of large 
mass, high center of gravity and uneven load distribu-
tion, it is easy to rollover in the process of driving. There-
fore, this paper considers the roll stability of heavy trucks 
while conducting path planning. To simplify the mod-
eling process, some idealized assumptions are made for 
heavy trucks:

1.	 The pitch and the vertical motion of the vehicle are 
ignored.

2.	 The influence of side wind is ignored.
3.	 The effect of tire aligning torque is ignored.
4.	 Only the characteristics of the pure side-slip linear 

tire are considered, while the horizontal and the ver-
tical coupling relationship of the tire is ignored.

5.	 Only front wheel steering is considered.

Figure 1  The framework of the intelligent heavy truck motion planning
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Taking the coupling between the front axle roll angle 
and the rear axle roll angle into consideration, an ideal 
torsion bar with fixed torsional stiffness and no mass 
is used to link the front and the rear sprung systems. 
Since the unsprung mass of heavy trucks is large, its 
influence on the roll motion cannot be ignored. Hence, 
a seven-degree-of-freedom dynamic model can be 
obtained, as shown in Figure 2.

As shown in Figure  2, the motion differential equa-
tion of the intelligent heavy vehicle can be derived as 
follows:

Longitudinal motion:

where, m is the intelligent heavy truck mass, u is the vehi-
cle longitudinal speed, v represents the vehicle lateral 
velocity, r is the vehicle yaw rate, FxT denotes the longitu-
dinal force, Fr is the wheel rolling resistance.

Lateral motion:

where, ay represents the vehicle lateral acceleration, δf 
represents the front wheel steering angle, msf and msr 
denote the equivalent sprung masses in the front axle 
and the rear axle, respectively. hf and hr are the heights 
between the roll center and the sprung mass center in the 
front axle and the rear axle, respectively. φsf and φsr are 
the roll angles of the sprung masses in the front axle and 
the rear axle, respectively. FY1 and FY2 denote the tires lat-
eral forces in the front axle and the rear axle, respectively.

Yaw motion:

(1)m(u̇− vr) = FXT − Fr,

(2)may −msfhfϕ̈sf −msrhrϕ̈sr = 2FY1 cos δf + 2FY2,

(3)IZṙ = 2aFY1 cos δf − 2bFY2,

where, Iz is the vehicle yaw inertia, a and b are the longi-
tudinal distances from the front axle and the rear axle to 
the vehicle CG, respectively.

The front sprung mass roll motion:

where, IXf denotes the front sprung mass roll inertia, g 
denotes the gravitational acceleration, kf and lf represent 
the equivalent roll stiffness coefficient and damping coef-
ficient of the suspension in the front axle, φuf denotes the 
front unsprung masses roll angle, kb represents the vehi-
cle body torsion stiffness coefficient.

The rear sprung mass roll motion:

where, IXr denotes the rear sprung mass roll inertia, kr 
and lr represent the equivalent roll stiffness coefficient 
and damping coefficient of the suspension in the rear 
axle, φur is the rear unsprung mass roll angle.

The front unsprung mass roll motion:

where, muf represents the equivalent unsprung mass in 
the front axle, hcf and huf are the heights of the roll center 
and the unsprung mass center in the front axle, respec-
tively. kuf denotes the equivalent roll stiffness coefficient 
of the front unsprung mass.

The rear unsprung mass roll motion:

(4)
IXfϕ̈sf = msfhfay +msfghfϕsf − kf(ϕsf − ϕuf)

−lf(ϕ̇sf − ϕ̇uf)− kb(ϕsf − ϕsr),

(5)
IXrϕ̈sr = msrhray +msrghrϕsr − kr(ϕsr − ϕur)

−lr(ϕ̇sr − ϕ̇ur)− kb(ϕsr − ϕsf),

(6)

2FY1hcf +muf(huf − hcf)ay = −mufg(huf − hcf)ϕuf

−kf(ϕsf − ϕuf)− lf(ϕ̇sf − ϕ̇uf)+kufϕuf,

Figure 2  Dynamic rollover model for an intelligent heavy truck
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where, mur represents the equivalent unsprung mass in 
the rear axle; hcr and hur are the heights of the roll center 
and the center of the rear unsprung mass, respectively. 
kur is the equivalent roll stiffness coefficient of the rear 
unsprung mass.

The vehicle lateral acceleration is

The state of longitudinal and lateral motion of the intel-
ligent heavy truck are

where X denotes the vehicle longitudinal displacement, Y 
represents the vehicle lateral displacement, ψ denotes the 
vehicle heading angle.

The tires lateral forces depend on the front wheel side 
slip angle βf and the rear wheel side slip angle βr.

The front wheel side slip angle and the rear wheel side 
slip angle can be expressed as

Assuming that the vehicle yaw rate and the vehicle lat-
eral velocity are small relative to the vehicle longitudinal 
speed, Eqs. (11)–(12) can be linearized as follows.

To simplify the vehicle rollover system, the linear mod-
els of the tires lateral forces are used.

where, Kf and Kr represent the front wheel cornering 
stiffnesses and the rear wheel cornering stiffnesses.

(7)

2FY2hcr +mur(hur − hcr)ay = −murg(hur − hcr)ϕur

−kr(ϕsr − ϕur)− lr(ϕ̇sr − ϕ̇ur)+kurϕur,

(8)ay = v̇+ur.

(9)Ẋ = u cosψ − v sinψ ,

(10)Ẏ = u sinψ + v cosψ ,

(11)βf = arctan

(

v+ar

u

)

− δf,

(12)βr = arctan

(

v − br

u

)

.

(13)βf =

(

v+ar

u

)

− δf,

(14)βr =
v − br

u
.

(15)FY 1 = −Kfβf,

(16)FY 2 = −Krβr,

4 � Motion Planning Strategy of the Intelligent 
Heavy Truck

To improve vehicle rollover stability, as shown in Fig-
ure  1, the motion planning strategy of the intelligent 
heavy truck includes the rollover index, the obstacle arti-
ficial potential field, the MPC motion planner, and the 
path tracking with multiple dynamic constraints.

4.1 � Rollover Index of the Intelligent Heavy Truck
As shown in Eq. (17), the most commonly used vehicle 
rollover index LTR can be expressed as

where, FL and FR are the left wheel vertical load and the 
right wheel vertical load. It is difficult to measure the 
wheel vertical loads in real time, especially in some emer-
gency cases [31]. Therefore, a novel rollover index should 
be derived from the model of the intelligent heavy truck.

As shown in Figure  2, the difference between the 
front left vertical load FL1 and the front right vertical 
load FR1, and the difference between the rear left verti-
cal load FL2 and the rear right vertical load FR2 can be 
expressed as follows.

where, Twf is the front track width, and Twr is the rear 
track width.

In addition, the sum of the left vertical load and the 
right vertical load is equal to the load weight. So,

where, mf and mr are the front axle mass and the rear 
axle mass.

Substituting Eqs. (4) and (5) into Eq. (18), the differ-
ence between the left vertical load and the right vertical 
load can be rewritten as follows.

From Eqs. (17), (19), and (20), the front rollover index 
and the rear rollover index can be obtained,

(17)LTR =
FL − FR

FL + FR
,

(18)

{

(FL1 − FR1)Twf /2 = kf(ϕsf − ϕuf)+ lf(ϕ̇sf − ϕ̇uf),

(FL2 − FR2)Twr/2 = kr(ϕsr − ϕur)+ lr(ϕ̇sr − ϕ̇ur),

(19)
{

FL1 + FR1 = mfg ,

FL2 + FR2 = mrg ,

(20)



















FL1 − FR1 =
−2

Twf

�

IXfϕ̈sf −msfghfϕsf

−msfhfay + kb(ϕsf − ϕsr)

�

,

FL2 − FR2 =
−2

Twr

�

IXrϕ̈sr −msrghrϕsr

−msrhray + kb(ϕsr − ϕsf)

�

.



Page 6 of 15Jin et al. Chin. J. Mech. Eng.           (2021) 34:87 

To evaluate rollover risk of the intelligent heavy truck, a 
novel rollover index (NRI) is defined from Eq. (21).

where, L is the wheelbase.
Compared with the problem that the LTR is diffi-

cult to measure in real-time, the state quantity in NRI 
can be obtained through the sensor to ensure real-time 
performance.

To verify the accuracy and the feasibility of the NRI in 
evaluating the rollover of the heavy truck, three cases and 
a “2A truck” model in TruckSim are used.

Fishhook is one of the worst untripped rollover maneu-
ver. In this case, the amplitude of steering angle is set 
to five degrees. The results of the vehicle NRI and the 
vehicle LTR at different running speeds are illustrated in 
Figure 3.

Figure  3 shows that the curves of LTR and NRI are 
highly consistent with each other. The peak value of 
the NRI is − 0.7857, and that of the LTR is − 0.7559, as 
shown in Figure 3a. Also, the error between the NRI and 
the LTR is less than 4%. In addition, when the vehicle 
rolls over, as shown in Figure 3b, NRI and LTR reach − 1 
at the same time.

4.2 � Obstacle’s Artificial Potential Field
The basic idea of the artificial potential field (APF) is to 
construct a field including the repulsion and the attrac-
tor poles. The exponential and the trigonometric func-
tions are applied in this study, to define an APF that can 
accurately and comprehensively reflect the integration of 
vehicle and road in dangerous driving state according to 
the information of road structure parameters, traffic run-
ning conditions and the positions of the obstacles. The 
APF includes road markers or boundaries (PR), crossable 
area (PC), and non-crossable area (PNC), as shown in Eq. 
(23).

(21)



































RIf =

− 2
Twf

�

IXfϕ̈sf −msfghfϕsf

−msfhfay + kb(ϕsf − ϕsr)

�

mfg
,

RIr =

− 2
Twr

�

IXrϕ̈sr −msrghrϕsr

−msrhray + kb(ϕsr − ϕsf)

�

mrg
.

(22)NRI =







−1, (aRIf + bRIr) ≤ −L,
aRIf+bRIr

L ,−L < (aRIf + bRIr) < L,
1, L ≤ (aRIf + bRIr),

(23)APF=
∑

q

PRq +
∑

j

PCj +
∑

i

PNCi ,

where q, j, and i denote the indices of the road markers 
or boundaries, the crossable area, and the non-crossable 
area, respectively.

(1)	 Non-crossable area means the obstacles that the vehi-
cle must avoid, such as vehicles and pedestrians. In this 
paper, the potential field of the non-crossable area is 
defined as Ref. [32]:

(24)







































PNCi(X ,Y ) =
ai

si(
dX
Xsi

, dYYsi
)bi

,

Xsi = X0 + uT0 +
�u2ai
2an

,

Ysi = Y0 + (u sin θ + uoi sin θ)T0 +
�v2ai
2an

,

(a)

(b)
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Figure 3  Comparison between LTR and NRI in Fishhook maneuver: 
(a) u = 55 km/h; (b) u = 65 km/h.
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where ai and bi are the parameters of the PNC, an 
denote the vehicle comfortable acceleration, X0 is 
the minimum longitudinal distance, and Y0 is the 
minimum lateral distance, respectively, dX denotes 
the longitudinal distance from the ego vehicle to 
the obstacle, and dY denotes the lateral distance 
from the ego vehicle to the obstacle, T0 represents 
the safe time interval, θ is the heading angle of the 
ego vehicle toward the obstacle, Xsi denotes the safe 
longitudinal distance, and Ysi denotes the safe lat-
eral distance, uoi represents the movement obsta-
cle speed, Δuai is the longitudinal relative speed 
between the ego vehicle and the obstacle, and Δvai 
is the lateral relative velocity between the ego vehi-
cle and the obstacle.

(2)	 Crossable area is less dangerous aera. The potential 
field can be achieved by the safe distance sj between the 
obstacle and the ego vehicle.

where aj and bj represent the parameters of PC.
(3)	 Road markers or boundaries are also not allowed to be 

crossed by vehicle, except that vehicle actively change 
lanes. The quadratic form function is used to obtain 
the potential field of the road markers or boundaries as 
follows.

where aq denotes the intensity parameter of PR, sRq 
and Da represent the safe lateral distance and the 
permitted lateral distance from the ego vehicle to 
the road boundary, respectively.

An example of the potential field of the non-crossable 
area is shown in Figure  4a, and the compound poten-
tial field of PCj and PRq of the two-lane road is shown in 
Figure 4b.

4.3 � MPC Motion Planner of the Intelligent Heavy Truck
MPC algorithm is used to realize the motion planning 
and trajectory tracking for the intelligent heavy truck. 
The cost function includes the trajectory tracking, the 
vehicle NRI, and the obstacle’s APF. This will enable the 
intelligent heavy truck to follow the road regulations 

(25)PCj (X ,Y ) = aj exp

(

−bjsj

(

dX

Xsi
,
dY

Ysi

))

,

(26)

PRq (X ,Y ) =

{

aq
(

sRq(X ,Y )− Da

)2
sRq(X ,Y ) < Da,

0 sRq(X ,Y ) ≥ Da,

and track the global path, prevent rollover, and avoid the 
obstacles. In addition, the dynamics of the intelligent 
heavy truck in the future can be predicted from the vehi-
cle rollover model. Finally, the control outputs of FxT and 
δf can be obtained by rolling the optimization the cost 
function using the nonlinear optimal solver.

In order to simplify the calculation of MPC motion 
planner, it is necessary to linearize the rollover model of 
the intelligent heavy truck.

The state space model of the intelligent heavy truck can be 
achieved by sorting out the motion differential Eqs. (1)–(16).

where,

(27)ẋ = f (x,uc),

x =
[

u v r X Y ψ ϕ̇sf ϕ̇sr ϕsf ϕsr ϕuf ϕur
]T
, uc =

[

FxT δf
]T
, y =

[

u v r Y ϕ̇sf ϕ̇sr ϕsf ϕsr
]T
.
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Figure 4  Examples of the potential field: (a) The non-crossable area; 
(b) The crossable area and road boundaries
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After linearizing Eq. (27), the linear state space model of 
the intelligent heavy truck can be obtained as follows.

where, the expressions of matrices A and B are very 
complex and difficult to obtain, so they are calculated by 
numerical method.

According to the first order differential quotient method, 
the discrete state-space equation can be described as 
follows:

where, Ak = E + tsA,Bk = tsB,Ck = tsC , E is the unit 
matrix with same matrix order as A, and ts =0.001 is dis-
crete sampling time.

To design model predictive controller, setting 
χ(k) =

[

x(k) uc(k)
]T , the state-space equation of predic-

tion model can be transformed into

where,

Therefore, the output prediction equation is

where,

(28)
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(29)
{

x(k + 1) = Akx(k)+ Bkuc(k),

y(k) = Ckx(k),

(30)

{

χ(k + 1) = Âkχ(k)+ B̂k�uck ,

y(k) = Ĉkχ(k),

Âk =

[

Ak Bk

01×12 11×2

]

, B̂k =

[

Bk

11×2

]

, Ĉk =
[

Ck 0
]

.

(31)Y c(k) = ψ(k)χ(k)+�(k)�Uc(k)

It is very necessary to constrain the vehicle kinemat-
ics and dynamics in the MPC motion planning of the 
intelligent heavy truck. Firstly, the control outputs FxT 
and δf need to meet the following vehicle dynamics 
constraints.

where, Tmax is the maximum driving torque, FxT_max is 
the maximum longitudinal force, Rw denotes the wheel 
radius, δfmax denotes the maximum front wheel steering 
angle, and Δδfmax is the maximum front wheel steering 
angle increment.

In addition, the tire longitudinal force and the tire lat-
eral force shall meet the friction ellipse constraint [33]. 
For brevity, the details of the specific derivation of the 
friction ellipse will not be expanded here.

where, μ represents the road adhesion coefficient, FY1_max 
and FY2_max are the maximum lateral forces of the front 
tire and the rear tire, respectively.

Considering the vehicle dynamic constraints, the cost 
function of the MPC motion planner can be set up as 
follows.
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Ph−2

k B̂k · · · Ĉk Â
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Ĉk Â
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Ch

k
· · ·
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where, Ph and Ch are the prediction and the control hori-
zons, respectively, Q1, Q2, Q3 and Q4 are the output state 
coefficient matrices, ρ denotes the weight coefficient, 
ε denotes the relaxation factor, R denotes the control 
weight coefficient matrix.

The designed lateral displacement Yref and the designed 
longitudinal speed uref can be obtained by global plan-
ning as shown in Figure 1. The designed NRIref is setting 
to 0.

In combination with the vehicle constraints shown in 
Eqs. (32) and (33), a series of control increments in the 
control time domain can be obtained by rolling the opti-
mization the cost function using the nonlinear optimal 
solver Fmincon.

After obtaining the sequence of the control increments, 
the actual control input increment of the system can be 
calculated by the first element of the control sequence.

As the same way, the remaining input control incre-
ment of the system can be generated in turn by predicting 
the next cycle output according to the state information.

(34)
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(35)
�U∗

c (k) =
[

�u∗

c (k) �u∗

c (k + 1) · · · �u∗

c (k + Ch)
]T
.

(36)uc(k) = uc(k − 1)+�u∗

c (k).

5 � Numerical Cases Studies
Three numerical scenarios are designed to simulate the 
performance of the motion planning strategy of the intel-
ligent heavy truck. Table  1 lists the main parameters of 
the intelligent heavy truck.

Scenario 1: Emergency obstacle avoidance. The intel-
ligent heavy truck (ego vehicle) runs on Lane 1 at a 
constant speed of 80 km/h. Suddenly, a car (vehicle 
1) directly in front of the ego-vehicle slows down to 40 
km/h. As shown in Figure 5, the vehicle 2 moves on Lane 
2 at the speed of 50 km/h, and the longitudinal distance 
in front of vehicle 1 (red car) is 10 m.

Figure 6 shows the vehicles’ trajectories in Scenario 1. 
The blue box, the red box, and the green box denote the 
intelligent heavy truck, the vehicle 1 and the vehicle 2, 
respectively. The red line and the green line represent the 
trajectory of the vehicle 1 and the vehicle 2, respectively. 
The blue curve and the pink curve are the trajectories of 
the ego vehicle with/without active anti rollover ability. 
When t=1 s, the ego-vehicle is still behind the vehicle 1. 
The ego vehicle had to change to Lane 2 in order not to 
collide with the vehicle 1. Also, during lane change, the 
ego vehicle does not collide with the vehicle 2, as shown 

Table 1  Main parameters of the intelligent heavy truck

Symbol Value Symbol Value

a(m) 3.106 Ixf (kg∙m2) 2372

b(m) 1.384 Ixr (kg∙m2) 5323.5

msf(kg) 1960 IZ (kg.m2) 30782.4

msr(kg) 4400 Kf (N/rad) 69252

muf(kg) 500 Kr(N/rad) 114829

mur(kg) 760 kf(N∙m/rad) 888433

hcf(m) 0.1 kr (N∙m/rad) 588843

hcr(m) 0.1 kuf (N∙m/rad) 489978

hf(m) 1.1 kur (N∙m/rad) 489978

hr(m) 1.1 lf (N∙m∙s/rad) 3444

huf(m) 0.51 lr (N∙m∙s/rad) 3444

hur(m) 0.528 Twf(m) 2.03

kb (N∙m/rad) 4×105 Twr(m) 1.863

Figure 5  Vehicles in Scenario 1
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in Figure  6 at t=2 s and t=2.5 s. When the ego vehicle 
overtakes the vehicle 1, it changes back to Lane 1. Thus, 
both the motion planning strategies with and without 
active anti rollover ability can effectively avoid obstacles.

As shown in Figure 7, the rollover stability and the out-
put front wheel steering angle are illustrated for the intel-
ligent heavy truck with and without active anti rollover 
ability. Figure  7a shows the NRI of the intelligent heavy 
truck. The NRI value varies between − 1 and 1, and the 
intelligent heavy truck is stable. However, the NRI value 
reaches − 1 at 2.8 s when the motion planning strategy 
without active anti rollover ability. That is, the intelligent 
heavy truck rolls over, although it avoids all obstacles. In 
addition, the output front wheel steering angle reaches 
the maximum steering angle limited by the constraint 
to avoid the obstacle when the vehicle without active 

anti rollover ability, as shown in Figure  7b. The motion 
planning strategy with active anti rollover ability out-
puts appropriate steering angle to avoid the obstacle and 
reduce the vehicle rollover risk.

As shown in Figure 8, the longitudinal dynamics of the 
intelligent heavy truck in Scenario 1 are drawn. The speed 
of the ego vehicle tends to slow down when it starts to 
turn. In order to ensure that the ego vehicle runs at the 
target speed, the motion planning algorithm responds 
to the appropriate longitudinal force in time. Since the 
motion planning strategy without active anti rollover 
ability outputs larger steering angle, the longitudinal 
speed reduces as shown in Figure  8a. Thus, the larger 
longitudinal force needs to be obtained to maintain the 
longitudinal speed as shown in Figure 8b. Therefore, the 
motion planning strategy with active anti rollover abil-
ity can maintain longitudinal stability and comfort of the 
intelligent heavy truck.
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Figure 7  Rollover stability of the intelligent heavy truck in Scenario 
1: (a) NRI; (b) The front wheel steering angle
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Scenario 1: (a) Longitudinal speed; (b) Longitudinal force
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Scenario 2: Obstacle avoidance on curved road. As 
shown in Figure 9, the ego vehicle is travelling on Lane 1 
at an initial speed of 80 km/h, and the vehicle 1 is travel-
ling on Lane 2 at a constant speed of 80 km/h. There is 
a fixed obstacle of 1 m in length and width in the curve 
part on Lane 1. The ego vehicle needs to make an emer-
gency change to Lane 2, and reduce the speed in order 
not to collide with vehicle 1 on Lane 2.

As shown in Figure 10, the blue box, the red box, and 
the green box denote the ego vehicle, the vehicle 1, and 
the fixed obstacle, respectively. The red curve is the tra-
jectory of the vehicle 1. The blue curve and the pink 
curve are the trajectories of the ego vehicle with/without 
active anti rollover ability. When t = 1 s, the ego vehicle 
has not yet detected the fixed obstacle and runs normally 

along lane 1. Then at t = 3 s, the ego vehicle identifies the 
fixed obstacle, slows down and gradually moves to Lane 
2. The vehicle successfully avoids the obstacle at t = 4 s, 
and does not collide with the vehicle 1 during lane chang-
ing. The motion planning strategy without active anti 
rollover ability obtains the pink curve, which is more far 
away from the fixed obstacle. As can be seen, this path 
performs better at avoiding obstacles, but cannot guaran-
tee the vehicle stability.

Figure  11 analyzes the rollover stability of the intel-
ligent heavy truck in Scenario 2. Similar to Scenario 1, 
the proposed motion planning strategy with active anti 
rollover ability performs well in reducing the ampli-
tude of NRI by about 0.2. The front wheel steering angle 
increases gradually, which is consistent with the actual 

Figure 9  Vehicles and obstacle in Scenario 2
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Figure 11  Rollover stability of the intelligent heavy truck in Scenario 
2: (a) NRI; (b) The front wheel steering angle



Page 12 of 15Jin et al. Chin. J. Mech. Eng.           (2021) 34:87 

driving condition. The front wheel steering angle out-
put by the motion planning strategy with active anti 
rollover ability a slightly less than that without active 
anti rollover ability. From the results in Figure  11, it 
can be illustrated that the proposed strategy can avoid 
obstacles smoothly and reduce the vehicle rollover risk 
during cornering.

The longitudinal dynamics of the intelligent heavy 
truck in Scenario 2 is illustrated in Figure  12. In the 
first second, the vehicle has not detected the obstacle. 
Therefore, the longitudinal force is the driving force 
to keep the ego vehicle at a speed of 80 km/h. Then, to 
avoid collision with the obstacle and adjacent vehicle 1, 
the longitudinal force is the braking force that gradu-
ally increases and reduces the speed to 50 km/h. The 
ego vehicle speed is slightly less than that controlled by 
the motion planning without active anti rollover abil-
ity. The reduction of vehicle speed can also improve the 
vehicle rollover stability. This shows that the proposed 

strategy still puts up a good performance in longitudi-
nal stability in Scenario 2.

Scenario 3: Extreme turning condition. As shown in 
Figure 13, an extreme urgent scenario is designed to vali-
date the performance of the motion planning with active 
anti rollover ability. The intelligent heavy truck runs on 
a two-way lane at a speed of 50 km/h. There are two 
large detours in this section lane. A fixed obstacle of 1 
m in length and width suddenly appears on Lane 1 when 
the ego vehicle is 15 m away from the first curve. Simi-
larly, another fixed obstacle with length and width of 1 
m appears on Lane 1, when the ego vehicle is 15 m away 
from the second curve.

As shown in Figure  14, the blue curve and the pink 
curve represent the vehicle trajectories controlled by the 
motion planning strategy with and without active anti 
rollover ability in Scenario 3. Two green boxes are the 
fixed obstacles. Both the blue curve and the pink curve 
indicate that the vehicle can successfully avoid the first 
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Figure 12  Longitudinal dynamics of the intelligent heavy truck in 
Scenario 2: (a) Longitudinal speed; (b) Longitudinal force

Figure 13  Vehicle and obstacles in Scenario 3

0 50 100 150 200
-50

0

50

Longitudinal distance /m

La
te

ra
ld

ist
an

ce
/m

90 95 100 105 110
38

40

42

44

46

180 190 200
-46

-44

-42

-40

-38

-36

Anti-rollover
Without anti-rollover

Lane 2

Lane 1

Figure 14  Vehicle’s trajectories in Scenario 3



Page 13 of 15Jin et al. Chin. J. Mech. Eng.           (2021) 34:87 	

fixed obstacle and pass the first detour safely. In addition, 
the motion planning strategy with active anti rollover 
ability can help the vehicle avoid the second fixed obsta-
cle and pass the second detour safely. However, the pink 
curve disappears after the vehicle pass the first detour. 
That is, the vehicle rolls over and stop. Therefore, the 
motion planning strategy with active anti rollover abil-
ity can provide the vehicle safety under extreme turning 
condition.

Figure 15 shows that under extreme turning condition, 
the NRI value of the intelligent heavy truck controlled by 
the motion planning strategy without active anti rollover 
ability reaches −  1 at 7 s and then rolls over. However, 
when the vehicle travels according to the motion plan-
ning strategy with active anti rollover ability, although the 
absolute value of NRI of the vehicle is also large at 8 s, it 
is quickly adjusted and no rollover is occurred. The front 
wheel steering angle calculated by the motion planning 

strategy with active anti rollover ability is smaller than 
that without active anti rollover ability, as shown in Fig-
ure 15b. This also shows that the proposed motion plan-
ning strategy emphasizes on the vehicle lateral stability 
while ensuring safe avoidance of fixed obstacles.

Figure  16 illustrates the longitudinal dynamics of the 
intelligent heavy truck under extreme turning condi-
tion. Controlled by the motion planning strategy with 
active anti rollover ability, the vehicle longitudinal speed 
decreases slightly during passing the first detour. The out-
put longitudinal force increases appropriately and keep 
the vehicle speed stable at the target speed of 50 km/h 
after the first detour. However, without active anti rollo-
ver ability, the motion planning algorithm leads vehicle to 
rollover.

In conclusion, the simulation analysis of three danger-
ous scenarios verifies that the motion planning strategy 
with active anti rollover ability for the intelligent heavy 
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Figure 15  Rollover stability of the intelligent heavy truck in Scenario 
3: (a) NRI; (b) The front wheel steering angle
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Figure 16  Longitudinal dynamics of the intelligent heavy truck in 
Scenario 3: (a) Longitudinal speed; (b) Longitudinal force
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truck can effectively avoid the moving vehicles and the 
fixed obstacles, and improve the vehicle longitudinal and 
lateral stability. Especially, it can prevent the vehicle roll-
over under some extreme driving conditions.

6 � Conclusions
This paper proposes a motion planning strategy with 
active anti rollover ability based on model predictive con-
trol for the intelligent heavy truck. Considering the influ-
ence of unsprung mass in the front axle and the rear axle 
and the body roll stiffness on vehicle rollover stability, a 
rollover dynamic model is built and a novel rollover index 
is defined for the intelligent heavy truck. The motion 
states of the obstacles are obtained through the percep-
tion module and V2V communications. An MPC motion 
planner is designed, which integrates the active rollover 
prevention, the obstacle avoidance and the path tracking 
with multiple dynamic constraints. Numerically simula-
tion results under some danger scenarios verify that the 
proposed motion planning strategy can effectively avoid 
the moving vehicles and the fixed obstacles, and prevent 
vehicle rollover.
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