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Weakly‑Supervised Single‑view Dense 3D 
Point Cloud Reconstruction via Differentiable 
Renderer
Peng Jin1, Shaoli Liu1, Jianhua Liu1*, Hao Huang1, Linlin Yang2, Michael Weinmann2 and Reinhard Klein2 

Abstract 

In recent years, addressing ill-posed problems by leveraging prior knowledge contained in databases on learning 
techniques has gained much attention. In this paper, we focus on complete three-dimensional (3D) point cloud 
reconstruction based on a single red-green-blue (RGB) image, a task that cannot be approached using classical recon-
struction techniques. For this purpose, we used an encoder-decoder framework to encode the RGB information in 
latent space, and to predict the 3D structure of the considered object from different viewpoints. The individual predic-
tions are combined to yield a common representation that is used in a module combining camera pose estimation 
and rendering, thereby achieving differentiability with respect to imaging process and the camera pose, and optimi-
zation of the two-dimensional prediction error of novel viewpoints. Thus, our method allows end-to-end training and 
does not require supervision based on additional ground-truth (GT) mask annotations or ground-truth camera pose 
annotations. Our evaluation of synthetic and real-world data demonstrates the robustness of our approach to appear-
ance changes and self-occlusions, through outperformance of current state-of-the-art methods in terms of accuracy, 
density, and model completeness.
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1  Introduction
The inference of underlying object or scene geometry is 
among the classical goals of computer vision and graph-
ics, and a fundamental prerequisite for numerous appli-
cations in entertainment, robotics, navigation, and 
architecture. Examples include guidance of robot inter-
actions with objects in a scene based on their shape, as 
well as augmented and virtual reality solutions for gam-
ing, interior design [1], remote collaboration [2–4] and 
teleoperation [5, 6]. The geometry reconstruction is also 
significant for microscopic scale objects. Such as the sur-
face morphology inference based on the surface profile 
reconstruction [7] is served for the assembling deviation 

estimation [8] and analysis of the replacement of the 
actual machining surface [9].

Besides the well-established multi-view approaches, 
such as multi-view stereo [10], structure-from-motion 
(SfM) [11], simultaneous localization and mapping 
(SLAM) [12] and single-view-based three-dimensional 
(3D) scanning based on structured light systems [13] or 
laser scanners [14], more approaches are now focusing 
on learning-based scene representation schemes [15], 
especially for single-view scenarios. When taken into 
account, prior knowledge derived from large-scale data-
sets can yield remarkable reconstruction results from 
single images [16].

Common 3D scene representations include depth 
images [17–23], voxel-based representations [24–30], tri-
angular meshes [31–34], and point clouds [35–40]. How-
ever, 3D convolutional neural network (CNN) approaches 
designed for voxel-based scene representations trade off 
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the benefits of structured input data, with the limita-
tion of representing surface information with relatively 
few voxels. Hence, the granularity of the reconstruction 
result is strongly limited by the computational burden 
and memory consumption associated with 3D CNNs. 
Furthermore, considering structured input data in terms 
of the point connectivity of meshes is more efficient 
due to the direct consideration of points on the surface; 
however, it is non-trivial to efficiently integrate the con-
nectivity information in the training process. In turn, 
unstructured point clouds offer the aforementioned 
advantage of direct representation of the surface with 
high granularity, without the need to consider the con-
nectivity between points during training; however, the 
lack of any grid structure and permutation invariance 
must be considered within point cloud specific architec-
tures and loss definitions [37–40]. Key challenges include 
the generation of dense point clouds to avoid incomplete 
object representation, has a high computational burden 
and high memory requirements.

The reconstruction quality of single image-based 
approaches depends heavily on the available training 
data. In general, impressive single image-based recon-
struction results have been obtained using large data-
sets of ground truth annotations. Obtaining perfect 3D 
computer-aided design (CAD) models as ground truth 
data for real-world environments is highly challenging; 
therefore, several approaches have focused on weakly 
supervised [25, 41, 42] or unsupervised [43, 44] learning 
to reduce/mitigate the need to acquire 3D ground truth 
data for explicit supervision. However, neural scene rep-
resentation and rendering, as applied in Ref. [43], does 
not well represent the 3D structure, thereby limiting the 
quality of 3D structure recovery from a small number of 
observations. The structure-aware scene representation 
network presented in Ref. [44] encodes both geometry 
and appearance; however, the applied ray marcher cannot 
accommodate surfaces with holes and boundaries of self-
occluding structures, as commonly encountered in the 
‘chair’ object category. Nevertheless, these approaches 
show potential, particularly for multi-view observations.

The key proposition of this paper is that an accurately 
predicted shape should provide reasonable depth esti-
mates from any viewpoint. For this purpose, we take the 
depth maps as supervision signals and propose a novel 
weakly supervised approach to reconstruct a dense 3D 
point cloud. Given the input of a single red-green-blue 
(RGB) image, we use an encoder-decoder architecture 
to first encode the RGB information in a latent represen-
tation and then predict the 3D structure of the consid-
ered object from different viewpoints. Then, we combine 
these individual 3D structure predictions into a common 
coordinate system to reconstruct the point clouds, and 

further synthesize the depth maps from novel viewpoints 
to optimize the two-dimensional (2D) prediction error.

Most optimization processes [25, 42, 45, 46] rely on 
the availability of ground truth data for novel viewpoint 
poses. For instance, Navaneet et  al. [45] and Lin et  al. 
[46] specified the viewpoint poses for CAD models. Tul-
siani et al. [25] and Gwak et al. [42] trained models based 
on viewpoint pose annotations. Developing setups for 
low-cost object digitization without the requirement for 
expensive annotations or calibration requires that these 
restrictions be overcome. Therefore, we designed a differ-
entiable rendering module and combined it with a pose 
estimation network to identify the poses for novel view-
points. The rendering module is capable of handling the 
appearance changes and self-occlusions that may occur 
from certain viewpoints, and can estimate the camera 
poses even with large baselines, which makes it possible 
to randomly set the novel viewpoints.

2 � Structure Estimation
In an initial step, we aim to derive a dense 3D point cloud 
representation from a single RGB image acquired from 
an arbitrary view. For this purpose, we attempted to lev-
erage the potential of deep learning for generative 3D 
modelling. Key challenges include efficient and accurate 
3D representation of the considered object, as well as 
the design of a pipeline that allows end-to-end-learning 
without requiring annotated data. The proposed pipeline 
is shown in Figure 1.

To meet these challenges, we use an encoder-decoder 
architecture that encodes information from the input 
image in a latent scene representation that, in turn, 
allows 3D structure predictions Dv(v ∈ V ) from V  dif-
ferent fixed viewpoints. These view-dependent struc-
tures Dv correspond to an image-based representation 
of 3D point cloud coordinates xi = (xi, yi, zi) according 
to the respective viewpoint v . Representing point clouds 
in terms of multi-channel images allows for the use of 
2D convolutions instead of memory-intensive 3D con-
volutional operations for calculation of the volumetric 
structure. During training, the encoder learns the latent 
scene representation, and the decoder learns to generate 
3D structures D̂v from that representation. Finally, the 
structure images xi = (xi, yi, zi) predicted for different 

Figure 1  Proposed pipeline to reconstruct 3D point cloud
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viewpoints v ∈ V  are fused into a single 3D point cloud 
p̂i ∈ P̂V  by transforming the respective view-centric 
point cloud coordinates into a common world coordinate 
system (WCS) according to

where K  denotes the camera calibration matrix, and the 
views are specified based on pairs of rotations and trans-
lations (Rv , tv) . Thus, applying (Rv , tv) shifts a point from 
the world coordinate frame to the view-centric coordi-
nate frame of view v , and the inverse transform is then 
applied to transfer points from view-specific coordinate 
frames to the global coordinate system.

Note that training the StructureCNN does not rely 
on ground truth annotations of 3D structures Dv or 
3D shapes PV  for direct supervision as required in the 
approach of Lin et  al. [46]. Instead, we jointly train the 
structure network and a component that optimizes 2D 
projection errors and the camera pose prediction.

3 � Optimization Based on 2D Projections 
from Multiple Views

The 3D point cloud reconstruction obtained by fusing 
the multi-view structure predictions from the aforemen-
tioned structure network is noisy and needs further opti-
mization. Further optimization of our point cloud avoids 
the need for novel viewpoint pose annotations by inte-
grating a pose estimation network into the designed dif-
ferentiable rendering module.

3.1 � Differentiable Rendering Module
The renderer represents the forward imaging process of 
a camera. In our pipeline, the renderer takes the recon-
structed point cloud P̂V  as the input to render depth 
images D̂n for novel views (Rn, tn) , which are then used 
for 2D projection optimisation to minimise the depth 
errors LN =

∑N
n=1 ||Dn − D̂n||1 . Here, the image coor-

dinates x̂ of the individual points of the common point 
cloud under the view (Rn, tn) are obtained according to

This process can be inverted. Given the depth informa-
tion and respective image coordinates, the points of the 
surface parts visible in a particular view can be recon-
structed by back projection of the 2D depth maps.

Unlike the approach of Fan et  al. [35], wherein the 
number of points in the point cloud is fixed and prede-
fined, our approach allows for the generation of dense 
and disordered points varying in number for different 
objects. As shown in Figure 2(a), many points may pro-
ject onto the same pixels, and the resulting discretization 
may reduce the image quality. Lin et  al. [46] developed 

(1)p̂i = R−1
v (K−1x̂i − tv),

(2)x̂i = K (Rnp̂i + tn),

a pseudo-renderer to resolve this issue based on upsam-
pling the depth image by a factor U, such that points are 
projected onto isolated pixels (Figure 2(b)). This results in 
high memory consumption. Unfortunately, as the point 
clouds are dense, different points may still be projected 
onto the same pixels. The optimization does not consider 
these pixels, and their gradients do not contribute to the 
outputs; this resulting in more outliers. Furthermore, dis-
cretization error of the 2D projections of the point clouds 
caused by rounding, according to the depth image resolu-
tion [46], means that the model undifferentiated among 
view poses.

To obtain better point cloud optimization results, we 
only store the point with minimum depth ẑi = minj∈s ẑj 
in the respective image x̂i = (x̂i, ŷi, ẑi) in cases of s pro-
jected points per pixel (Figure  2c). In other words, we 
only consider visible aspects in the respective views. All 
projected pixels contribute to the optimization process, 
to reduce the influence of outliers on the results. Fur-
thermore, to also achieve differentiability with respect to 
the viewpoint, we compute the ground-truth depth value 
di corresponding to the rendered depth value d̂i = ẑi at 
location (x̂i, ŷi) by bilinear interpolation:

(3)
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Figure 2  The projection of dense point cloud

Figure 3  The GT depth value is sampled by bilinear interpolation
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As shown in Figure 3, where d11 , d12 , d21 , and d22 are 
the depth values of the local four-pixel neighborhood on 
the ground truth, di is approximated by two linear inter-
polations, dd and du . The bilinear sampling at location 
(x̂i, ŷi) is differentiable with respect to the camera pose 
(Rn, tn) , and the reconstructed point p̂i is augmented in 
Eq. (2), such that the framework is differentiable with 
respect to point cloud generation and viewpoint pose 
prediction, and can be trained end-to-end.

3.2 � Camera Pose Estimation Network
The above designed renderer can use different cam-
era poses (Rn, tn) , so we can estimate the poses in novel 
views. For this purpose, we integrate a pose estimation 
network into the rendering module. Here, we use a con-
volutional network (PoseCNN) that takes the depth maps 
Dn(n ∈ N ) at N  novel viewpoints as input and estimates 
their respective poses (Rn, tn) . This allows us to avoid 
dependence on pre-defined depth maps with pose anno-
tations, as there are likely to only be depth maps with 
unknown poses available for supervision.

As illustrated in Figure  4, we take the depth maps Df  
with known poses as references, to train the PoseCNN 
and estimate the poses (Rn, tn) in N  novel views. In the-
ory, only one reference Df  with an unknown pose can 
be used to successfully train PoseCNN. We can take the 
local coordinate system of Df  as the WCS and estimate 
other camera poses with respect to Df  . As the larger 
number of Df  contributes to the pose estimation accu-
racy (see the experimental results in Section  4.2.2), we 
use eight reference views Df  in this paper.

The point cloud P̂N fused with accurate estimated cam-
era poses is expected to align with the ground-truth point 
cloud PN ; the Euclidean distance between them is very 
small. There are 3D metrics for comparing point clouds, 
such as the Chamfer distance [35], which determines 
the distance from each point to the nearest neighbor in 
another set of point clouds. To avoid the need for a costly 
3D-based optimization using computationally intensive 
3D metrics, the rendered depth map D̂f  should be con-
sistent with Df  . The 2D optimization based on mini-
mizing the L1 loss between D̂f  and Df  is more efficient. 
Furthermore, the 3D metrics are invalid when there are 
dramatically different appearances between views, as 

shown in Figure 5(a), in which two views with opposite 
orientations capture completely different aspects of the 
scene. Here, the 3D optimization will incorrectly esti-
mate the novel view and will instead largely coincide with 
the reference view, as shown in Figure 5(b). The proposed 
2D optimization is effective for this situation and robust 
to appearance changes and self-occlusion, as verified 
experimentally (see Section 4.2.2).

4 � Experiments
4.1 � Implementation Details
We used the most recent and relevant research results 
of Lin et al. [46] and Navaneet et al. [45], based on their 
state-of-the-art single-view point cloud reconstruction 
methods, as the baseline and prepared identical data-
sets to allow comparison with our proposed method. 
The details of the experimental setup and qualitative and 
quantitative results are as follows.

4.1.1 � Data Preparation
(1) Synthetic dataset: ShapeNetCore [47] contains about 
55 object categories, from which a subset of 3D models 
is used for experimental evaluations. For each 3D model, 
we rendered 24 RGB images ( 64 × 64 × 3 ) with azimuth 
angle steps of 15◦ and elevation angles 30◦ , 100 depth 
maps Dn(64 × 64 ) at random novel viewpoints, and 
eight 3D structures Dv at fixed viewpoints (i.e. the eight 
corners of a central cube). More Dv will inferred denser 
point clouds. And Dn located in supervised views, should 
capture more details and there are almost no occluded 
areas in the field of views.

(2) Real-world dataset: Pix3D [48] contains real images 
and corresponding 3D CAD models. We selected four 
categories for our experiment, i.e. ‘bed’, ‘chair’, ‘desk’, and 
‘sofa’, rendered Dn , and generated ground-truth point 
clouds based on the CAD models. Additionally, we tested 
the ‘chair’ object category from the Stanford Online 
Products dataset [49].

Figure 4  Novel viewpoint poses prediction

Figure 5  Two different view configurations
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4.1.2 � Network Architecture
We designed 2D convolutional neural networks. As shown 
in Figure 6, StructureCNN and PoseCNN share the same 
encoder architecture. The encoder consists of four con-
volution layers having 96, 128, 192, and 256 channels, and 
three fully connected layers having 2048, 1024, and 512 
neurons. For StructureCNN, the decoder consists of three 
fully connected layers with 1024, 2048, and 4096 neurons. 
The feature maps are rescaled by nearest neighbor inter-
polation, followed by convolution layers. Batch normali-
zation and rectified linear unit (ReLU) layers were added 
between the convolution layers. The fixed filter size was 
3× 3 . There were two and one strides in the encoder and 
decoder, respectively. PoseCNN used two fully connected 
layers with 64 and 7 neurons each. The outputs included a 
quaternion and the x, y, z position of the viewpoints. The 
PoseCNN can predict the viewpoints of the depth maps 
scattered in supervised views, which facilitate the training 
of the StructrueCNN. After the training strategy, the point 
cloud of an object can be inferenced by feeding the single 
RGB image into the StructureCNN.

4.1.3 � Training Paradigm
As the inferred viewpoint in initial training iterations is 
often inaccurate, which will result in the learned point 
cloud unmeaningful. Thus, learning these together is sus-
ceptible to local minima. Followed by the suggestions 
of prior work [34], a two-step training paradigm was 
employed. First, we trained PoseCNN with eight fixed 
viewpoints taken as references F = V = 8 . Df = Dv , 
Df = D̂

′

v corresponds to the rendered result. Then, we 
trained StructureCNN based on estimated novel viewpoint 
poses. An RGB image randomly selected from 24 views 
was used as input for each iteration. In Eq. (4), the loss is 
defined as the L1 distance. We used TensorFlow to imple-
ment our framework, with a learning rate of 0.0001 and 
ADAM optimisation.

4.1.4 � Experimental Design
The experiments mainly addressed three questions: 
(1) the accuracy and robustness of the viewpoint pose 
prediction, (2) the performance of the point cloud 
reconstruction for a single object category, and (3) the 
generality of the proposed framework to multiple and 
unseen categories.

For the first two questions, we trained and tested the 
network on the ‘chair’ category. For the third question, 
we trained and tested the network on multiple catego-
ries. All of the datasets were randomly split into training 
and test sets (80% and 20%, respectively). We also tested 
unseen categories.

4.2 � Viewpoint Pose Prediction
4.2.1 � Accuracy of the Pose Prediction
We used the eight fixed views as a reference to estimate 
10 random novel viewpoints. Table 1 shows the averaged 
results of the test split. The camera orientation was rep-
resented by a quaternion. The error is the angle between 
the optical axes of the camera for the estimated and GT 
results. The largest error was 0.340◦ . According to the fol-
lowing results, the pose prediction was sufficiently accu-
rate to guarantee point cloud reconstruction accuracy.

4.2.2 � Robustness of the Viewpoint Pose Prediction
We used eight fixed views to evaluate the robustness 
of the viewpoint pose prediction and the impact of the 
number of reference views on the results. Figure  7(a) 
shows the eight fixed views; view 3 was selected as the 
reference. The estimated poses are listed in Table  2. 
Relative to view 3, to some degree there are appearance 
changes in the other seven views; for view 6 in particu-
lar in Figure 7(b), the appearance is completely different 
to that of the reference. Beside the appearance changes, 
every image has self-occlusions caused by the arms or 
legs of the chair. The orientations are all estimated accu-
rately, indicating that the proposed renderer can not 
only differentiate among viewpoints, but is also robust to 
appearance changes and occlusions.

The accuracy of the results shown in Table 2 was lower 
than that of those in Table  1, indicating that the num-
ber of reference views affects the pose estimation accu-
racy. Figure 8 shows the training process for view 8 pose 
estimation according to the number of reference views. 

(4)
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Figure 6  The neural network architectures
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The learning rate was 0.001. Figure 8 shows the first and 
final 50 iterations of the training process. The Y-axis is 
the angle between the optical axes of the estimated and 
GT results, where a greater number of reference views 
will improve convergence speed and accuracy. How-
ever, using a very high number of views is redundant and 
expensive; thus, the proposed framework used eight ref-
erence views.

The robustness and effectiveness of the viewpoint pre-
diction allowed the reference and novel views to be set 
flexibly, without considering appearance changes or 
occlusions.

4.3 � Point Cloud Reconstruction for a Single Object 
Category

Figure  9 shows the 3D point clouds generated for the 
chair test split. The reconstruction errors are defined by 
the point-wise 3D Euclidean distance using Eq. (5), which 
represents the 3D shape similarity [50]; P̂ and P are 
generated and ground truth point clouds, respectively. 
According to Table 3, E is scaled by a factor of 100; our 
results are more accurate.

Although, the network of Lin et  al. [46] is pretrained 
based on the GT 3D structures, the training process does 
not consider pixels with more than one projection, which 
leads to outlier points, as shown in Figure  10(a). Nava-
neet et al. [45] also calculated the gradient of each pixel 
for optimization and obtained fewer outliers. However, 
they considered the masks as 2D observations and failed 
to resolve the concavity or finer details, as shown in Fig-
ure 10(b). We successfully generated these structures.

(5)
E= (

∑

p̂∈P̂

min
p∈P

||p̂− p||2)/||p̂||0.

Table 1  Pose prediction results of 10 noel views

Views Rotations (quarternion) Error ( ◦)

View 1 Ours − 0.589 − 0.793 − 0.115 0.097 0.134

GT 0.589 0.793 0.113 − 0.096

View 2 Ours − 0.790 0.027 0.600 − 0.116 0.100

GT 0.790 − 0.027 − 0.599 0.117

View 3 Ours 0.331 − 0.175 − 0.422 0.824 0.210

GT 0.330 − 0.175 − 0.423 0.825

View 4 Ours − 0.587 − 0.375 − 0.263 0.666 0.269

GT 0.588 0.374 0.261 − 0.667

View 5 Ours − 0.556 − 0.320 − 0.435 − 0.630 0.340

GT 0.556 0.322 0.436 0.628

View 6 Ours 0.000 − 0.272 − 0.551 0.788 0.082

GT 0.001 − 0.271 − 0.551 0.788

View 7 Ours − 0.695 − 0.362 0.127 0.607 0.262

GT 0.695 0.361 − 0.129 − 0.607

View 8 Ours 0.242 0.657 0.293 0.650 0.234

GT 0.240 0.658 0.294 0.649

View 9 Ours − 0.511 − 0.470 0.422 0.581 0.197

GT 0.511 0.470 − 0.424 − 0.580

View 10 Ours − 0.746 − 0.217 − 0.048 − 0.627 0.288

GT 0.747 0.219 0.049 0.625

Figure 7  The fixed views are scattered at 8 corners of a cube
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Table 2  Pose prediction results of the 7 fixed views

Views Poses (quaternion) Error ( ◦)

View 1 Ours − 0.310 0.181 0.419 0.833 1.046

GT 0.339 − 0.175 − 0.424 − 0.820

View 2 Ours − 0.396 0.828 0.347 0.188 2.871

GT 0.424 − 0.820 − 0.339 − 0.175

View 4 Ours − 0.173 0.339 − 0.822 − 0.421 0.292

GT 0.175 − 0.339 0.820 0.424

View 5 Ours − 0.149 0.333 0.821 0.438 1.354

GT 0.175 − 0.339 − 0.820 − 0.424

View 6 Ours − 0.815 0.432 0.174 0.342 0.995

GT 0.820 − 0.424 − 0.175 − 0.339

View 7 Ours 0.341 − 0.172 0.422 0.821 0.395

GT 0.339 − 0.175 0.424 0.820

View 8 Ours 0.416 − 0.823 0.344 0.174 0.996

GT 0.424 − 0.820 0.339 0.175

Figure 8  Training process to estimate the pose of view 8

Figure 9  The reconstructed point clouds of the chair

Table 3  Reconstruction error of the chair

Method Lin et al. [46] Navaneet et al. [45] Ours

E 1.72 1.68 1.61

Figure 10  The results of outliers and concavity
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4.4 � Generative Reconstruction of Multiple Categories
4.4.1 � Training/testing on Multiple Categories Using 

ShapeNetCore
The categories included ‘airplane’, ‘bed’, ‘bench’, ‘bus’, 
‘chair’, and ‘rifle’. The qualitative and quantitative results 
of the test split are shown in Figure 11 and Table 4.

For convex objects, such as a bus, the results of Nava-
neet et al. [45] are comparable to our own. For concave 
objects and finer details, such as the arms on chairs and 
rifles, our network is more effective.

4.4.2 � Testing Out‑of‑category in ShapeNetCore
The ability to generalize prior learning for seen cat-
egories to unseen categories is important for the 
intelligent agent. Within the training set, the motor-
bike and car are completely novel categories; as there 
are few instances with similar shapes, they were used 
for the out-of-category tests. The results are shown 
in Figure  12 and Table  5. Many finer structures were 
resolved, such as the wheel of the motorbike and the 
tailgate of the car and, compared to Lin et  al. [46], 
there were fewer outliers. Navaneet et  al. [45] simply 
reconstructed the bounding boxes of the objects. We 
were also largely able to reconstruct these structures.

4.4.3 � 3D Reconstruction Using Pix3D and Stanford Online 
Products Datasets

To deal with real images, the proposed framework was 
further fine-tuned using the Pix3D dataset. We assumed 
a default intrinsic matrix with an orthographic camera K  . 
The qualitative results for the bed, chair, desk, and sofa 
categories are illustrated in Figure 13, and the quantita-
tive results are presented in Table  6. Despite the items 
on the bed and desk that heavily occluded the objects, 
we still effectively captured the finer details and concave 
structures.

As there are no CAD models in the Stanford Online 
Products dataset, we cannot generate ground-truth point 
clouds, so instead manually selected some untruncated 
instances for qualitative tests. The results are illustrated 
in Figure 14.

Based on the above experimental results, the proposed 
framework offers only a slight advantage for single cate-
gory reconstruction. For multiple classes, the advantages 
of our framework are obvious. Especially for out-of-
category and real images, we successfully reconstructed 
the concavity and finer structures. Furthermore, across 
different experimental settings, including single, mul-
tiple, and unseen categories of rendered and real-world 
data, the error rates were similar, at 1.61, 1.571, 2.200, 
and 1.51. The accuracy was higher for multiple- versus 
single-object cases. Overall, the visual and quantitative 
results demonstrate that the proposed framework has 
better generalization ability for synthetic and real-world 
domains.

Figure 11  Multi-class reconstructed point clouds

Table 4  Reconstruction error in multi-class tests

Airplane Bed Bench Bus Chair Rifle Mean

Ref. [46] 1.870 3.383 1.668 2.241 1.844 2.589 2.264

Ref. [45] 1.421 3.010 1.601 1.278 1.742 1.620 1.778

Ours 1.052 3.009 1.571 1.286 1.625 0.882 1.571
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5 � Conclusions
We introduced an approach for complete 3D point cloud 
reconstruction from a single RGB image.

(1)	 We combined an encoder-decoder framework, for 
generative structure prediction from a single RGB 
image, and an optimization framework based on a 
differentiable renderer module, whereby the train-
ing is supervised through 2D observations in novel 
views.

(2)	 By adding a pose estimation network, the renderer 
is designed to be differentiable for both point cloud 
reconstruction and viewpoint pose prediction, 
which allows end-to-end training and avoids the 
need for viewpoint pose, structure, or mask annota-
tions in the datasets.

(3)	 Experimental results for synthetic and real-world 
datasets demonstrated that our approach is robust 
to appearance changes and self-occlusions, and 
shows superior accuracy, density, model complete-
ness, and generalization potential compared to 
state-of-the-art methods.
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