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Abstract 

Deep learning has become an extremely popular method in recent years, and can be a powerful tool in complex, 
prior-knowledge-required areas, especially in the field of biomedicine, which is now facing the problem of inadequate 
medical resources. The application of deep learning in disease diagnosis has become a new research topic in derma-
tology. This paper aims to provide a quick review of the classification of skin disease using deep learning to summa-
rize the characteristics of skin lesions and the status of image technology. We study the characteristics of skin disease 
and review the research on skin disease classification using deep learning. We analyze these studies using datasets, 
data processing, classification models, and evaluation criteria. We summarize the development of this field, illustrate 
the key steps and influencing factors of dermatological diagnosis, and identify the challenges and opportunities at 
this stage. Our research confirms that a skin disease recognition method based on deep learning can be superior to 
professional dermatologists in specific scenarios and has broad research prospects.
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1  Introduction
Skin lesions are a common disease that cause suffer-
ing, some of which can have serious consequences, for 
millions of people globally [1]. Because of its complex-
ity, diversity, and similarity, skin disease can only be 
diagnosed by dermatologists with long-term clinical 
experience and is rarely reproducible. It is likely to be 
misdiagnosed by an inexperienced dermatologist, which 
can exacerbate the condition and impede appropriate 
treatment. Thus, it is necessary to provide a quick and 
reliable method to assist patients and dermatologists in 
data processing and judgment.

Advances in deep learning have influenced numer-
ous scientific and industrial fields and have realized sig-
nificant achievements with inspiration from the human 
nervous system. With the rapid development of deep 
learning in biomedical data processing, numerous spe-
cialists have adopted this technique to acquire more 

precise and accurate data. With the rapid increase in the 
amount of available biomedical data including images, 
medical records, and omics, deep learning has achieved 
considerable success in a number of medical image pro-
cessing problems [2–4]. In this regard, deep learning is 
expected to influence the roles of image experts in bio-
medical diagnosis owing to its ability to perform quick 
and accurate assessments. This paper presents the char-
acteristics of skin lesions, overviews image techniques, 
generalizes the developments in deep learning for skin 
disease classification, and discusses the limitations and 
direction of automatic diagnosis.

2 � Features of Skin Disease
The skin is the largest organ of the human body; in 
adults, it can typically weigh 3.6 kg and cover 2 m2 [5]. 
Skin guards the body against extremes of temperature, 
damaging sunlight, and harmful chemicals. As a highly 
organized structure, it consists of the epidermis, dermis, 
and hypodermis, providing the functions of protection, 
sensation, and thermoregulation [6]. The epidermis, the 
outermost layer of the skin, provides an excellent aegis 
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to avoid environmental aggression. The dermis, beneath 
the epidermis, contains tough connective tissue, hair fol-
licles, and sweat glands, which leads to the differentiation 
of skin appearance [7]. There are numerous causes of skin 
disease, including physical factors such as light, temper-
ature, and friction, and biological factors such as insect 
bites, allergic diseases, and even viral infections. Envi-
ronmental and genetic factors can also lead to the occur-
rence of skin diseases. In lesion imaging, complicating 
difficulties can include variations in skin tone, presence 
of artifacts such as hair, air bubbles, non-uniform light-
ing, and the physical location of the lesion. Moreover, the 
majority of lesions vary in terms of color, texture, shape, 
size, and location in an image frame [8]. There are 5.4 
million new skin cancer patients in America every year. 
As of 2014, there were 420 million people globally suffer-
ing from skin disease, including nearly 150 million peo-
ple in China, the population of which accounts for 22% 
of the world’s population, yet medical resources account 
for only 2%. Influenced by the living environment, areas 
with reduced economic development and poverty are 
more prone to skin disease. The high cost of treatment, 
repeated illness occurrences, and delays in treatment 

have focused attention on the requirement for healthy 
survival and social development. The high cost of treat-
ment, repeated illness occurrences, and delays in treat-
ment have brought challenges to the healthy survival and 
social development.

The accurate diagnosis of a particular skin disease can 
be a challenging task, mainly for the following reasons. 
First, there are numerous kinds of dermatoses, nearly 
3000 recorded in the literature. Stanford University has 
developed an algorithm to demonstrate generalizable 
classification with a new dermatologist-labeled dataset of 
129450 clinical images divided into 2032 categories [9]. 
Figure 1 displays a subset of the full taxonomy; this has 
been organized clinically and visually by medical experts. 
Secondly, the complex manifestation of the disease is also 
a major challenge for doctors. Morphological differences 
in the appearance of skin lesions directly influence the 
diagnosis mainly as there can be relatively poor contrast 
between different skin diseases, which cannot be distin-
guished without considerable experience. Finally, for dif-
ferent skin diseases, the lesions can be overly similar to 
be distinguished using only visual information. Different 
diseases can have similar manifestations and the same 

Figure 1  Subset of top of tree-structured taxonomy of skin disease ( Reproduced with permission from Ref. [9] and credit (CC BY 4.0))
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disease can have different manifestations in different 
people, body parts, and disease periods [10]. Figure 2 dis-
plays sample images demonstrating the difficulty in dis-
tinguishing between malignant and benign lesions, which 
share several visual features. Unlike benign skin diseases, 
malignant diseases, if not treated promptly, can lead seri-
ous consequences. Melanoma [11], for example, is one of 
the major and most fatal skin cancers. The five-year sur-
vival rate of melanoma can be greater than 98% if found 
in time; this figure in those where spread has occurred 
demonstrates a significant drop to 17% [12]. In 2015, 
there were 3.1 million active cases, representing approxi-
mately 70% of skin cancer deaths worldwide [13, 14].

The diagnosis of skin disease relies on clinical experi-
ence and visual perception. However, human visual diag-
nosis is subjective and lacks accuracy and repeatability, 
which is not found in computerized skin-image analysis 
systems. The use of these systems enables inexperienced 
operators to prescreen patients [15]. Compared with 
other diseases or applications such as industrial fault 
diagnosis, the visual manifestation of skin disease is more 
prominent, facilitating the significant value of deep learn-
ing in image recognition with visual sensitivity. Through 
the study of large detailed images, dermatology can 
become one of the most suitable medical fields for tel-
emedicine and artificial intelligence (AI). Using imaging 

methods, it could be possible for deep learning to assist 
or even replace dermatologists in the diagnosis of skin 
disease in the near future.

3 � Image Methods
Deep learning is a class of machine learning that auto-
matically learns hierarchical features of data using multi-
ple layers composed of simple and nonlinear modules. It 
transforms the data into representations that are impor-
tant for discriminating the data [16]. As early as 1998, 
the LeNet network was proposed for handwritten digital 
recognition [17]. However, owing to the lack of compu-
tational power, it was difficult to support the required 
computation. Until 2012, this method was successfully 
applied and overwhelmingly outperformed previous 
machine learning methods for visual recognition tasks 
at a competitive challenge in the ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) [18, 19]. This 
was a breakthrough that used convolutional networks to 
virtually halve the error rate for object recognition, and 
precipitated the rapid adoption of deep learning by the 
computer vision community [16]. Since then, deep learn-
ing algorithms have undergone considerable develop-
ment because of the improved capabilities of hardware 
such as graphics processing units (GPUs). Different mod-
els, such as ZFNet [20], VGG [21], GoogLeNet [22], and 

Figure 2  Malignant and benign sample images from two disease classes ( Reproduced with permission from Ref. [9] and credit (CC BY 4.0))
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ResNet [23], have been proposed. The top-5 error rate in 
ImageNet dropped from 16.4% in 2012 to 2.25% in 2017 
(Figure 3); correspondingly, that of humans was approxi-
mately 5%. It has dramatically improved tasks in different 
scientific and industrial fields including not only com-
puter vision but also speech recognition, drug discovery, 
clinical surgery, and bioinformatics [24–26].

The structure of a convolutional neural network 
(CNN), which is a representative deep learning algo-
rithm, is displayed in Figure 4. The actual model is simi-
lar to this figure, in addition to deeper layers and more 
convolution kernels. A CNN is a type of “feedforward 
neural network” inspired by human visual perception 
mechanisms, and can learn a large number of mappings 
between inputs and outputs without any precise mathe-
matical expression between them. The first convolutional 

filter of the CNN is used to detect low-order features 
such as edges, angles, and curves. As the convolutional 
layer increases, the detected features become more com-
plex [20]. The pooling layer, or named subsampling layer, 
converts a window into a pixel by taking the maximum or 
average value [27], which can reduce the size of the fea-
ture map. After the image passes the last fully connected 
layer, the model maps the learned distributed feature to 
the sample mark space and provides the final classifica-
tion type. The layout of the CNN is similar to the bio-
logical neural network, with sparse structures and shared 
weights, which can reduce the number of parameters and 
improve the fitting effect to prevent overfitting. Deep 
CNNs demonstrate the potential for variable tasks across 
numerous fine-grained object categories and have unique 
advantages in the field of image recognition.

Figure 3  Deeper networks, lower error rates

Figure 4  CNN architecture and principles
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The selection of a suitable model is crucial. The Goog-
LeNet model, with a structure called inception (Fig-
ure  5), is proposed which can not only maintain the 
sparsity of the network structure but can also use the 
high computational performance of the dense matrix 
[22]. GoogLeNet has been learned and used by numerous 
researchers because of its excellent performance. There-
fore, the Google team has further explored and improved 
it, resulting in an upgraded version of GoogLeNet, 
Inception v3 [28], which has become the first choice for 
current research. With Google’s Inception v3 CNN archi-
tecture pretrained to a high-level accuracy on the 1000 
object class of ImageNet, researchers can remove the 
final classification layer from the network, retrain it with 
their own dataset, and fine-tune the parameters across all 
the layers.

Google’s TensorFlow [29], Caffe [30], and Theano 
[31] deep learning frameworks can be used for training. 
Theano is a Python library and optimizing compiler for 
manipulating and evaluating mathematical expressions. 
It pioneered the trend of using symbolic graphs for pro-
gramming a network; however, it lacks a low-level inter-
face and the inefficiency of the Python interpreter limits 
its usage. Caffe’s ConvNet implementation with numer-
ous extensions being actively added is excellent; however, 
its support for recurrent networks and language mod-
eling in general is poor. If both CPU and GPU supports 
are required, additional functions must be implemented. 
Specifying a new network is fairly easy in TensorFlow 
using a symbolic graph of vector operations; however, it 
has a major weakness in terms of modeling flexibility. It 
has a clean, modular architecture with multiple frontends 
and execution platforms, and the library can be compiled 
on Advanced RISC Machines (ARM).

Deep learning has been gradually applied to medi-
cal image data, as medical image analysis approaches 
are considerably similar to computer vision techniques 

[32]. Although numerous studies were initially under-
taken using relatively small datasets and a pretrained 
deep learning model as a feasibility study, a robust vali-
dation of the medical application is required [33–35]. 
Hence, big data from medical images have been col-
lected to validate the feasibility of medical applications 
[9, 36]. For example, Google researchers collected large 
datasets consisting of more than 120,000 retinal fundus 
images for diagnosing diabetic retinopathy and dem-
onstrated high sensitivity and specificity for detection 
[37].

Owing to the development of hardware and advance-
ment of the algorithms, deep learning now includes con-
siderably more functionality than could previously be 
imagined. Researchers are now more likely to predict and 
distinguish what is difficult to diagnose with complex 
mechanisms and similar characterizations [38, 39]. Deep 
learning is a powerful machine learning algorithm for 
classification while extracting low- to high-level features 
[40, 41]. A key difference in deep learning compared to 
other diagnostic methods is its self-learning nature. The 
neural network is not designed by humans; rather, it is 
designed by the data itself. Table 1 presents several pub-
lished achievements on disease diagnosis using pictures 
or clinical images, which proves that deep learning can 
be compared with professional specialists in certain 
fields. Furthermore, many researchers have indicated 
interest in mobile diagnostics that allow the use of mobile 
technology. Smartphones with sufficient computing 
power and fast development to extend the versatility and 
utility could be used to scan, calculate, analyze anytime 
and anywhere to detect skin disease [42–44]. Research-
ers have developed such a system based on AI that allows 
users to install apps on their smartphones and analyze 
and judge suspicious lesions on the body by taking a pic-
ture [45].

Figure 5  Inception module: (a) Inception module, naïve version; (b) Inception module with dimension reductions
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4 � Skin Disease Classification Using Deep Learning
Using the deep learning technique, the pattern recogni-
tion of images can be performed automatically once the 
program is established. Images can be input to a CNN 
with high fidelity and important features can be automat-
ically obtained. Therefore, information extraction from 
images prior to the learning process is not necessary with 
this technique. In shallow layers, simple features such as 
the edges within the images are learned. At deep layers 
near the output layer, more complex high-order features 
are learned [56]. Different researchers, institutions, and 
challenges are working on the automatic diagnosis of 
skin disease, and different deep learning methods have 
been developed for the recognition of dermatological dis-
ease; these have been proven to be effective in numerous 
fields [57]. For example, the International Skin Imaging 
Collaboration (ISIC) is a challenge that focuses on the 
automatic analysis of skin lesions. The goal of the chal-
lenge (started in 2017) is to support the research and 
development of algorithms for the automated diagno-
sis of melanoma including lesion segmentation, dermo-
scopic feature detection within a lesion, and classification 
of melanoma [58, 59], which is also the main goal in the 
field of dermatology [60]. In general, this method is a 
modeling framework that can learn the functional map-
ping from the input images to output. The input image is 
a preprocessed image; the output image is a segmentation 
mask. The network structure involves a series of convo-
lution and pooling layers, followed by a fully connected 

layer, followed by a series of unpooling and disconnec-
tion operations [61].

The diagnosis of skin diseases typically consists of four 
components: image acquisition, image preprocessing, 
feature extraction and classification, and evaluation of 
the criteria. Image acquisition is the basis for skin classi-
fication, and more images typically indicate greater accu-
racy and better adaptability (for the data size of selected 
projects, please refer to Table 2). Preprocessing is used to 
crop and zoom the images and segment lesions for better 
training. Feature extraction mainly acquires the features 
of the skin lesions through color, texture, and boundary 
information. The evaluation of the results is the final step, 
which is used to judge whether the classification model is 
reasonable and achieves its objective.

4.1 � Image Acquisition
Deep learning requires a large number of images to 
extract disease features. These datasets are typically avail-
able from the Internet, open dermatology databases, and 
hospitals in collaboration with research units, and are 
labeled by professional dermatologists after removing 
blurry and distant images. An excellent dataset should be 
composed of dermoscopic images. Dermoscopy is a non-
invasive skin imaging technology that can observe the 
skin structure at the junction of the epidermis and der-
mis, and clearly indicate the nature, distribution, arrange-
ment, edge, and shape of pigmented skin lesions. Because 
of the uncertainty of imaging conditions, such as shoot-
ing angle, illumination, and storage pixels, the imaging 

Table 1  Selected applications of deep learning

Disease type Diagnostic target Architecture Accuracy Control group

Skin cancer [9] Multiple classification Inception v3 CNN > 0.960 ~ 0.880

Congenital cataract [35] Binary classification,
object localization

VGG 0.976‒0.989 ‒

Pneumonia [36] Multiple classification, object 
detection

CheXNet 0.735‒0.937 0.633‒0.914

Diabetic retinopathy [37] Binary classification Inception v3 0.840 0.800‒0.910

Cardiovascular disease [38] Binary classification ‒ 0.764 0.728

Alzheimer’s disease [40] Binary classification LeNet,
GoogLeNet

0.845‒0.988 ‒

Genetic disorders [46] Binary classification DeepGestalt 0.920‒0.969 0.710‒0.870

Cutaneous tumors[47 Multiple classification ResNet-152 0.96 ‒
Melanoma[48] Binary classification Inception v4 0.860 0.790

Malaria parasites [49, 50] Binary classification,
logistic regression

CNN 0.897 ‒

Cardiac contractile dysfunction [51] Binary classification CNN 0.835‒0.925 ‒
Arrhythmia [52] Multiple classification DNN 0.837 0.780

Melanoma and Seborrheic keratosis [53] Binary classification DCNN 0.917 0.886

Skin tumor [54] Multiple classification DCNN 0.924 0.853

Melanoma [55] Binary classification ResNet-152 0.944 0.823
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effect of non-dermoscopic images can be influenced. 
Selected published datasets are listed in Table 3 covering 
more than a dozen kind of skin diseases, among which 
melanoma has the greatest probability of occurrence. 
However, owing to the lack of a unified standard for skin 
disease images, the labeling of images is time-consuming 
and labor-intensive, which significantly limits the size of 
the current public datasets. Therefore, numerous studies 
have combined multiple datasets for use [43, 63].

4.2 � Image Preprocessing
Effective image quality can improve the generalization 
ability of a model. Preprocessing can reduce irrelevant 
information in the image, improve the intensity of the 
relevant information, simplify the data, and improve the 
reliability. The general image preprocessing process is as 
follows:

(1)	 Image segmentation. Skin lesion segmentation is 
the essential step for the majority of classification 
tasks. Accurate segmentation contributes to the 
accuracy, computation time, and error rate of sub-
sequent lesion classification [71, 72]. It is crucial for 
image analysis for the following two reasons. First, 
the border of a lesion provides important infor-
mation for accurate diagnosis, including numer-
ous clinical features such as asymmetry and bor-
der irregularity. Secondly, the extraction of other 
important clinical features such as atypical dots and 
color variegation critically depends on the accu-
racy of the border detection [8, 73]. Given a input-
ted dermoscopic image (Figure 6a), the goal of the 
segmentation process is to generate a two-dimen-
sional mask (Figure  6b) that provides an accurate 
separation between the lesion area and surrounding 
healthy skin [74].

Table 2  Data size of selected deep learning projects

Disease type Images type Database Training set Testing set

Skin cancer [9] Clinical and dermoscopy images 129450 127463 1942

Cutaneous tumors [47] Clinical images 17125 15408 1276

Genetic disorders [46] Facial images 17000 1693 32

Melanoma [62] Dermoscopic images 1250 900 350

Melanoma [53] Dermoscopic images 2750 2000 600

Skin tumor [54] Clinical images 6009 4867 1142

Table 3  Skin disease datasets

Name Number 
of 
images

Disease 
classification

Image type

BCN2000 [64] 19424 8 Dermoscopic images

HAM10000 [65] 10015 7 Dermoscopic images

ISIC Archive [66] 23906 7 Dermoscopic images

ISIC 2016 [58] 1279 2 Dermoscopic images

ISIC 2017 [67] 2000 3 Dermoscopic images

ASan [47] 17125 12 Clinical images

Pigmentary dermato-
sis [68]

12816 6 Clinical images

DermQuest [69] ‒ ‒ Clinical images

Dermnet [70] ‒ ‒ Clinical images

Figure 6  Skin lesion segmentation: (a) Dermoscopic image input; (b) Binary mask output
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(2)	 Resize. Lesions frequently occupy a relatively small 
area, although skin images can be considerably large 
[75, 76]. Before this task, images for a deep learn-
ing network should be preprocessed because the 
resolution of the original lesion images is typically 
overly large, which entails a high computation cost 
[77]. Accurate skin lesion segmentation enhances 
its capability by incorporating a multiscale contex-
tual information integration scheme [62]. To avoid 
distorting the shape of the skin lesion, the images 
should be cropped to the center area first and 
then proportionally resized. Images are frequently 
resized to 224×224 or 227×227 pixels through 
scaling and clipping [78], which is the appropriate 
size after combining the amount of calculation and 
information density.

(3)	 Normalization. The image data are mapped to the 
interval of [0,1] or [−1,1] in the same dimension. 
The essence of normalization is a kind of linear 
transformation that does not cause “failure” after 
changing the data. Conversely, it can improve the 
performance of the data, accelerate the solution 
speed of gradient descent, and enhance the conver-
gence speed of the model.

(4)	 Data augmentation. Owing to privacy and profes-
sional equipment problems, it is difficult to collect 
sufficient data in the process of skin disease identifi-
cation. A data set that is overly small can easily lead 
to overfitting owing to the lack of learning ability 
of the model, which makes the network model lack 
generalization ability. A method called data aug-
mentation is adopted to expand the dataset to meet 
the requirements of deep learning for big data, such 
as rotation, random cropping, and noise [79]. Fig-
ure 7 displays several methods of image processing 
by which the image database can be extended to 
meet the training requirements.

4.3 � Feature Extraction and Classification
Early detection of lesions is a crucial step in the field of 
skin cancer treatment. There is a significant benefit if this 
can be achieved without penetrating the body. Feature 
extraction of skin disease is an important tool that can 
be used to properly analyze and explore an image [80]. 
Feature extraction can be simply viewed as a dimension-
ality reduction process; that is, converting picture data 
into a vector of a certain dimension with picture fea-
tures. Before deep learning, this was typically determined 
manually by dermatologists or researchers after inves-
tigating a large number of digital skin lesion images. A 
well-known method for feature extraction is based on the 

ABCD rule of dermoscopy. ABCD stands for asymmetry, 
border structure, color variation, and lesion diameter. It 
defines the basis for disease diagnosis [81]. The extracted 
and fused traits such as color, texture, and Histogram of 
Oriented Gradient (HOG) are applied subsequently with 
a serial-based method. The fused features are selected 
afterwards by implementing a novel Boltzman entropy 
method [82], which can be used for the early detection. 
However, this typically has enormous randomness and 
depends on the quantity and quality of the pictures, as 
well as the experience of the dermatologists.

From a classification perspective, feature extraction has 
numerous benefits: (i) reducing classifier complexity for 
better generalization, (ii) improving prediction accuracy, 
(iii) reducing training and testing time, and (iv) enhanc-
ing the understanding and visualization of the data. The 
mechanism of neural networks is considerably different 
from that of traditional methods. Visualization indicates 
that the first layers are essentially calculating edge gradi-
ents and other simple operations such as SIFT [83] and 
HOG [84]. The folded layers combine the local patterns 
into a more global pattern, ultimately resulting in a more 
powerful feature extractor. In a study using nearly 130000 
clinical dermatology images, 21 certified dermatologists 
tested the skin lesion classification with a single CNN, 
directly using pixels and image labels for end-to-end 
training; this had an accuracy of 0.96 for carcinoma [9]. 
Subsequently, researchers used deep learning to develop 
an automated classification system for 12 skin disorders 
by learning the abnormal characteristics of a malignancy 
and determined visual explanations from the deep net-
work [47]. A third study combined deep learning with 
traditional methods such as hand-coded feature extrac-
tion and sparse coding to create a collection for mela-
noma detection that could yield higher performance than 
expert dermatologists. These results and others [85–87] 
confirm that deep learning has significant potential to 
reduce doctors’ repetitive work. Despite problems, it 
would be a significant advance if AI could reliably simu-
late experienced dermatologists.

4.4 � Evaluation Criteria and Benchmarking
Evaluation and criterion, typically based on the following 
three points, reliability, time consumption, and training 
and validation are vital in this field [88]. Researchers [73, 
89, 90] have used all three criteria to develop and design 
methods and techniques for detecting and diagnosing 
skin disease. Others [71, 91, 92] have used only two crite-
ria, reliability, and training and validation to evaluate and 
discuss the different types of classifiers.

Numerous studies have demonstrated that accept-
able reliability, time complexity, and error rates within 
a dataset cannot be achieved at the same time; hence, 
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researchers must establish different standards. Once 
one of them is selected, the performance of the others 
diminishes [90, 93]. Consequently, conflicts among der-
matological evaluation criteria pose a serious challenge 
to dermatological classification methods. These require-
ments must be considered during the evaluation and 
benchmarking. The dermatological classification method 
should standardize the requirements and objectives and 
use a programmatic process in research, evaluation, 
and benchmarking. Moreover, new flexible evaluations 
should address all conflicting standards and issues [94].

Despite the conflicts, important criteria are the key 
goals for evaluation and benchmarking. It is necessary 
to develop appropriate procedures for these goals while 

increasing the importance of specific evaluation crite-
ria and decreasing other standards [95]. When evalu-
ating the results obtained using the diagnostic model, 
researchers must consider the quality of the dataset used 
to build the model and choose the parameters that can 
adjust that model. The time complexity and error rate in 
the dataset have proven to be important in the field of 
dermatology, which, with more consideration during the 
evaluation process, can optimize the consistency of the 
results [63]. In general, the goal is to obtain a balanced 
classifier for sensitivity and specificity.

Figure 7  Data argumentation: (a) Original image; (b) Flip; (c) Random crop; (d) Rotation; (e) Shift; (f) Color jittering; (g) Noise; (h) Standardization; 
and (i) Paste



Page 10 of 14Zhang et al. Chinese Journal of Mechanical Engineering          (2021) 34:112 

5 � Limitations and Prospect
5.1 � Limitations
In general, the advantage of AI is that it can help doc-
tors perform tedious repetitive tasks. For example, if suf-
ficient blood is scanned, an AI-powered microscope can 
detect low-density infections in micrographs of standard, 
field-prepared thick blood films, which is considered to 
be time-consuming, difficult, and tedious owing to the 
low density and small parasite size and abundance of 
similar non-parasite objects [49]. The requirement for 
staff training and purchase of expensive equipment for 
creating dermoscopic images can be replaced by software 
using CNNs [96]. In the future, the clinical application of 
deep learning for the diagnosis of other diseases can be 
investigated. Transfer learning could be useful in devel-
oping CNN models for relatively rare diseases. Models 
could also evolve such that they require fewer preproc-
essing steps. In addition to these topics, a deeper under-
standing of the reconstruction kernel or image thickness 
could lead to improved deep learning model perfor-
mance. Positive effects should continue to grow owing 
to the emergence of higher precision scanners and image 
reconstruction techniques [56]. However, we must real-
ize that although AI has the ability to defeat humans in 
several specific fields, in general the performance of AI is 
considerably less than acceptable in the majority of cases 
[97]. The main reasons for this are as follows.

(1)	 Medicine is an area that is not yet fully under-
stood. Information is not completely transparent. 
The characteristics of dermatology determine that 
the majority of the data cannot be obtained. At 
the same time, the AI technology route is imma-
ture, the identification accuracy of which must be 
improved owing to the uncertainty of manual diag-
nosis. There is no strict correspondence between 
the symptoms and results of a disease and no clear 
boundary between the different diseases. Thus, the 
use of deep learning for disease diagnosis continues 
to require considerable effort.

(2)	 Before systematic debugging, extensive simula-
tion, and robust validation, flawed algorithms could 
harm patients, which could lead to medical ethi-
cal issues, and therefore require forward-looking 
scrutiny and stricter regulation [98]. As a “black 
box”, the principle of deep learning is unexplained 
at this stage, which could result in unpredictable 
system output. Moreover, it is possible that humans 
could not truly understand how a machine func-
tions, even though it is actually inspired by humans 
[99, 100]. Hence, whether or not patient care can 
be accepted using an opaque algorithm remains a 
point of discussion.

(3)	 There is a problem with the change in the error rate 
value in a dataset, which is caused by the change in 
the size of the dataset used in different skin can-
cer experiments. Therefore, the lack of a stand-
ard dataset can lead to serious problems; the error 
rate values are considered in many experiments. In 
addition, the collection of datasets for numerous 
studies depends on individual research, leading to 
unnecessary effort and time. When the actual class 
is manually marked and compared to the predicted 
class to calculate one of the parameter matrices, 
pixels are lost when the background is cut from the 
skin cancer image using Adobe Photoshop [101]. At 
this point, the process influences the results of all 
the parameter reliability groups (matrices, relation-
ships, and behaviors), which are considered contro-
versial. High reliability and low rate of time com-
plexity cannot be achieved simultaneously, which 
is reflected in the training process and is influenced 
by conflicts between different standards, leading to 
considerable challenges [93, 102]. A method that 
works for the detection of one skin lesion could 
possibly not work for the detection of others [103]. 
Numerous different training and test sets have been 
used to evaluate the proposed methods. Moreo-
ver, for the parameters in the training and evalua-
tion, different researchers are interested in different 
parts. This lack of uniformity and standardization 
across all papers makes a fair comparison virtually 
impossible [50, 104]. Although these indicators in 
the literature have been widely criticized, studies 
continue to use them to evaluate the application to 
skin cancer and other image processing fields.

(4)	 The data used for evaluation are frequently overly 
small to allow a convincing statement regarding 
a system’s performance to be made. Although it 
is not impossible to collect an abundance of rel-
evant data through the Internet in this information 
age, this information, with significant uncertainty, 
apparently cannot meet the requirements of inde-
pendent and identical distribution, which is one of 
the important prerequisites for deep learning to 
be successfully applied. For certain rare diseases 
and minorities, only a limited number of images 
are available for training. To date, a large number 
of algorithms have demonstrated prejudice against 
minority groups, which could cause a greater gap in 
health service between the “haves” and the “have-
nots” [105]. Numerous cases are required for the 
training process using deep learning techniques. In 
addition, although the deep learning technique has 
been successfully applied to other tasks, the devel-
oped models in skin are valid in only specific dedi-
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cated diseases and are not applicable to common 
situations. Diagnosing dermatology is a complex 
process that, in addition to image recognition, must 
be supplemented by other means such as palpation, 
smell, temperature change, and microscopy.

5.2 � Prospect
Deep learning has made considerable progress in the field 
of skin disease recognition. More attempts and explo-
rations in the future can be considered in the following 
aspects.

(1)	 Establishment of standardized skin disease image 
dataset

	 A large amount of data is the basis of skin disease 
recognition and the premise of acceptable gener-
alization ability of the network model. However, 
the number of images, disease types, image size, 
and shooting and processing methods of the pub-
lished datasets are considerably different, which 
leads to the confusion of different studies and the 
loss of the ability to quantitatively describe different 
models, Moreover, it is difficult to collect images of 
certain rare diseases. As mentioned above, there 
are numerous kinds of skin diseases; however, only 
approximately 20 datasets are available, includ-
ing less than 20 kinds of skin diseases. There is an 
urgent requirement to expand access to medi-
cal images. For example, Indian researchers have 
trained neural networks to analyze images from 
“handheld imaging devices” instead of stationary 
dermatoscope devices to provide more prospects 
for early and correct diagnosis [106]. However, a 
public database that allows the collection of a suf-
ficient number of labeled datasets is likely necessary 
to truly represent projections of the population.

(2)	 Interpretability of skin disease recognition
	 The progress of deep learning in skin disease recog-

nition depends on a highly nonlinear model and 
parameter adjustment technology. However, the 
majority of the neural networks are “black box” 
models, and their internal decision-making process 
is difficult to understand. This “end-to-end” deci-
sion-making mode leads to the weak explanatory 
power of deep learning. The internal logic of deep 
learning is not clear, which makes the diagnosis 
results of the model less convincing. The interpret-
ability research of skin disease classification could 
allow the owner of the system to clearly know the 
behavior and boundary of the system, and ensure 
the reliability and safety of the system. Moreover, 
it could monitor the moral problems and viola-

tions caused by training data deviation and provide 
a superior mechanism to follow the requirements 
within an organization to solve the bias and audit 
problems caused by AI [107].

(3)	 Intelligent diagnosis and treatment of skin diseases
	 Deep learning can be used to address the increasing 

number of patients with skin disease and relieve the 
pressure of limited dermatologists. With the popu-
larity of mobile phones, mobile computers, and 
wearable devices, a skin disease recognition sys-
tem based on deep learning can be expected to be 
available to intelligent devices to serve more people. 
Using a mobile device camera, users can upload 
their own photos of the affected area to the cloud 
recognition system and download the diagnosis 
results at any time. Through simple communica-
tion with the “skin manager”, diagnosis suggestions 
and possible treatment methods could be available. 
Furthermore, the “skin manager” could monitor the 
user’s skin condition and provide real-time protec-
tion methods and treatment suggestions.

Computer diagnostic systems can assist trained der-
matologists rather than replace them. These systems 
can also be useful for untrained general practitioners 
or telemedicine clinics. For health systems, improving 
workflows could increase efficiency and reduce medi-
cal errors. Hospitals could make use of large-scale data 
and recommend data sharing with a cloud-based plat-
form, thus facilitating multihospital collaboration [108]. 
For patients, it should be possible to enjoy the medical 
resources of the top hospitals in big cities in remote and 
less modernized areas by telemedicine or enabling them 
to process their own data [109].

6 � Conclusions
The potential benefits of deep learning solutions for 
skin disease are tremendous and there is an unparal-
leled advantage in reducing the repetitive work of der-
matologists and pressure on medical resources. Accurate 
detection is a tedious task that inevitably increases the 
demand for a reliable automated detection process that 
can be adopted routinely in the diagnostic process by 
expert and non-expert clinicians. Deep learning is a 
comprehensive subject that requires a wide range of 
knowledge in engineering, information, computer sci-
ence, and medicine. With the continuous development 
of the above fields, deep learning is undergoing rapid 
development and has attracted the attention of numer-
ous countries. Powered by more affordable solutions, 
software that can quickly collect and meaningfully pro-
cess massive data, and hardware that can accomplish 
what people cannot, it is evident that deep learning for 
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the identification of skin disease is a potential technique 
in the foreseeable future.

Acknowledgements
Not applicable.

Authors’ contributions
BZ was in charge of the whole trial; XZ wrote the manuscript; YCL assisted with 
structure and language of the manuscript. HZ designed the experiments; HYY 
assisted with experimental setup; LM and JEM jointly supervised this work; All 
authors read and approved the final manuscript.

Authors’ information
Bin Zhang received his PhD degree in Engineering from Zhejiang University, 
China, in 2009. Currently, he is a researcher at School of Mechanical Engineer-
ing, Zhejiang University, China. His research interests include intelligent digital 
hydraulics and biological manufacturing based on fluid extrusion.
Xue Zhou received his B.S. degree in mechanical design and manufacturing 
from Xiamen University, China, in 2017. He is currently a PhD candidate at State 
Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, 
China. His research mainly focuses on in vivo 3D printing and skin wound 
detection and repair.
Yichen Luo received his B.S. degree from Southeast University, China, in 2015. 
He is currently a PhD candidate at State Key Laboratory of Fluid Power Trans-
mission and Control, Zhejiang University, China. His research mainly interests 
include 3D bioprinting and biological manufacturing.
Hao Zhang received his master degree from Zhejiang University, China, in 2019. 
Her research interests include deep learning and skin disease classification.
Huayong Yang received his PhD degree from the University of Bath, United 
Kingdom, in 1988. He is the dean of School of Mechanical Engineering, Zhejiang 
University, China. He was elected as an academician of the Chinese Academy 
of Engineering in 2013. His research mainly focuses on energy saving of fluid 
power and electromechanical systems and 3D printing of biological organs.
Jien Ma received her PhD degree from Zhejiang University, China, in 2009. She 
is currently a professor at College of Electrical Engineering, Zhejiang University, 
China. Her research interests include electrician theory and new energy 
technology.
Liang Ma received his PhD degree from University of Washington, USA, 2012. 
He is currently as an associate professor at School of Mechanical Engineering, 
Zhejiang University, China. His research interests include organ bioprinting and 
Microfluidic chip.

Funding
Supported by Key Research and Development Projects of Zhejiang Province 
of China (Grant No. 2017C01054), National Key Research and Development 
Program of China (Grant No. 2018YFA0703000), National Natural Science Foun-
dation of China (Grant No. 51875518), and Fundamental Research Funds for 
the Central Universities of China (Grant Nos. 2019XZZX003-02, 2019FZA4002).

Competing interests
The authors declare there is no competing interests.

Author Details
1 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang 
University, Hangzhou 310058, China. 2 School of Mechanical Engineering, Zhe-
jiang University, Hangzhou 310058, China. 3 College of Electrical Engineering, 
Zhejiang University, Hangzhou 310027, China. 

Received: 10 November 2020   Revised: 16 May 2021   Accepted: 8 October 
2021

References
	 [1]	 T Tarver. Cancer Facts & Figures 2012. American Cancer Society (ACS). 

Journal of Consumer Health on the Internet, 2012, 16(3): 366-367.
	 [2]	 G M Weber, K D Mandl, I S Kohane. Finding the missing link for big 

biomedical data. Jama, 2014, 311(24): 2479.

	 [3]	 D-M Filimon, A Albu. Skin diseases diagnosis using artificial neural net-
works. 2014 IEEE 9th IEEE International Symposium on Applied Computa-
tional Intelligence and Informatics (SACI), IEEE, 2014: 189-194, https://​doi.​
org/​10.​1109/​SACI.​2014.​68400​59.

	 [4]	 A Serener, S Serte. Geographic variation and ethnicity in diabetic 
retinopathy detection via deeplearning. Turkish Journal of Electrical 
Engineering and Computer Sciences, 2020, 28(2): 664-678.

	 [5]	 B Zhang, Y Luo, L Ma, et al. 3D bioprinting: an emerging technology full 
of opportunities and challenges. Bio-Design and Manufacturing, 2018, 
1(1): 2-13.

	 [6]	 S Pathan, K G Prabhu, P Siddalingaswamy. Techniques and algorithms 
for computer aided diagnosis of pigmented skin lesions—A review. 
Biomedical Signal Processing and Control, 2018, 39: 237-262.

	 [7]	 A Paradisi, S Tabolli, B Didona, et al. Markedly reduced incidence of 
melanoma and nonmelanoma skin cancer in a nonconcurrent cohort 
of 10,040 patients with vitiligo. Journal of the American Academy of 
Dermatology, 2014, 71(6): 1110-1116.

	 [8]	 M E Celebi, Q Wen, H Iyatomi, et al. A state-of-the-art survey on lesion 
border detection in dermoscopy images. Dermoscopy Image Analysis, 
2015: 97-129.

	 [9]	 A Esteva, B Kuprel, R A Novoa, et al. Dermatologist-level classification of 
skin cancer with deep neural networks. Nature, 2017, 542(7639): 115.

	 [10]	 A Steiner, H Pehamberger, K Wolff. Improvement of the diagnostic 
accuracy in pigmented skin lesions by epiluminescent light micros-
copy. Anticancer Research, 1987, 7(3): 433-434.

	 [11]	 S Joseph, J R Panicker. Skin lesion analysis system for melanoma detec-
tion with an effective hair segmentation method. 2016 International 
Conference in Information Science (ICIS), IEEE, 2016: 91-96, https://​doi.​
org/​10.​1109/​infos​ci.​2016.​78453​07.

	 [12]	 P Zaenker, L Lo, R Pearce, et al. A diagnostic autoantibody signature for 
primary cutaneous melanoma. Oncotarget, 2018, 9(55): 30539.

	 [13]	 C Barata, M Ruela, M Francisco, et al. Two systems for the detection of 
melanomas in dermoscopy images using texture and color features. 
IEEE Systems Journal, 2014, 8(3): 965-979.

	 [14]	 T Vos, C Allen, M Arora, et al. Global, regional, and national incidence, 
prevalence, and years lived with disability for 310 diseases and injuries, 
1990–2015: A systematic analysis for the Global Burden of Disease 
Study 2015. The Lancet, 2016, 388(10053): 1545-1602.

	 [15]	 P Wang, S Wang. Computer-aided CT image processing and modeling 
method for tibia microstructure. Bio-Design and Manufacturing, 2020, 
3(1): 71-82.

	 [16]	 Y LeCun, Y Bengio, G Hinton. Deep learning. Nature, 2015, 521(7553): 
436.

	 [17]	 Y LeCun, L Bottou, Y Bengio, et al. Gradient-based learning applied to 
document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

	 [18]	 O Russakovsky, J Deng, H Su, et al. Imagenet large scale visual recogni-
tion challenge. International Journal of Computer Vision, 2015, 115(3): 
211-252.

	 [19]	 A Krizhevsky, I Sutskever, G E Hinton. Imagenet classification with deep 
convolutional neural networks. Advances in Neural Information Process-
ing Systems, 2012, 25: 1097-1105.

	 [20]	 M D Zeiler, R Fergus. Visualizing and understanding convolutional net-
works. European Conference on Computer Vision, Springer, Cham, 2014: 
818-833.

	 [21]	 K Simonyan, A Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:​1409.​1556, 2014.

	 [22]	 C Szegedy, W Liu, Y Jia, et al. Going deeper with convolutions. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 
2015: 1-9. https://​doi.​org/​10.​1109/​CVPR.​2015.​72985​94.

	 [23]	 K He, X Zhang, S Ren, et al. Deep residual learning for image recogni-
tion. 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), 2016: 770-778, https://​doi.​org/​10.​1109/​CVPR.​2016.​90.

	 [24]	 B Alipanahi, A Delong, M T Weirauch, et al. Predicting the sequence spe-
cificities of DNA- and RNA-binding proteins by deep learning. Nature 
Biotechnology, 2015, 33(8): 831.

	 [25]	 J Zhou, O G Troyanskaya. Predicting effects of noncoding variants with 
deep learning–based sequence model. Nature Methods, 2015, 12(10): 
931.

	 [26]	 A Shademan, R S Decker, J D Opfermann, et al. Supervised autonomous 
robotic soft tissue surgery. Science Translational Medicine, 2016, 8(337): 
337ra64-337ra64.

https://doi.org/10.1109/SACI.2014.6840059
https://doi.org/10.1109/SACI.2014.6840059
https://doi.org/10.1109/infosci.2016.7845307
https://doi.org/10.1109/infosci.2016.7845307
https://arxiv.org/1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90


Page 13 of 14Zhang et al. Chinese Journal of Mechanical Engineering          (2021) 34:112 	

	 [27]	 S Kaymak, A Serener. Automated age-related macular degeneration 
and diabetic macular edema detection on OCT images using deep 
learning. 2018 IEEE 14th International Conference on Intelligent Computer 
Communication and Processing (ICCP), IEEE, 2018, https://​doi.​org/​10.​
1109/​ICCP.​2018.​85166​35.

	 [28]	 C Szegedy, V Vanhoucke, S Ioffe, et al. Rethinking the inception architec-
ture for computer vision. Proceedings of the IEEE conference on computer 
vision and pattern recognition, 2016: 2818-2826, https://​doi.​org/​10.​1109/​
CVPR.​2016.​308.

	 [29]	 M Abadi, A Agarwal, P Barham, et al. TensorFlow: Large-scale machine 
learning on heterogeneous distributed systems. arXiv preprint 
arXiv:1603.04467, 2016.

	 [30]	 Y Jia, E Shelhamer, J Donahue, et al. Caffe: Convolutional architecture 
for fast feature embedding. Proceedings of the 22nd ACM International 
Conference on Multimedia, 2014: 675-678, https://​doi.​org/​10.​1145/​26478​
68.​26548​89.

	 [31]	 F Bastien, P Lamblin, R Pascanu, et al. Theano: new features and speed 
improvements. arXiv preprint arXiv:​1211.​5590, 2012.

	 [32]	 H Choi. Deep learning in nuclear medicine and molecular imaging: cur-
rent perspectives and future directions. Nuclear Medicine and Molecular 
Imaging, 2018, 52(2): 109-118.

	 [33]	 N Tajbakhsh, J Y Shin, S R Gurudu, et al. Convolutional neural networks 
for medical image analysis: Full training or fine tuning? IEEE Transactions 
on Medical Imaging, 2016, 35(5): 1299-1312.

	 [34]	 Y Xu, T Mo, Q Feng, et al. Deep learning of feature representation with 
multiple instance learning for medical image analysis. 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), 
IEEE, 2014: 1626-1630, https://​doi.​org/​10.​1109/​ICASSP.​2014.​68538​73.

	 [35]	 E Long, H Lin, Z Liu, et al. An artificial intelligence platform for the mul-
tihospital collaborative management of congenital cataracts. Nature 
Biomedical Engineering, 2017, 1(2): 0024.

	 [36]	 P Rajpurkar, J Irvin, K Zhu, et al. Chexnet: Radiologist-level pneu-
monia detection on chest x-rays with deep learning. arXiv preprint 
arXiv:1711.05225, 2017.

	 [37]	 V Gulshan, L Peng, M Coram, et al. Development and validation of a 
deep learning algorithm for detection of diabetic retinopathy in retinal 
fundus photographs. Jama, 2016, 316(22): 2402-2410.

	 [38]	 S F Weng, J Reps, J Kai, et al. Can machine-learning improve cardiovas-
cular risk prediction using routine clinical data? PloS One, 2017, 12(4): 
e0174944.

	 [39]	 H C Hazlett, H Gu, B C Munsell, et al. Early brain development in infants 
at high risk for autism spectrum disorder. Nature, 2017, 542(7641): 348.

	 [40]	 S Sarraf, G Tofighi. Classification of alzheimer’s disease structural MRI 
data by deep learning convolutional neural networks. arXiv preprint 
arXiv:​1607.​06583, 2016.

	 [41]	 N Amoroso, M La Rocca, S Bruno, et al. Brain structural connectivity 
atrophy in Alzheimer’s disease. arXiv preprint arXiv:​1709.​02369, 2017.

	 [42]	 L Rosado, M Ferreira. A prototype for a mobile-based system of skin 
lesion analysis using supervised classification. 2013 2nd Experiment 
International Conference (exp. at’13), IEEE, 2013: 156-157, https://​doi.​org/​
10.​1109/​ExpAt.​2013.​67030​51.

	 [43]	 J Hagerty, J Stanley, H Almubarak, et al. Deep learning and handcrafted 
method fusion: Higher diagnostic accuracy for melanoma dermoscopy 
images. IEEE Journal of Biomedical and Health Informatics, 2019: 1-1, 
https://​doi.​org/​10.​1109/​JBHI.​2019.​28910​49.

	 [44]	 Andres, Diaz-Pinto, Sandra, et al. CNNs for automatic glaucoma assess-
ment using fundus images: an extensive validation. Biomedical Engi-
neering Online, 2019, 18(1), https://​doi.​org/​10.​1186/​s12938-​019-​0649-y.

	 [45]	 Y Li, L Shen. Skin lesion analysis towards melanoma detection using 
deep learning network. Sensors, 2018, 18(2): 556.

	 [46]	 Y Gurovich, Y Hanani, O Bar, et al. Identifying facial phenotypes of 
genetic disorders using deep learning. Nature Medicine, 2019, 25(1): 60.

	 [47]	 S S Han, M S Kim, W Lim, et al. Classification of the clinical images for 
benign and malignant cutaneous tumors using a deep learning algo-
rithm. Journal of Investigative Dermatology, 2018, 138(7): 1529-1538.

	 [48]	 H Haenssle, C Fink, R Schneiderbauer, et al. Man against machine: 
Diagnostic performance of a deep learning convolutional neural 
network for dermoscopic melanoma recognition in comparison to 58 
dermatologists. Annals of Oncology, 2018, 29(8): 1836-1842, 2018.

	 [49]	 C Mehanian, M Jaiswal, C Delahunt, et al. Computer-automated malaria 
diagnosis and quantitation using convolutional neural networks. 2017 

IEEE International Conference on Computer Vision Workshop (ICCVW), IEEE, 
https://​doi.​org/​10.​1109/​ICCVW.​2017.​22.

	 [50]	 M Poostchi, K Silamut, R Maude, et al. Image analysis and machine 
learning for detecting malaria. Translational Research the Journal of 
Laboratory & Clinical Medicine, 2018, 194: 36-55.

	 [51]	 Z I Attia, S Kapa, F Lopez-Jimenez, et al. Screening for cardiac contractile 
dysfunction using an artificial intelligence–enabled electrocardiogram. 
Nature Medicine, 2019, 25(1): 70.

	 [52]	 A Y Hannun, P Rajpurkar, M Haghpanahi, et al. Cardiologist-level 
arrhythmia detection and classification in ambulatory electrocardio-
grams using a deep neural network. Nature Medicine, 2019, 25(1): 65.

	 [53]	 J Zhang, Y Xie, Y Xia, et al. Attention residual learning for skin lesion clas-
sification. IEEE Transactions on Medical Imaging, 2019: 1-1, https://​doi.​
org/​10.​1109/​TMI.​2019.​28939​44.

	 [54]	 Y Fujisawa, Y Otomo, Y Ogata, et al. Deep‐learning‐based, computer‐
aided classifier developed with a small dataset of clinical images 
surpasses board‐certified dermatologists in skin tumour diagnosis. 
British Journal of Dermatology, 2019, 180(61), https://​doi.​org/​10.​1111/​
bjd.​16924.

	 [55]	 A Rezvantalab, H Safigholi, S Karimijeshni. Dermatologist level 
dermoscopy skin cancer classification using different deep learning 
convolutional neural networks algorithms. arXiv preprint arXiv:​1810.​
10348, 2018.

	 [56]	 K Yasaka, H Akai, A Kunimatsu, et al. Deep learning with convolutional 
neural network in radiology. Japanese Journal of Radiology, 2018: 1-16.

	 [57]	 A Khamparia, P K Singh, P Rani, et al. An internet of health things‐driven 
deep learning framework for detection and classification of skin cancer 
using transfer learning. Transactions on Emerging Telecommunications 
Technologies, 2020.

	 [58]	 D Gutman, N C Codella, E Celebi, et al. Skin lesion analysis toward 
melanoma detection: A challenge at the international symposium on 
biomedical imaging (ISBI) 2016, hosted by the international skin imag-
ing collaboration (ISIC). arXiv preprint arXiv:​1605.​01397, 2016.

	 [59]	 L Bi, J Kim, E Ahn, et al. Automatic skin lesion analysis using large-scale 
dermoscopy images and deep residual networks. arXiv preprint arXiv:​
1703.​04197, 2017.

	 [60]	 S Serte, H Demirel. Gabor wavelet-based deep learning for skin lesion 
classification. Computers in Biology and Medicine, 2019, 113: 103423.

	 [61]	 N C Codella, Q-B Nguyen, S Pankanti, et al. Deep learning ensembles for 
melanoma recognition in dermoscopy images. IBM Journal of Research 
and Development, 2017, 61(4/5): 5:1-5:15.

	 [62]	 L Yu, H Chen, Q Dou, et al. Automated melanoma recognition in der-
moscopy images via very deep residual networks. IEEE Transactions on 
Medical Imaging, 2017, 36(4): 994-1004.

	 [63]	 X Fan, M Dai, C Liu, et al. Effect of image noise on the classification of 
skin lesions using deep convolutional neural networks. Tsinghua Science 
and Technology, 2020, 25(3): 425-434.

	 [64]	 M Combalia, N Codella, V Rotemberg, et al. BCN20000: Dermoscopic 
Lesions in the Wild, arXiv preprint arXiv:1908.02288, 2019.

	 [65]	 P Tschandl, C Rosendahl, H Kittler. The HAM10000 dataset, a large col-
lection of multi-source dermatoscopic images of common pigmented 
skin lesions. Scientific Data, 2018, 5(1): 1-9.

	 [66]	 ISIC Project-ISIC Archive. Accessed: May 23, 2021. Available: https://​
www.​isic-​archi​ve.​com.

	 [67]	 N Codella, D Gutman, M E Celebi, et al. Skin lesion analysis toward mela-
noma detection: A challenge at the 2017 International Symposium on 
Biomedical Imaging (ISBI), Hosted by the International Skin Imaging 
Collaboration (ISIC), 2018 IEEE 15th International Symposium on 
Biomedical Imaging (ISBI 2018), 2018: 168-172, https://​doi.​org/​10.​1109/​
ISBI.​2018.​83635​47.

	 [68]	 Y Yang, Y Ge, L Guo, et al. Development and validation of two artificial 
intelligence models for diagnosing benign, pigmented facial skin 
lesions. Skin Research and Technology, 2020, https://​doi.​org/​10.​1111/​srt.​
12911.

	 [69]	 Derm101 Image Library. Accessed: Jan. 12, 2019. Available: https://​
www.​derm1​01.​com/​image librarv/.

	 [70]	 Dermnet-Skin Disease Altas. Accessed: Dec. 31, 2018. Available: http://​
www.​dermn​et.​com/.

	 [71]	 H Mhaske, D Phalke. Melanoma skin cancer detection and classification 
based on supervised and unsupervised learning. 2013 International 

https://doi.org/10.1109/ICCP.2018.8516635
https://doi.org/10.1109/ICCP.2018.8516635
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://arxiv.org/1211.5590
https://doi.org/10.1109/ICASSP.2014.6853873
https://arxiv.org/1607.06583
https://arxiv.org/1709.02369
https://doi.org/10.1109/ExpAt.2013.6703051
https://doi.org/10.1109/ExpAt.2013.6703051
https://doi.org/10.1109/JBHI.2019.2891049
https://doi.org/10.1186/s12938-019-0649-y
https://doi.org/10.1109/ICCVW.2017.22
https://doi.org/10.1109/TMI.2019.2893944
https://doi.org/10.1109/TMI.2019.2893944
https://doi.org/10.1111/bjd.16924
https://doi.org/10.1111/bjd.16924
https://arxiv.org/1810.10348
https://arxiv.org/1810.10348
https://arxiv.org/1605.01397
https://arxiv.org/1703.04197
https://arxiv.org/1703.04197
https://www.isic-archive.com
https://www.isic-archive.com
https://doi.org/10.1109/ISBI.2018.8363547
https://doi.org/10.1109/ISBI.2018.8363547
https://doi.org/10.1111/srt.12911
https://doi.org/10.1111/srt.12911
https://www.derm101.com/image
https://www.derm101.com/image
http://www.dermnet.com/
http://www.dermnet.com/


Page 14 of 14Zhang et al. Chinese Journal of Mechanical Engineering          (2021) 34:112 

Conference on Circuits, Controls and Communications (CCUBE), 2013: 1-5, 
https://​doi.​org/​10.​1109/​CCUBE.​2013.​67185​39.

	 [72]	 I G Díaz. Incorporating the knowledge of dermatologists to convolu-
tional neural networks for the diagnosis of skin lesions. IEEE Journal of 
Biomedical and Health Informatics, 2017, https://​doi.​org/​10.​1109/​JBHI.​
2018.​28069​62.

	 [73]	 O Abuzaghleh, B D Barkana, M Faezipour. Automated skin lesion analy-
sis based on color and shape geometry feature set for melanoma early 
detection and prevention. IEEE Long Island Systems, Applications and 
Technology (LISAT) Conference, 2014: 1-6, https://​doi.​org/​10.​1109/​LISAT.​
2014.​68451​99.

	 [74]	 A Pennisi, D D Bloisi, D Nardi, et al. Skin lesion image segmentation 
using Delaunay Triangulation for melanoma detection. Computerized 
Medical Imaging and Graphics, 2016, 52: 89-103.

	 [75]	 D D Gómez, C Butakoff, B K Ersboll, et al. Independent histogram 
pursuit for segmentation of skin lesions. IEEE Transactions on Biomedical 
Engineering, 2008, 55(1): 157-161.

	 [76]	 S Kaymak, P Esmaili, A Serener. Deep learning for two-step classification 
of malignant pigmented skin lesions. 2018 14th Symposium on Neural 
Networks and Applications (NEUREL), 2018:1-6.

	 [77]	 H Balazs. Skin lesion classification with ensembles of deep convo-
lutional neural networks. Journal of Biomedical Informatics, 2018, 86: 
S1532046418301618-.

	 [78]	 A Mahbod, G Schaefer, C Wang, et al. Transfer learning using a multi-
scale and multi-network ensemble for skin lesion classification. Com-
puter Methods and Programs in Biomedicine, 2020, 193: 105475.

	 [79]	 A G Howard. Some improvements on deep convolutional neural net-
work based image classification, arXiv preprint arXiv:1312.5402, 2013.

	 [80]	 W Paja, M Wrzesień. Melanoma important features selection using 
random forest approach. 2013 6th International Conference on Human 
System Interactions (HSI), 2013: 415-418, https://​doi.​org/​10.​1109/​HSI.​
2013.​65778​57.

	 [81]	 F Nachbar, W Stolz, T Merkle, et al. The ABCD rule of dermatoscopy: 
High prospective value in the diagnosis of doubtful melanocytic skin 
lesions. Journal of the American Academy of Dermatology, 1994, 30(4): 
551-559.

	 [82]	 M Nasir, M Attique Khan, M Sharif, et al. An improved strategy for skin 
lesion detection and classification using uniform segmentation and 
feature selection based approach. Microscopy Research and Technique, 
2018, 81(6): 528-543.

	 [83]	 D G Lowe. Method and apparatus for identifying scale invariant features 
in an image and use of same for locating an object in an image: US, 
US6711293. 2004-3-23.

	 [84]	 N Dalal, B Triggs. Histograms of oriented gradients for human detection. 
2005 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’05), 2005, 1: 886-893, https://​doi.​org/​10.​1109/​
CVPR.​2005.​177.

	 [85]	 L Ballerini, R B Fisher, B Aldridge, et al. A color and texture based hierarchi-
cal K-NN approach to the classification of non-melanoma skin lesions, color 
medical image analysis. Dordrecht: Springer, 2013.

	 [86]	 C Leo, V Bevilacqua, L Ballerini, et al. Hierarchical classification of ten 
skin lesion classes. Proc. SICSA Dundee Medical Image Analysis Workshop, 
2015.

	 [87]	 K Shimizu, H Iyatomi, M E Celebi, et al. Four-class classification of skin 
lesions with task decomposition strategy. IEEE Transactions on Biomedi-
cal Engineering, 2015, 62(1): 274-283.

	 [88]	 A Zaidan, B Zaidan, O Albahri, et al. A review on smartphone skin 
cancer diagnosis apps in evaluation and benchmarking: Coherent 
taxonomy, open issues and recommendation pathway solution. Health 
and Technology, 2018: 1-16.

	 [89]	 T-T Do, Y Zhou, H Zheng, et al. Early melanoma diagnosis with mobile 
imaging. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2014: 6752-6757, https://​doi.​
org/​10.​1109/​EMBC.​2014.​69451​78.

	 [90]	 A Masood, A Al-Jumaily, K Anam. Self-supervised learning model for 
skin cancer diagnosis. 2015 7th International IEEE/EMBS Conference on 
Neural Engineering (NER), 2015: 1012-1015, https://​doi.​org/​10.​1109/​NER.​
2015.​71467​98.

	 [91]	 M F Duarte, T E Matthews, W S Warren, et al. Melanoma classification 
from Hidden Markov tree features. 2012 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), 2012: 685-688, https://​
doi.​org/​10.​1109/​ICASSP.​2012.​62879​76.

	 [92]	 K Phillips, O Fosu, I Jouny. Mobile melanoma detection application for 
android smart phones. 2015 41st Annual Northeast Biomedical Engineer-
ing Conference (NEBEC), 2015: 1-2, https://​doi.​org/​10.​1109/​NEBEC.​2015.​
71171​84.

	 [93]	 F Topfer, S Dudorov, J Oberhammer. Millimeter-wave near-field probe 
designed for high-resolution skin cancer diagnosis. IEEE Transactions on 
Microwave Theory & Techniques, 2015, 63(6): 2050-2059.

	 [94]	 I Valavanis, K Moutselos, I Maglogiannis, et al. Inference of a robust 
diagnostic signature in the case of Melanoma: Gene selection by infor-
mation gain and Gene Ontology tree exploration. 13th IEEE International 
Conference on BioInformatics and BioEngineering, 2013: 1-4, https://​doi.​
org/​10.​1109/​BIBE.​2013.​67016​18.

	 [95]	 P Sabouri, H GholamHosseini, T Larsson, et al. A cascade classifier for 
diagnosis of melanoma in clinical images. 2014 36th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society, 
2014: 6748-6751, https://​doi.​org/​10.​1109/​EMBC.​2014.​69451​77.

	 [96]	 M Efimenko, A Ignatev, K Koshechkin. Review of medical image recog-
nition technologies to detect melanomas using neural networks. BMC 
Bioinformatics, 2020, 21(11): 1-7.

	 [97]	 H L Semigran, D M Levine, S Nundy, et al. Comparison of physician 
and computer diagnostic accuracy. Jama Intern. Med., 2016, 176(12): 
1860-1861.

	 [98]	 C Ross, I Swetlitz. IBM’s Watson supercomputer recommended ‘unsafe 
and incorrect’ cancer treatments, internal documents show, Stat News, 
2018, https://​www.​statn​ews.​com/​2018/​07/​25/​ibm-​watson-​recom​
mended-​unsafe-​incor​rect-​treat​ments.

	 [99]	 D Castelvecchi. Can we open the black box of AI? Nature News, 2016, 
538(7623): 20.

	[100]	 D Weinberger, Our machines now have knowledge we’ll never under-
stand, Backchannel, 2017, https://​www.​wired.​com/​story/​our-​machi​nes-​
now-​have-​knowl​edge-​well-​never-​under​stand.

	[101]	 A Körner, R Garland, Z Czajkowska, et al. Supportive care needs and 
distress in patients with non-melanoma skin cancer: Nothing to worry 
about? European Journal of Oncology Nursing, 2016, 20: 150-155.

	[102]	 O Malyuskin, V Fusco. Resonance microwave reflectometry for early 
stage skin cancer identification. 2015 9th European Conference on Anten-
nas and Propagation (EuCAP), 2015: 1-6.

	[103]	 S Serte, A Serener, F Al‐Turjman. Deep learning in medical imaging: A 
brief review. Trans. Emerging Tel. Tech., 2020: e4080.

	[104]	 C M Doran, R Ling, J Byrnes, et al. Benefit cost analysis of three skin 
cancer public education mass-media campaigns implemented in New 
South Wales, Australia. Plos One, 2016, 11(1): e0147665.

	[105]	 A P Miller. Want less-biased decisions? Use algorithms. Harvard Business 
Review, 2018.

	[106]	 Gautam, Diwakar, Ahmed, et al. Machine learning-based diagnosis of 
melanoma using macro images. International Journal for Numerical 
Methods in Biomedical Engineering, 2018, 34(5): e2953.1.

	[107]	 W Fang, Y Li, H Zhang, et al. On the throughput-energy tradeoff for data 
transmission between cloud and mobile devices. Information Sciences, 
2014, 283: 79-93, https://​doi.​org/​10.​1016/j.​ins.​2014.​06.​022.

	[108]	 J He, S L Baxter, J Xu, et al. The practical implementation of artificial 
intelligence technologies in medicine. Nature Medicine, 2019, 25(1): 30.

	[109]	 E J Topol. High-performance medicine: the convergence of human and 
artificial intelligence. Nature Medicine, 2019, 25(1): 44-56.

https://doi.org/10.1109/CCUBE.2013.6718539
https://doi.org/10.1109/JBHI.2018.2806962
https://doi.org/10.1109/JBHI.2018.2806962
https://doi.org/10.1109/LISAT.2014.6845199
https://doi.org/10.1109/LISAT.2014.6845199
https://doi.org/10.1109/HSI.2013.6577857
https://doi.org/10.1109/HSI.2013.6577857
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/EMBC.2014.6945178
https://doi.org/10.1109/EMBC.2014.6945178
https://doi.org/10.1109/NER.2015.7146798
https://doi.org/10.1109/NER.2015.7146798
https://doi.org/10.1109/ICASSP.2012.6287976
https://doi.org/10.1109/ICASSP.2012.6287976
https://doi.org/10.1109/NEBEC.2015.7117184
https://doi.org/10.1109/NEBEC.2015.7117184
https://doi.org/10.1109/BIBE.2013.6701618
https://doi.org/10.1109/BIBE.2013.6701618
https://doi.org/10.1109/EMBC.2014.6945177
https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments
https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments
https://www.wired.com/story/our-machines-now-have-knowledge-well-never-understand
https://www.wired.com/story/our-machines-now-have-knowledge-well-never-understand
https://doi.org/10.1016/j.ins.2014.06.022

	Opportunities and Challenges: Classification of Skin Disease Based on Deep Learning
	Abstract 
	1 Introduction
	2 Features of Skin Disease
	3 Image Methods
	4 Skin Disease Classification Using Deep Learning
	4.1 Image Acquisition
	4.2 Image Preprocessing
	4.3 Feature Extraction and Classification
	4.4 Evaluation Criteria and Benchmarking

	5 Limitations and Prospect
	5.1 Limitations
	5.2 Prospect

	6 Conclusions
	Acknowledgements
	References




