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Abstract 

In the process of Wavelet Analysis, only the low-frequency signals are re-decomposed, and the high-frequency signals 
are no longer decomposed, resulting in a decrease in frequency resolution with increasing frequency. Therefore, in 
this paper, firstly, Wavelet Packet Decomposition is used for feature extraction of vibration signals, which makes up for 
the shortcomings of Wavelet Analysis in extracting fault features of nonlinear vibration signals, and different energy 
values in different frequency bands are obtained by Wavelet Packet Decomposition. The features are visualized by the 
K-Means clustering method, and the results show that the extracted energy features can accurately distinguish the 
different states of the bearing. Then a fault diagnosis model based on BP Neural Network optimized by Beetle Algo-
rithm is proposed to identify the bearing faults. Compared with the Particle Swarm Algorithm, Beetle Algorithm can 
quickly find the error extreme value, which greatly reduces the training time of the model. At last, two experiments 
are conducted, which show that the accuracy of the model can reach more than 95%, and the model has a certain 
anti-interference ability.
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1  Introduction
According to statistics [1], 70% of rotating machinery 
failures are related to bearing failures. Once a bearing 
fails, it will cause a series of chain failures, which will 
seriously affect the operation safety of the entire equip-
ment [2]. At present, the diagnosis of bearing faults is 
mostly based on vibration signals. Data-driven methods 
generally extract features of vibration signals of limited 
length, such as mean square error, kurtosis, and non-lin-
ear dynamic parameters for fault diagnosis [3]. In order 
to obtain richer features of fault diagnosis, generally, the 
signal samples are first decomposed, and then the cor-
responding parameters of each sub-signal are calculated 
as the fault characteristics. Fourier Analysis, Wavelet 
Transform, Empirical Mode Decomposition, Local Mean 
Decomposition [4, 5] are all very effective linear system 
analysis methods in the past. In recent years, many new 

signal processing methods have been produced, such as 
the Wavelet Packet Analysis, which provides a broader 
development space for bearing fault diagnosis research 
[6, 7].

The classification of faults is essentially a process of 
identifying the size and type of fault. Scholars at home 
and abroad have proposed many supervised models for 
fault classification and recognition. Yan et al. [8] extracted 
signal time domain and frequency domain features and 
based on the particle swarm optimization support vec-
tor machine (PSO-SVM) classification model to real-
ize the recognition of rolling bearing multi-fault states. 
Kankar et  al. [9] used continuous wavelet transform to 
extract statistical features, and compared support vector 
machines with artificial neural networks and self-organ-
izing graph models. The results showed that the features 
selected by Meyer wavelet can achieve higher fault clas-
sification efficiency through SVM classifier. Zhou et  al. 
[10] extracted bearing fault features based on the NCA 
method, and merged multi-channel data through the 
CHMM method, which effectively removed redundant 
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information and improved the fault diagnosis effect. 
Zaragoza [11] and others combined hidden Markov 
model and deep perceptron to correctly model varia-
ble-length symbol sequences through non-segmented 
training. The results show that the results obtained by 
the proposed hybrid MLP-HMM method are to a large 
extent. It is better than previous work. Chen [12] com-
bined the classification ability of SVM and the ability of 
HMM to distinguish dynamic time series, and built bear-
ing fault diagnosis models of SVM and HMM with the 
help of Sigmoid function and Gaussian model, and estab-
lished the feature vector of AR parameters for diagno-
sis, which effectively improved. The accuracy of bearing 
fault diagnosis is improved. Although these supervised 
models can achieve fault classification, they are not suit-
able for situations where the number of samples is large. 
In response to this defect, some scholars have proposed 
unsupervised learning methods such as deep learning 
and deep neural networks [13]. The deep neural network 
model is implemented on the basis of shallow neural net-
works by changing the number and structure of interme-
diate layers. Shallow neural networks mainly include BP 
neural networks, LVQ neural networks, application of 
which is relatively extensive. Pu [14] used a three-layer 
BP Neural Network for bearing fault diagnosis. Wu [15] 
used signal processing techniques to extract the crest fac-
tor, waveform factor, pulse factor, margin factor and kur-
tosis of rolling bearing vibration time domain signals as 
feature to diagnose bearing failure. Jiang [16] introduced 
the signal multi-resolution technology into the analysis 
of bearing fault vibration signals. A fault diagnosis model 
for rolling bearings is established by using a Learning 
Vector Quantization (LVQ) Neural Network. Zhao pro-
posed a new BP Neural Network model based on an 
improved frog jumping algorithm and applied it to iden-
tify bearing failures which has good generalization abil-
ity and strong robustness [17]. BP Neural Network has 
been widely used in many fields, but there are still some 
shortcomings in the application [18]. In this paper, a fault 
diagnosis model based on BP Neural Network optimized 
by Beetle Algorithm is proposed to identify the bearing 
faults, which greatly improves the performance of BP 
network and the accuracy can reach more than 95%.

2 � Review of BP Neural Network and Beetle 
Algorithm

2.1 � BP Neural Network
BP Neural Network [19] is called Multi-layer front feed-
back network in most cases which is composed of three 
blocks: input layer, output layer and hidden layer. Figure 1 
shows the structure of the BP Neural Network. The BP 
Neural Network [20] is trained and learned through error 
back feedback, which can train and store a large number 

of mapping relationships without explicitly knowing the 
mathematical equations reflecting the mapping relation-
ship. After the training data enters the input layer of 
the network, the weights and activation functions of the 
hidden layer and the input layer are used to take corre-
sponding calculations to obtain the actual output value. 
Then the actual output value expected is used to calcu-
late the error value under actual conditions [21]. If the 
actual error value exceeds the expected error value, the 
feedback of this error value should be reversed and new 
training data will be entered. The condition for stopping 
the calculation is either to meet the accuracy require-
ment or to reach the maximum number of iterations. The 
algorithm process of BP Neural Network is shown in the 
Figure 1.

2.2 � Beetle Algorithm
In 2017, the concept of Beetle Algorithm was first pro-
posed. Compared with the particle swarm optimization 
algorithm, the Beetle Algorithm requires [22] only one 
individual, so its computational efficiency is much higher 
than that of the Particle Swarm Algorithm. Even in the 
absence of specific expressions of functions and gradi-
ent information, such Beetle Algorithm can achieve the 
desired optimization requirements.

Beetle Algorithm can be described as follows.

(1)	 The main part of the beetle is simplified into a cen-
troid, and the two sides of the centroid are the two 
tentacles of the beetle.

(2)	 The ratio of the step size of the beetle to the dis-
tance d0 between the two antennae is a fixed con-
stant. Therefore, it can be obtained that the long 
distance between the two antennae is the big bee-
tle taking a big step, while the shorter distance 
between the two antennae is the small beetle, which 
takes a small step.

Figure 1  BP Neural Network
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(3)	 After the Beetle flies to the next step, the head ori-
entation is random.

The specific modeling steps of the Beetle Algorithm are 
as follows:

(1)	 To optimize a specific n-dimensional space, ′xl′ 
can be chosen as the sign of the left antenna coor-
dinates, ′xr′ as the sign of the coordinates of the 
right antenna and ′x′ as the coordinate symbol of 
the centroid. The distance between the two anten-
nas is represented by d0. According to the theory 
above, the vector direction of the right horn to the 
left should be also unrestricted since the orientation 
of the head of the celestial is not limited. So the ran-
dom vector ′dir = rands(n, 1)′ can be used to rep-
resent it. Then dir = dir/norm(dir) the conclusion 
of xl − xr = d0 · dir can be got from normalizing 
the random vector; obviously, ′xl′ , ′xr′ can also be 
obtained through the position of the centroid:

(2)	 Because the function ′f ′ to be optimized, the func-
tion value of the pair of antennae are calculated and 
judged.

When fleft < fright , the beetle moves forward in the 
direction of the left tentacles:

When fleft > fright , the beetle moves forward in the 
direction of the right tentacles:

The two cases described above are all for searching for 
the minimum value of ′f ′ , which can be uniformly written 
by using the symbol function sign:

(1)xl = x + d0 · dir/2,

(2)xr = x − d0 · dir/2.

(3)x = x + step · normal(xl − xr).

(4)x = x − step · normal(xl − xr).

(5)
x =− step · normal(xl − xr) · sign(fleft − fright)

step · dir · sign
(

fleft − fright
)

.

3 � Feature Extraction Based on Wavelet Packet 
Transform

3.1 � Wavelet Packet Decomposition and Reconstruction
In the actual situation, the rolling bearing vibration signal 
is usually carried with many noise signals and the noise 
signal is very easy to cover the weak characteristic signal 
hidden in the vibration signal, which causes that the use-
ful information can not be obtained. The analysis method 
of wavelet packet is to decompose the original signal with 
noise, then the characteristic signal containing energy 
information will be collected in some frequency bands, 
while the energy information of the noise signal is evenly 
dispersed in each frequency band. Therefore, we can 
separate the noise signal from the characteristic signal 
by setting an appropriate threshold to make the wavelet 
coefficient of the noise signal zero, as a result, the goal of 
reducing noise is achieved. The specific process of using 
Wavelet Packet Transform is as follows.

(1)	 First, the Wavelet Packet Transform is used to 
decompose the collected original vibration signal. 
We first select the appropriate wavelet function to 
determine the number n of decomposition layers of 
the wavelet packet, that is, the n-layer decomposi-
tion of the vibration signal is as follows.

(2)	 Calculate the best tree for the wavelet packet. We 
derive the best tree of wavelet packets based on an 
entropy criterion given by the wavelet packet.

(3)	 The threshold of the Wavelet Packet Decompo-
sition coefficient is quantized. The appropriate 
threshold and its calculation method are selected, 
and then the threshold quantization is used to pro-
cess the Wavelet Packet Decomposition coefficient.

(4)	 Decomposition signal wavelet packet reconstruc-
tion. Based on the decomposition coefficients of the 
wavelet packet and the quantized coefficients, the 
wavelet packet coefficients is reconstructed.

3.2 � Wavelet Packet Energy Feature Extraction
The sum of the squares of the individual subspace sig-
nals is used to represent the energy value of the wavelet 
packet. Once the rolling bearing fails, the energy value in 
each frequency band of its vibration signal will be greatly 
disturbed. The type of fault is different, and the amount 
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of energy reflected in each frequency band of the vibra-
tion signal is also different. Therefore, the type of fault 
can be determined based on the distribution of energy 
values in each frequency band of the vibration signal. 
The wavelet packet energy value after the fault signal is 
decomposed by the wavelet packet is taken as a feature, 
and then the pattern recognition of the fault is performed 
according to the feature. The main steps of extracting fea-
tures of vibration signals are as follows.

(1)	 Wavelet Packet Decomposition is performed. 
The same wavelet base is selected from the noise-
reduced signals, and the noise-reduced signal is 
decomposed by ‘N’ layer. The component charac-
teristics of the 2N bands of the decomposed Nth 
layer (j = 0, 1, 2, ..., 2N − 1) is picked, where ‘j’ is the 
number of nodes.

(2)	 The signals of 2N frequency band components are 
selected for reconstruction. SNj represents the 
reconstructed signal of XNj , the total signal S can be 
expressed as

(3)	 To calculate the sum of energy in each fre-
quency range of the reconstructed signal, let the 
energy corresponding to the reconstructed signal 
sNj(j = 0, 1, 2, ..., 2N − 1) of each band component 
be: ENj , (j = 0, 1, 2, ..., 2N − 1) , so

where Xjk , (j = 0, 1, 2, ..., 2N − 1, k = 0, 1, 2, ..., n) rep-
resents the magnitude of each discrete point in the 
reconstructed signal SNj.

(4)	 Constructing the eigenvector of the energy value, 
the energy value in each frequency band component 
of the Nth layer is thought of as the eigenvector T :

(5)	 The energy value is normalized in order to facilitate 
subsequent data processing:

(6)S =

∑2N−1

j=0
SNj .

(7)ENj =

∫

∣

∣SNj(t)
∣

∣

2

dt =
∑n

k=1

∣

∣Xjk

∣

∣

2
,

(8)T =
[

EN0,EN1,EN2, ...,EN2N−1

]

.

where the vector T ′ is a feature vector after the nor-
malization process.

As is shown Figure 2, the wavelet packet energy value 
feature is extracted for the noise-reduced vibration sig-
nal. The input speed of the rolling bearing is about 1800 
r/min, and its energy value is mostly in the range of 
0‒2500 Hz. Four Wavelet Packet Decomposition layers 
are selected, and the first 8 wavelet packet components 
from the low frequency to the high frequency in the 
fourth layer are selected to extract the energy values.

3.3 � BP Neural Network Optimized by Beetle Algorithm
BP Neural Network which is suitable for the identifica-
tion of complex patterns, such as multiple symptoms and 
multiple faults, has strong self-learning, self-adaptation 
and associative memory capabilities. The BP Neural Net-
work is a single-point search algorithm that does not 
have the global search ability, on account of using the 
error function gradient descent method (Figure 3).

Therefore, in the process of learning, BP Neural Net-
work has the disadvantages of poor network perfor-
mance, poor robustness, slow convergence speed and 
easy to fall into local extreme. The principle of particle 
swarm optimization algorithm is relatively simple, and 
easy to understand. At the same time, the information of 
speed and position can be updated continuously to cor-
rect the search direction, until the global optimal solu-
tion is found. The particle swarm optimization algorithm 
can use the mutual cooperation between individuals and 
the way of competing to achieve the purpose of global 
search, which greatly reduces the probability of falling 
into the local optimal solution. The BP Neural Network 
optimized by Particle Swarm Algorithm [23, 24] com-
bines the advantages of the two above, and then fully uti-
lizes the strong global search ability of the particle swarm 
optimization algorithm to optimize the initial weight and 
threshold of the neural network. Similar to the particle 
swarm optimization algorithm for BP Neural Network, 
Beetle Algorithm [25, 26] can also be combined with 
BP Neural Network (Figure  4). First, the global search 
capabilities of the Beetle Algorithm are used to opti-
mize the initial weights and thresholds of the neural net-
work. Then the BP algorithm is used to update the initial 
weights and thresholds, and the final neural network is 
obtained. Compared with the Particle Swarm Algorithm, 
the Beetle Algorithm is much simpler, which greatly 

(9)E =

√

∑2N−1

j=0

∣

∣ENj
∣

∣

2
,

(10)T
′

= T/E,
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reduces the amount of calculation and greatly improves 
the efficiency of classification [27, 28].

4 � Experimental Demonstrations
The raw data used in the fault simulation are from the 
rolling bearing failure comprehensive test bench of 
Case Western Reserve University in the United States, 
which is shown in Figure  5. Acceleration sensors are 
used to collect vibration acceleration signals of the roll-
ing bearing under different working conditions. The 

Figure 2  Wavelet packet energy feature extraction
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test platform mainly includes a 2-horsepower motor, 
a torque sensor, a power meter and some electronic 
control equipment. In the experiment, an accelera-
tion sensor was used to collect vibration signals, and 
the sensor was placed on the motor housing by using a 
magnetic base. The acceleration sensor is mounted on 
the drive end of the motor housing. The speed of the 
motor is 1797 r/min. Vibration signals were collected 
via a 16-channel DAT recorder and processed later in 
the MATLAB environment. The sampling frequency of 

the digital signal is 12000 S/s, the sampling time is set 
to 20 s.

4.1 � Case 1: Fault Diagnosis of Bearing
4.1.1 � Description of Test and Training Samples
The first set of experiments is the simplest experiment. 
A total of 240 sets of feature vectors are used as train-
ing samples: T(r1): 60 sets of feature vectors of normal 
signals, T(r2): 60 sets of inner ring fault signals, T(r3): 
60sets of outer ring fault signals and T(r4): 60 sets of roll-
ing element fault signals. The fault diameter are all 0.021 
inches. The test sample set contains T(e1): 60 sets of nor-
mal signal feature vectors, T(e2): 60 sets of inner ring 
fault signal, T(e3): 60 sets of outer ring fault signal and 
T(e4): 60 sets of rolling element fault signal. Part of the 
data is shown in Table 1.

4.1.2 � Visualization of Characteristic Data
In order to display the extracted energy features, the 
K-means clustering method is used to cluster the sam-
ples, and the generated 2D elements are drawn as a 
scatter diagram in Figure  6. Different colors represent 
different categories. It can be seen from the figure that 
the wavelet packet energy features can produce well clus-
tering performance. Among them, the third type of data 
points are scattered around the center point in the figure, 

Figure 5  Bearing test bench

Table 1  Feature data of bearing with a fault diameter of 0.021 inches

Type Feature vector Label

None 0.9200 0.0502 0.0822 0.3798 0.0002 0.0016 0.0501 0.0623 1

0.8565 0.0574 0.1251 0.4863 0.0003 0.0021 0.0682 0.0790 1

0.8074 0.0553 0.1337 0.5581 0.0003 0.0024 0.0852 0.0915 1

0.8307 0.0727 0.1106 0.5297 0.0003 0.0023 0.0664 0.0849 1

0.8940 0.0533 0.1024 0.4221 0.0002 0.0018 0.0666 0.0678 1

IRF 0.0558 0.0007 0.0371 0.0079 0.5043 0.2548 0.0210 0.1469 2

0.0503 0.0005 0.0328 0.0064 0.5386 0.2533 0.0255 0.1125 2

0.0598 0.0005 0.0179 0.0043 0.5699 0.2225 0.0122 0.0940 2

0.0729 0.0009 0.0374 0.0056 0.6289 0.1591 0.0234 0.0852 2

0.0598 0.0006 0.0234 0.0043 0.6555 0.2315 0.0162 0.1041 2

ORF 0.0042 0.0399 0.0199 0.0164 0.5395 0.3213 0.0075 0.0249 3

0.0035 0.0273 0.0173 0.0091 0.4426 0.1459 0.0048 0.0208 3

0.0032 0.0298 0.0213 0.0124 0.5038 0.3959 0.0077 0.0333 3

0.0052 0.0434 0.0146 0.0169 0.5439 0.3265 0.0066 0.0270 3

0.0038 0.0326 0.0251 0.0146 0.5768 0.2530 0.0047 0.0351 3

REF 1.0000 0.0002 0.0003 0.0006 0.0002 0.0001 0.0004 0.0002 4

0.9999 0.0004 0.0052 0.0005 0.0023 0.0090 0.0030 0.0045 4

0.9989 0.0009 0.0005 0.0001 0.0173 0.0102 0.0004 0.0010 4

0.9999 0.0008 0.0018 0.0005 0.0029 0.0021 0.0004 0.0039 4

0.9976 0.0020 0.0003 0.0001 0.0265 0.0203 0.0008 0.0052 4
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which may influence the diagnostic effect of the model. 
But overall, each feature set can be clearly distinguished.

4.1.3 � Diagnosis Results of Model
In order to test the performance and effect of the BAS-BP 
model, different sample sets were set up for experiments. 
The results is shown in Table 2. The model can diagnose 
a single sample set with a probability of 100%. How-
ever, after the data set is mixed, the diagnosis result has 
dropped significantly. When mixing the three data sets, 

the test results were 99.44%, 96.5% and 96.2%. It can be 
concluded that there is a coupling effect between sample 
set 3 (broken and wear) and sample set 4 (broken tooth), 
which affects the fault diagnosis result. Overall, the diag-
nostic efficiency of the model can reach 95%, indicating 
that the model has high diagnostic performance. Figure 7 
shows the error iteration curve of each data set training.

4.2 � Case 2: Fault Diagnosis of Inner Ring
4.2.1 � Description of Test and Training Samples—Inner ring
In the second experiment, a total of 240 sets of feature 
vectors are used as training samples which contains S(r1): 
60 sets of inner ring fault signals with a fault diameter of 
0.028 inches, S(r2): 60 sets of inner ring fault signals with 
a fault diameter of 0.021 inches, S(r3): 60 sets of inner 
ring fault signals with a fault diameter of 0.007 inches and 
S(r4): 60 sets of inner ring fault signals for 0.014 inches. 
The test sample contains S(e1): 60 sets of inner ring fault 
signals with a fault diameter 0.028 inches, S(e2): 60 sets of 
inner ring fault signals with a fault diameter 0.021 inches, 
S(e3): 60 sets of inner ring fault signals with a fault diam-
eter 0.007 inches, and S(e4): 60 sets of inner ring fault sig-
nals with a fault diameter 0.014 inches. Part of the data is 
shown in Table 3.

4.2.2 � Visualization of Characteristic Data
These data sets mainly describe the bearing inner ring 
faults of different sizes, so the coupling interference 
between the data sets is relatively large, which may 
greatly interfere with the diagnostic effect of the model. 
The data set is visualized through K-means clustering, 
and the data point aggregation is shown in the Figure 8. It 
can be seen from the Figure 8 that the aggregation effect 
of each data set is not very satisfactory. It can be analyzed 
that the diagnostic efficiency for this data set will have a 
certain drop.

4.2.3 � Diagnosis Results of Model
Similarly, set up different sample sets to test model per-
formance. The results are shown in Table 4. The diagnosis 
result of a single data set is still very accurate, while the 
diagnosis effect of the mixed data set has been reduced 
to a certain extent. Even if there is coupling interference 
between data sets 2 and 3, the overall diagnosis rate can 
still reach 89.17%, which shows that the model has a cer-
tain degree of anti-interference. The error iteration curve 
is shown in Figure 9.

4.3 � Diagnosis Performance and Comparison
In order to further study the model performance, com-
pare the constructed model with the network model 
optimized by stochastic gradient descent method and 

Figure 6  Visualization of the feature

Table 2  Test results of each sample set (case 1)

Sample T1 T2 T3 T4

Accuracy (%) 100 100 100 100

Sample T(1,2,3) T(1,3,4) T(2,3,4) All

Accuracy (%) 99.44 96.5 96.2 95

Figure 7  Error iteration curve for each sample
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Particle Swarm Algorithm. The comparison is made from 
the diagnosis rate, update speed and the number of itera-
tions to reach the minimum fitness value. The result is 
shown in Figures 10, 11.

The overall diagnosis rate of the BAS-BP model is sig-
nificantly higher than the stochastic gradient descent 
method and Particle Swarm Algorithm. However, the 
stochastic gradient descent algorithm randomly selects 
a certain number of samples for training in each itera-
tion, resulting in unsatisfactory training results and easy 
to fall into local extreme values, which greatly affects the 

Table 3  Date of the inner ring with different fault diameter

Size Feature vector Label

0.028 0.7866 0.0826 0.1359 0.5830 0.0004 0.0025 0.0810 0.0963 1

0.8242 0.0579 0.1213 0.5380 0.0003 0.0023 0.0733 0.0873 1

0.8644 0.0603 0.1015 0.4777 0.0003 0.0020 0.0666 0.0781 1

0.8548 0.0479 0.1063 0.4943 0.0003 0.0020 0.0643 0.0839 1

0.8529 0.0527 0.1158 0.4957 0.0003 0.0021 0.0634 0.0805 1

0.021 0.0614 0.0008 0.0463 0.0106 0.6735 0.2350 0.0276 0.1436 2

0.0511 0.0006 0.0414 0.0084 0.6371 0.3552 0.0335 0.0934 2

0.0273 0.0005 0.0340 0.0084 0.5865 0.2859 0.0249 0.1138 2

0.0708 0.0239 0.0392 0.0119 0.3932 0.2744 0.0207 0.1207 2

0.0322 0.0006 0.0324 0.0086 0.6983 0.1620 0.0176 0.1328 2

0.007 0.6262 0.0036 0.2665 0.0342 0.4402 0.2612 0.1061 0.1796 3

0.4359 0.0040 0.3048 0.0360 0.3652 0.3484 0.1364 0.2477 3

0.6254 0.004 0.2634 0.0315 0.3427 0.2489 0.1134 0.2325 3

0.7946 0.0023 0.2096 0.0165 0.2783 0.2476 0.0997 0.1676 3

0.7778 0.0018 0.1933 0.0208 0.3001 0.2547 0.0813 0.1465 3

0.014 0.2655 0.0007 0.0117 0.0050 0.6392 0.2963 0.0117 0.0588 4

0.2881 0.0003 0.0075 0.0027 0.6747 0.4394 0.0060 0.0379 4

0.2420 0.0001 0.0057 0.0014 0.7332 0.4243 0.0020 0.0475 4

0.2663 0.0003 0.0098 0.0033 0.4430 0.4645 0.0058 0.0994 4

0.2171 0.0003 0.0085 0.0040 0.4532 0.4578 0.0069 0.1054 4

Figure 8  Visualization of the feature

Table 4  Test results of each sample set (case 2)

Sample S1 S2 S3 S4

Accuracy (%) 100 100 100 100

Sample S(1,2,3) S(1,3,4) S(2,3,4) All

Accuracy (%) 89.4 96.11 88.9 89.17

Figure 9  Error iteration curve for each sample
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performance of the model. In the second sample set test, 
its diagnostic performance almost failed. On the con-
trary, the model optimized by the BAS algorithm and the 
Particle Swarm Algorithm has a certain degree of anti-
coupling. In the case of aliasing of samples in the sample 
set, the diagnostic level of the model can still be main-
tained above 85%. Comparing the error iteration curves 
of the two algorithms, the declining speed and conver-
gence speed of the BAS curve are significantly faster than 
the PSO curve, and in the actual training process, the 
PSO takes significantly longer than the BAS algorithm. 
Therefore, it can be concluded that the BAS-BP model 
bearing fault diagnosis has anti-coupling properties, and 
can quickly and accurately realize fault identification.

5 � Conclusions

(1)	 A fault diagnosis model based on BP Neural Net-
work optimized by Beetle Algorithm is proposed 
to identify bearing failure status. The Wave Packet 

Energy feature are obtained by Wave Packet Trans-
form learned from different frequency bands of sig-
nals and fed into the supervised model for health 
condition recognition.

(2)	 A visual study on the extracted features has been 
carried out. The study shows that the wavelet 
packet energy feature can accurately distinguish dif-
ferent working conditions and can be used to evalu-
ate the health status of bearings.

(3)	 This article implemented two experiments to test 
the performance of the BAS-BP model, including 
diagnostic rate and anti-interference ability. The 
results show that the BAS-BP model can improve 
the problem of BP easily falling into local extreme 
values and identify bearing faults in a shorter time 
with higher accuracy. At the same time, the cou-
pling interference between data can be avoided to a 
certain extent.

Figure 10  Test comparison chart Figure 11  Error iteration curve
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