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Abstract 

Mechanical engineering structures and structural components are often subjected to cyclic thermomechanical load-
ing which stresses their material beyond its elastic limits well inside the inelastic regime. Depending on the level of 
loading inelastic strains may lead either to failure, due to low cycle fatigue or ratcheting, or to safety, through elastic 
shakedown. Thus, it is important to estimate the asymptotic stress state of such structures. This state may be deter-
mined by cumbersome incremental time-stepping calculations. Direct methods, alternatively, have big computa-
tional advantages as they focus on the characteristics of these states and try to establish them, in a direct way, right 
from the beginning of the calculations. Among the very few such general-purpose direct methods, a powerful direct 
method which has been called RSDM has appeared in the literature. The method may directly predict any asymptotic 
state when the exact time history of the loading is known. The advantage of the method is due to the fact that it 
addresses the physics of the asymptotic cycle and exploits the cyclic nature of its expected residual stress distribution. 
Based on RSDM a method for the shakedown analysis of structures, called RSDM-S has also been developed. Despite 
most direct methods for shakedown, RSDM-S does not need an optimization algorithm for its implementation. Both 
RSDM and RSDM-S may be implemented in any Finite Element Code. A thorough review of both these methods, 
together with examples of implementation are presented herein.
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1  Introduction
Variable thermomechanical loading is an often source 
of distress for mechanical engineering structures like 
pressure vessels, aircraft propulsion engines, mechani-
cal machinery parts, etc. Normally these structures and 
structural members are designed elastically. However, to 
increase their efficiency they are often required to oper-
ate under excessive amount of loading, which may bring 
them well beyond their elastic limit. Thus, it is important 
to know their long-term structural behavior and the fac-
tor of safety against phenomena like low cycle fatigue 

or ratcheting, or even shakedown. Such asymptotic 
states always exist for stable Druckerian type [1] struc-
tural materials. If the exact time history of the loading is 
known, this state can be reached through evolution type 
incremental step by step finite element (FE) calculations. 
However, such approaches are very time consuming and 
often numerically unstable.

A much better alternative having big computational 
advantages is the use of Direct Methods. These methods 
seek the asymptotic state right from the start of the cal-
culations. On the other hand, if the exact time history of 
the loads is not known, but only their limits, as often is 
the case, direct methods offer the only alternative.

A typical example of these methods is the shakedown 
analysis, where one seeks to provide limits for a safe state, 
like shakedown. The search for this state is normally 
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based on the lower bound [2] or upper bound [3] shake-
down theorems of plasticity. Most of the numerical 
approaches are formulated as mathematical program-
ming (MP) problems, which seek to find the maximum 
or the minimum value of an objective function (normally 
the loading factor) which is subjected to various con-
straints either static or kinematic. Linearization of the 
yield surface has led to solutions using linear program-
ming algorithms, (e.g., a pioneering work [4]). When the 
constraints are not linearized, the problem is formulated 
as a non-linear programming problem (e.g., some recent 
work [5]). Also because of the large number of finite ele-
ments used for structural discretization and the big num-
ber of constraints, large size optimization problems have 
to be solved. This led to special numerical techniques like 
the reduced basis (e.g., Ref. [6]) or Newton like iterations 
(e.g., Ref. [7]) algorithms. With the advent of computers 
and the evolution of the interior point methods (IPM) 
the limit and shakedown large optimization problems are 
solved till nowadays with the use of these algorithms or 
related techniques (e.g., Refs. [8–14]).

Except for the formulation using MP algorithms, other 
numerical approaches have appeared in the literature. 
The Linear Matching Method (LMM) was originally used 
to supply shakedown and plastic collapse limits [15]. It is 
an iterative procedure that matches a linear problem to a 
plasticity problem. The approach converges to the shake-
down load through a sequence of linear solutions with 
a spatially varied module. It has been extended beyond 
shakedown to provide ratchet boundaries for structures 
subjected to thermomechanical loads [16, 17]. The load-
ing was assumed to be composed of a constant primary 
load plus a secondary fluctuating load. Thus, numerical 
solutions were obtained for a Bree type problem, where a 
constant mechanical load acts together with a cyclic ther-
mal load [18]. Similar assumptions of splitting the load 
in a constant and a cyclic part were also used for a lower 
bound solution [19]. In Ref. [20] a simplified approach 
was presented to estimate the ratchet boundary. It was 
based on the fictitious yield surface that had been sug-
gested in Ref. [21].

LMM has been extended to find the ratchet bounda-
ries [22] for simultaneous cyclic variation of both thermal 
and mechanical loads. Quite recently an algorithm that 
uses successive direct asymptotic solutions to estimate 
the ratchet boundary was proposed in Ref. [23].

Apart for the determination of various limits, it is 
important to have direct methods that would determine 
the long-term effects on a structure of a loading with a 
given time history. A direct method that addresses this 
problem is the Direct Cyclic Analysis (DCA) [24] proce-
dure which has been implemented in the Abaqus soft-
ware [25]. The method is based on the assumption that 

the displacements at the asymptotic cycle will become 
cyclic. It is a quite involved combination of an incremen-
tal-iterative procedure that gives good results for the case 
of alternating plasticity, but fails to converge for close to 
ratcheting loadings. Another direct incremental-iterative 
procedure based on employing plastic strain increments 
was proposed in Ref. [26].

The Residual Stress Decomposition Method (RSDM) 
[27] is a general-purpose direct method that may be used 
to estimate what kind of asymptotic cyclic state an elas-
toplastic structure would develop, when subjected to a 
given cyclic loading. It was originally conceived [28] to 
estimate the cyclic steady state of creeping structures. 
The versatility of the approach comes from physical argu-
ments as it takes advantage of the expected cyclic nature 
of the residual stress distribution in the asymptotic state. 
Thus, the residual stresses are decomposed in Fourier 
series over a loading cycle. The coefficients of these series 
are found in an iterative way with the help of the residual 
stress time derivative, which is evaluated, at time points 
inside the cycle, by satisfying equilibrium and compat-
ibility. Based on the RSDM, another method, called 
RSDM-S, was developed to establish shakedown limits 
[29]. Applications of the two approaches for two or three 
thermomechanical loads have been presented in Refs. 
[30–32]. In Ref. [32], the RSDM-S was also extended to 
multi-dimensional loading domains. Some first results 
for extending the method to applied displacement load-
ings may be found in Ref. [33].

In the present paper, a review of the RSDM and its 
modified version for shakedown, RSDM-S, will be thor-
oughly exposed. Recent advances from the theoretical 
and numerical point of view will also be discussed.

A mixture of old and new results is presented, which 
demonstrate the robustness and numerical efficiency of 
the two methods.

2 � Cyclic Asymptotic Stress States
Let us consider a body of volume V and surface S (Fig-
ure 1). A cyclic loading of the form of Eq. (1) is applied on 
one part of S, whereas the rest is under zero displacement 
conditions:

where P(t) is the set of loads that act on S; t is a time 
point, T is the period of the cycle, n=1,2,…, denotes the 
number of cycles. Bold letters are used, herein, to denote 
vectors and matrices.

In Figure 1, for example, one may see a set of two loads 
whose cyclic nature in the loading domain is shown in 
Figure 1(b).

(1)P(t) = P(t + nT ),
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Let us suppose that our structure is made of an elastic-
perfectly plastic material. At any time point τ=t/T inside 
the cycle, the structure will develop a stress field σ (τ ) 
which may be decomposed into an elastic part σ el(τ ) , 
equilibrating the external loading P(τ), assuming a com-
pletely elastic behavior, and a self-equilibrating residual 
stress part ρ(τ ) due to inelasticity. Therefore:

An analogous decomposition holds for the strain rates:

The residual strain rate itself may be decomposed into 
an elastic and a plastic part [21]. Thus, one may write:

It has to be noted that the residual strain rate ε̇r , as 
being the difference of two compatible strain rates ε̇(true 
strain rate) and ėel(solution assuming completely elastic 
behavior) is itself a compatible strain rate.

The elastic strain rates are related to the stress rates 
through the elasticity matrix D, whereas the plastic strain 
rate vector through the gradient to the flow rule:

where f is the yield surface.
Drucker’s stability postulate for rheonomic or sclero-

nomic materials states that for two different stress states 
and their corresponding plastic strains the following ine-
qualities hold:

(2)σ (τ ) = σ
el(τ )+ ρ(τ ).

(3)ε̇ = ė
el(τ )+ ε̇r(τ ).

(4)ε̇r = ε̇
el
r (τ )+ ε̇

pl(τ ).

(5)

σ̇
el(τ ) = D · ėel ,

ρ̇(τ ) = D · ε̇elr ,

ε̇
pl = � ·

∂f

∂σ
,

Based on this postulate it may be proved [34] that there 
always exists an asymptotic cyclic state that the stresses 
and strain rates stabilize and become periodic with the 
same period of the cyclic loading.

Depending on the amplitude of the load, three different 
asymptotic states shown, in one-dimension, by stress-
strain cycles in Figure  2, may be realized, based on the 
existence or not of the plastic strain rates.

Thus, for elastic shakedown, which is a safe state, 
ε̇
pl → 0 . For the case of alternating plasticity (or plas-

tic shakedown) ε̇pl �= 0, but �ε̇
pl =

∫ 1
0 ε̇

pldτ = 0 the 
structure could fail by local fracture (low cycle fatigue). 
Alternatively, there could be cases where ε̇pl �= 0, and 
∫ 1
0 ε̇

pldτ �= 0 leading to incremental collapse or ratch-
eting with the structure failing due to excessive plastic 
deformations that result to large displacements.

3 � Residual Stress Decomposition Method (RSDM)
Due to the cyclic loading, the elastic stress is also cyclic, 
and thus in a cyclic asymptotic stress state, the residual 
stress distribution is expected to be also cyclic. Exploit-
ing this cyclic nature, one may decompose the residual 
stresses into Fourier series, and try to find the unknown 
Fourier coefficients. Thus, we may write [27]:

Differentiating the above with respect to τ one may 
write the following expression for the derivative:

(6)(σ − σ ∗)ε̇
pl ≥ 0, (σ ∗ − σ )ε̇

pl
∗ ≥ 0.

(7)

ρ(τ ) =
1

2
a0 +

∞
∑

k=1

{

cos(2kπτ) · ak + sin(2kπτ) · bk
}

.

V

S

P
1

P
2

0

P
2

P
1

(a) (b)
Figure 1  (a) Applied loading, (b) cyclic loading
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Using the orthogonality properties of the trigonomet-
ric functions, one may get expressions for the Fourier 
coefficients of the cosine and sine series in terms of the 
residual stress derivatives:

The constant term may be estimated at the end of the 
cycle using the information at its beginning and at its 
end [27]:

where the subscripts b and e denote the beginning and 
the end of the cycle, respectively. Thus, it may be seen 
by Eqs. (9) and (10) that, by integrating over a cycle, the 
Fourier coefficients may be estimated, once the residual 
stress derivatives are provided.

(8)

ρ̇(τ ) = 2π

∞
∑

k=1

{

−k sin(2kπτ) · ak + k cos(2kπτ) · bk
}

.

(9)

ak = −
1

kπ

1
∫

0

sin(2kπτ) · ρ̇(τ ) dτ ,

bk =
1

kπ

1
∫

0

cos(2kπτ) · ρ̇(τ ) dτ .

(10)

1

2
a0,e =

(

1

2
a0,b +

∞
∑

k=1

ak ,b

)

−

∞
∑

k=1

ak ,e +

1
∫

0

ρ̇(τ )dτ ,

These derivatives may be found by imposing compat-
ibility and equilibrium at some predefined time points 
inside the cycle. To this end, we assume that our struc-
ture is discretized with finite elements (FEs). Using the 
rates of displacements of the nodes of the FE mesh one 
may write:

From Eqs. (5b) and (4) we may write:

Since the strain rates are kinematically admissible, 
the residual stress rates are self-equilibrated, and fixed 
supports have been assumed, one may write, for a vir-
tual strain field δε̇r , using the Principle of Virtual Work 
(PVW):

Combining Eq. (11) and its virtual form, together 
with Eqs. (12) and (13), we end up with:

or equivalently:

(11)ε̇r = B · ṙr .

(12)ρ̇ = D ·
(

ε̇r − ε̇
pl
)

.

(13)

∫

V

δε̇Tr · ρ̇dV = 0.

(14)





�

V

B
T ·D · BdV



 · ṙr =

�

V

B
T ·D · ε̇pldV ,

(a)                                                      (b)                                                                (c)

σmax

σmin

σ

ε

σmax

σmin

σ

ε

σmax

σmin

σ

ε

Figure 2  (a) Elastic shakedown, (b) alternating plasticity, (c) ratcheting
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where K is the stiffness matrix, Ṙ is the rate vector of the 
nodal forces due to the plastic straining.

It has to be noted that this formulation, which uses 
the compatible residual strain vector [33], instead of the 
total strain vector, used in Ref. [27], although, obviously 
leading to the same results, requires less computations, 
as it avoids the additional evaluation of the derivatives 
of the elastic stresses.

The term in the r.h.s. of Eq. (14) accounts for plastic 
straining which will occur whenever the total stress 
(Eq. (2)) exceeds the yield surface (Figure 3). According 
to the closest point projection [35], return to the yield 
surface will be, along the vector 

−→
CB , with the plastic 

strain rate ε̇pl directed along 
−→
BC . The vector 

−→
CA equal 

to –σp is used instead, which is a kind of ‘radial return’ 
type of mapping along the known vector. This vector, 
which will be called plastic stress vector, whenever is 
different to zero, gives an equivalent measure of the 
plastic straining.

3.1 � Numerical Procedure
In the search for a cyclic solution, an iterative procedure 
has been written which updates the Fourier coefficients 
inside an iteration [27].

Firstly, we solve for the external loading, assuming elas-
tic behavior, and obtain, for each cycle point τ, the elas-
tic stress σ el(τ ) at each Gauss point (GP) of a continuum 
finite element.

Let us suppose that, after the completion of the 
iteration (μ), an estimate of the Fourier coefficients 
a
(µ)
0 ,a

(µ)

k , b
(µ)

k  exists. The following steps are now 
followed:

1.	 For a specific cycle point τ compute ρ(µ)(τ ) , at each 
GP, using Eq. (7):

2.	 Evaluate at each GP the total stress σ (µ)(τ ) , using Eq. 
(2):

(15)K · ṙr =

∫

V

B
T ·D · ε̇pldV = Ṙ,

(16)ρ
(µ)(τ ) =

1

2
a
(µ)
0 +

∞
∑

k=1

{

cos(2kπτ) · a
(µ)

k + sin(2kπτ) · b
(µ)

k

}

.

(17)σ
(µ)(τ ) = σ

el(τ )+ ρ
(µ)(τ ).

3.	 Calculate whether, at each GP, σ (µ)(τ ) > σY  , where 
σ  and σY  are the effective and uniaxial yield stress 
respectively. In such a case compute σ (µ)

p (τ ):

4.	 Assemble for the whole structure the rate vector of 
the nodal forces Ṙ(τ ) , which is the r.h.s. of Eqs. (14), 
(15):

5.	 Solve the following iterative form of Eq. (15) and 
obtain ṙ(µ)(τ ):

6.	 Evaluate at each GP the residual stress derivative 
rates, using Eqs. (12) and (11):

7.	 Repeat the steps 1‒6 for all the assumed cycle points.
8.	 Perform a numerical integration over the cycle points 

and update the Fourier coefficients, making use of 
Eqs. (9) and (10):

(18)

ξ =
σ (µ)(τ )− σY

σ (µ)(τ )
⇒ σ

(µ)
p (τ ) = ξ · σ (µ)(τ ).

(19)Ṙ
(µ)

(τ ) =

∫

V

B
T · σ (µ)

p (τ )dV .

(20)K ṙ
(µ)
r (τ ) = Ṙ

(µ)
(τ ).

(21)ρ̇
(µ)(τ ) = DBṙ

(µ)
r (τ )− σ

(µ)
p (τ ).

Figure 3  Estimation of plastic straining (von Mises yield surface)
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9.	 From the updated Fourier coefficients, evaluate the 
updated distribution of the residual stresses, at all 
the Gauss points, using Eq. (7), and check the con-
vergence through their Euclidean norms at the end of 
the cycle:

where tol is a specified tolerance.
If Eq. (23) holds, the procedure stops as a cyclic stress 

state (cs) has been reached, and ρ(µ) = ρ
(µ+1) = ρ

cs ; oth-
erwise, go back to step 1 and repeat the process.

Once a cyclic stress state has been reached, we look at 
σ
cs
p = σ

(µ)
p = σ

(µ+1)
p  , which was evaluated during the last 

iteration. We may determine the nature of the obtained 
solution, for each GP, by evaluating the following integral 
over the cycle:

with i spanning all the components of σcsp (τ ).
Depending on the values of αi we may have:

a)	 If αi  = 0 , a state of ratcheting exists at this GP. If 
αi = 0 , the value of σ cs

p,i(τ ) is checked for every cycle 
point τ.

b)	 If σ cs
p,i(τ )  = 0 , the Gauss point is in a state of reverse 

plasticity, since this must hold for pairs of cycle 
points of equal value but of alternating sign.

c)	 If σ cs
p,i(τ ) = 0 , the point has remained either elastic or 

has developed an elastic shakedown state.

For the case of all the Gauss points being either elas-
tic or in a state of elastic shakedown, then the structure, 
under the given external loading, will also shakedown. 
On the other hand, if sufficient GPs are in a state of 
ratcheting, at the cyclic state, the structure will undergo 
incremental collapse. This, numerically, may be eas-
ily manifested, through the singularity of the stiffness 
matrix, which can be evaluated just at the end of the 

(22)

a
(µ+1)
k = −

1

kπ

1
∫

0

{[

ρ̇
(µ)(τ )

]

(sin2kπτ)
}

dτ ,

b
(µ+1)
k =

1

kπ

1
∫

0

{[

ρ̇
(µ)(τ )

]

(cos2kπτ)
}

dτ ,

a
(µ+1)
0

2
= −

∞
∑

k=1

a
(µ+1)
k +

a
(µ)
0

2
+

∞
∑

k=1

a
µ

k+

1
∫

0

[

ρ̇
(µ)(τ )

]

dτ .

(23)

∥

∥ρ
(µ+1)(1)

∥

∥

2
−

∥

∥ρ
(µ)(1)

∥

∥

2
∥

∥ρ(µ+1)(1)
∥

∥

2

≤ tol,

(24)αi =

1
∫

0

σ cs
p,i(τ )dτ

converged steady cycle, by zeroing the elasticity matrix D 
at the ratcheting GPs.

3.2 � Examples
The procedure has been programmed in the open-source 
code FEAP [36], using the Fortran language. A value of 
tol=10−3 proved sufficient for accuracy. Two indicative 
examples of application are shown, one of a holed plate, 
which is a benchmark example, and a more sophisticated 
example, in terms of geometry and boundary conditions, 
of a framed structure. Brick elements have been used for 
their finite element implementation. Three terms of the 
Fourier series are used.

3.2.1 � Holed Plate
The square plate is subjected to pressure loadings along 
the edges (Figure  4) and due to symmetry, only one 
quarter of the plate is discretized, with the boundary 
conditions along X and Y axes considered rolled. Let D 
be the diameter of the circle, L the length of the slab 
and d the thickness, with D/L = 0.2 , d/L = 0.05 . In the 
present work, the length L is equal to 0.2 m, the mate-
rial properties are E = 210 GPa, v = 0.3 and σy = 360 
MPa.

Fifty time points were adopted, just for the smoother 
appearance of the distribution of the stresses along one 
period, although much less time points (like thirty) 
could also be used.

Two different loadings cases are implemented as 
follows.

Case 1: Only Px(τ ) = 0.65σy sin(2πτ ) is applied.

Figure 4  Geometry and loading of the plate
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The slab is discretized in 196 elements (Figure 5) and 
the asymptotic state of the structure proves to be alter-
nating plasticity. One may see the alternating variation 
(Figure  6), over the cycle, of one of the components 
of the plastic stress vector of the most stressed Gauss 
point GP1. One may also realize that the corresponding 
integral (Eq. (24)) is approximately zero.

By plotting the very small, but nonetheless numeri-
cally nonzero, contours of the values of the integrals 
(Figure  5) at the GPs that have the same behavior 
around GP1, the local failure mechanism is revealed 
in this Figure. Finally, one may see the convergence of 
the RSDM in Figure 7. These results had been checked 
using plane elements ([27]) against the time stepping 
program Abaqus [25].

Case 2: Two forces are applied Px(τ ) = 0.85σy and 
Py(τ ) = 0.65 sin2(2πτ )

In order to show the robustness of the method, two 
different discretizations are adopted, one with a coarse 
mesh, consisted of 98 elements (Figure  8(a)) and one 

Figure 5  Local alternating plasticity mechanism
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Figure 6  Predicted cyclic asymptotic state of the -xx stress 
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Figure 8  Ratcheting mechanism for load case 2: (a) coarse mesh, (b) 
finer mesh
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with a finer mesh of 392 elements (Figure  8(b)). One 
may see the ratcheting behavior that RSDM predicts 
by considering, for example, the asymptotic -xx com-
ponent of the plastic stress distribution at GP1 over the 
cycle (Figure 9), where clearly in either of the two dis-
cretizations the distribution is of the same sign, render-
ing also the integral (Eq. (24)) much greater than zero.

By plotting the contours of the values of these inte-
grals (Figure  8) at the GPs, that have also ratcheting 
behavior, one may realize the fact that a ratcheting 
mechanism appears in both discretizations. Finally, the 
convergence of the RSDM may be seen in Figure  10. 
These results had been checked in Ref. [27], using plane 
elements, against the time stepping program Abaqus 
[25].

3.2.2 � Frame Example
A second example of application is an example of a 
framed structure (Figure  11), that has originally been 
considered in Ref. [37]. The following mechanical prop-
erties were selected: E=2×105 N/mm2, ν =0.3, σy=100 
N/mm2. The structure is shown in Figure 12 discretized 
by 350 hexagonal brick elements of 8 Gauss points.

The variations of the loads inside one period of load-
ing are given by:

The plotting of the above variations of the two loads 
may be seen in Figure 13. The variations are randomly 
chosen, with the only restriction that the ratio of the 

P1(τ ) = 18 ∗











−7.33τ 2 + 4.23τ + 0.4 0 < τ ≤ 0.25
1.0 0.25 < τ ≤ 0.50

−9.33τ 2 + 9.267τ − 1.3 0.50 < τ ≤ 0.75
0.4 0.75 < τ ≤ 1.00











,

P2(τ ) = 6 ∗











0.4 0 < τ ≤ 0.25

−8τ 2 + 8.4τ − 1.2 0.25 < τ ≤ 0.5
1 0.50 < τ ≤ 0.75

−10.67τ 2 + 16.27τ − 5.2 0.75 < τ ≤ 1.0











.

maximum values of the loads P∗
1/P

∗
2 is equal to 3. This 

point, which may be seen herein (point A) οn Figure 27, 
where the shakedown boundary is constructed, pro-
duces a ratcheting behavior as has been noted by Ref. 
[37]. Indeed, RSDM predicts a ratcheting mechanism 
(Figure  14) which is quite similar with the one shown 
in Ref. [37], that was produced as an upper bound 
shakedown solution, in the context of an incremen-
tal- iterative algorithm to find the shakedown load. The 
advantage of the RSDM is its simplicity, its pure itera-
tive nature and its generality to account for any asymp-
totic behavior.

In Figure 15 one may see the variation along the cycle 
period of the σp,xx steady state component of the plas-
tic stress vector at the GP1. All the other steady state 
stresses components and at all the Gauss points inside 
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Figure 12  2D view and 3d view of the discretized frame using 350 brick elements
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the ratcheting mechanism have such a typical, of the 
same sign, variation.

The convergence of the procedure towards the steady 
state is shown in Figure 16.

4 � Residual Stress Decomposition Method 
for Shakedown (RSDM‑S)

In most cases the exact time history of the loads is not 
known, but only their variation intervals. Shakedown is 
the only safe asymptotic state and it is important to pro-
vide safety margins. A direct method is the only way that 
this task may be accomplished. The loads may be applied 
proportionally (Figure  17(a)) or independently (Fig-
ure  17(c)), between the two extreme values of 0 and P∗

1 
and P∗

2 for the two loads P1 and P2 , respectively. Smooth 
time functions may be used to describe a cyclic loading 

program between the two extremes in the time domain 
(Figure 17(b) and Figure 17(d)). Of course, minimum val-
ues for the two loads different than zero may be handled 
accordingly.

The conditions for elastic shakedown given by Melan 
[2] are as follows.

a)	 The structure will shake down under a cyclic load-
ing, if there exists a time-independent distribution of 
residual stresses ρ such that, under any combination 
of loads inside prescribed limits, its superposition 
with the elastic stresses σ el , i.e., σ el + ρ , results to a 
safe stress state at any point of the structure.

b)	 Shakedown never takes place unless a time-inde-
pendent distribution of residual stresses can be found 
such that under all the possible load combinations 
the sum of the residual and elastic stresses consti-
tutes an allowable stress state.
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These statements define the limit cycle for a structure 
subjected to a prescribed loading program. Parameters of 
this cycle are the shakedown load factor and the constant 
in time residual stress distribution which are unique and 
independent of the preceding deformation history [21].

König [38] has proved that if a structure shakes down 
under a cyclic loading containing all the vertices of the 
convex loading domain Ω, like the one in Figure  17(c), 
then it shakes down for any loading path contained in Ω.

Thus, a cyclic loading that uses as cycle points the ver-
tices of the loading path (0 → (P∗

1 ,P
∗
2 ) → 0) (for propor-

tional loading) or (0 → P∗
1 → (P∗

1 ,P
∗
2 ) → P∗

2 → 0) for 
independent loading, or cycle points from the respective 
cyclic program in the time domain may be used.

This cyclic loading, or equivalently the loading domain, 
may be varied isotropically through the multiplication 
with a factor γ. Through the RSDM-S procedure, we seek 
to find γsh for which the adopted cyclic loading makes the 
structure shakedown. Starting from a value high above, a 
sequence of iterations takes place that shrinks the loading 
domain by lowering the load factor. Inside an iteration, 
RSDM is used to provide a cyclic solution for the current 
load factor.

The procedure stops when the conditions of the limit 
cycle are met, where the only remaining Fourier coef-
ficient in the residual stress distribution is the constant 
term.

4.1 � Numerical Procedure
RSDM-S consists of two iteration loops, one inside the 
other, the outer loop is controlled by the parameter μ 
whereas the inner loop by the parameter κ.

The procedure has to start from a load factor which is 
above the shakedown load. Such a value could be given 
by Eq. (25), which finds the non-zero minimum effec-
tive elastic stress at a cycle point τ*, which could cor-
respond, for example, to a maximum of one of the loads 
(see Figure 17)

With this choice, the starting value is guaranteed to 
be much higher than the shakedown load or even the 
limit load, since all the finite elements, at least at τ*, will 
have become plastic. Although sometimes this value 
is quite high, with the next iteration this value drops 
substantially.

(25)γ (1) =
σy

min σ el(τ ∗)
.

After an initialization phase, i.e., 
a
(0)
0

= a
(0)

k
= b

(0)

k
= 0 → ρ

(1)
0

(τ ) = 0, κ = 1, μ = 1, φ(1) = 0, 
the following iterative steps are then followed:

Using the load factor of the outer loop, which is con-
stantly updated, we enter an inner loop of iterations con-
trolled by κ. The steps of this inner loop are virtually the 
same steps with the RSDM.

1.	 The following expression is computed for a cycle 
point τ and for each GP of the mesh:

2.	 It is checked whether the total effective stress 
σ (µ)(τ ) > σy ; if this does not hold, we set ξ = 0 , oth-
erwise:

This operation is a radial return type rule according to 
Figure 3. Steps 1 and 2 are repeated for every GP.

3.	 Assemble for the whole structure the new rate vector 
of the nodal forces Ṙ(κ)

(τ ):

We find an update for ṙ(κ)(τ ) using the relation

4.	 A value for ρ̇(κ)(τ ) is evaluated at each GP.

The steps 1‒4 are repeated for all the cycle time 
points.

(26)σ
(κ)(τ ) = γ (µ)

σ
el(τ )+ ρ

(µ−1)
(κ) (τ ).

(27)

ξ =
σ (κ)(τ )− σy

σ (κ)(τ )
⇒ σ

(κ)

pl (τ ) = ξ · σ (κ)(τ ).

(28)Ṙ
(κ)

(τ ) =

∫

V

B
T · σ

(κ)

pl (τ )dV .

(29)K ṙ
(κ)(τ ) = Ṙ

(κ)
(τ ).

(30)ρ̇
(κ)(τ ) = DBṙ

(κ)(τ )− σ
(κ)

pl (τ ).
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5.	 By performing numerical time integration over the 
whole cycle, we may obtain an update of the Fourier 
coefficients:

6.	 From these updates one may get an update for 
ρ
(µ−1)
(κ+1) (τ ) using the iterative form of Eq. (7):

7.	 The sum of the norms of the vectors of the coeffi-
cients of the trigonometric part of the Fourier series 
of the residual stresses, is found:

(31)

a
(κ+1)
k = −

1

kπ

1
∫

0

{[

ρ̇
(κ)(τ )

]

(sin2kπτ)
}

dτ ,

b
(κ+1)
k =

1

kπ

1
∫

0

{[

ρ̇
(κ)(τ )

]

(cos2kπτ)
}

dτ ,

a
(κ+1)
0

2
= −

∞
∑

k=1

a
(κ+1)
k +

a
(κ)
0

2
+

∞
∑

k=1

a
(κ)

k +

1
∫

0

[

ρ̇
(κ)(τ )

]

dτ .

(32)ρ
(µ−1)
(κ+1) (τ ) =

1

2
a
(κ+1)
0 +

∞
∑

k=1

{

cos(2kπτ) · a
(κ+1)
k + sin(2kπτ) · b

(κ+1)
k

}

.

(33)ϕ(κ+1) =

∞
∑

k=1

∥

∥

∥a
(κ+1)
k

∥

∥

∥+

∞
∑

k=1

∥

∥

∥b
(κ+1)
k

∥

∥

∥.

8.	 Whether a cyclic solution is reached is controlled by 
the following inequality [32]:

9.	 If Eq. (34) does not hold, we set κ=κ+1 and repeat 
from step 1; otherwise, we exit the inner loop and set:

	10.	 An update of the loading factor may be calculated:

It should also be noted that ω is a convergence param-
eter, which is needed so that the procedure does not 
bypass the shakedown factor [29, 32]. This may be linked 
with a predefined tolerance for ϕ(κ) which controls and 
stops the iterations (e.g., 10−3, 10−4).

In newer research [33], it is shown that this factor can 
be avoided.

	11.	 The following inequality is checked:

In case this does not hold, go back to step 1 and start a 
new iteration with μ=μ+1; otherwise, a shakedown state 
has been reached and:

(34)
∣

∣

∣
ϕ(κ+1) − ϕ(κ)

∣

∣

∣
< tol.

(35)
ρ
(µ)
(1) (τ ) = ρ

(µ−1)
(κ+1) (τ ),

ϕ
(

γ µ
)

= ϕ(κ+1).

(36)γ (µ+1) = γ (µ) − ω · [ϕ
(

γ (µ)
)

].

(37)tol < ϕ(γ (µ)) < tol + δ.
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Accurate results are obtained for a value of tol ≃ 10−3 
with δ being something smaller than tol, e.g., 10−4

.

4.2 � Examples
Three different representative examples of application of 
the RSDM-S are presented herein. Only three terms form 
the Fourier series are needed (the constant term and the 
first two terms of the trigonometric series).

4.2.1 � Holed Plate
The first example is the benchmark example of a holed 
plate under mechanical and thermal loads. Shakedown 
domains are obtained by running RSDM-S for different 
ratios of the maximums of the applied loads.

(38)γ (µ+1) = γ (µ) = γsh.
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a)	 The plate of Figure  4 is subjected to two mechani-
cal loads P1 and P2 along the x and the y direction, 
respectively, varying proportionally (Figure  17(a), 
(b)). The meshing of 98 brick elements has been used.

The shakedown domain may be seen in Figure 18 and a 
typical convergence towards shakedown in Figure 19.

Results have been verified in Ref. [29] using Ref. [39].

b)	 The plate is subjected to the two loads P1 and P2 that 
now vary independently (Figure  17(c), (d)). Using 
time functions, in the time domain as the ones 
described in Ref. [29], at least 20 time points should 
be considered. If the considered domain is the load-
ing domain only 5 time points are used.

The shakedown domain may be seen in Figure  20, 
whereas a typical convergence towards shakedown in 
Figure 21. 

iii)	The plate is subjected to cyclic thermal load and pres-
sure loading (Figure 22).

The pressure acts along the one edge and the temper-
ature varies from the inner to the outer side according 
to the law:

The temperature θ0 is taken zero; the coefficient of 
thermal expansion is considered equal to 5× 10−5 ◦C−1 . 
The loads are applied independently in the form of a 
rectangular loading, between zero and a maximum 
value, i.e., P ∈ [0,P∗] and �θ ∈ [0,�θ∗].

The FE model consists of 200 brick elements with 8 
GP per element (Figure 23).

The stresses due to the thermal load may be con-
sidered as added to the elastic stresses caused by the 
mechanical load. A thermal and mechanical load were 
considered, originally, in Ref. [30].

The problem was solved, in the time domain, using sec-
ond order time functions with 30 time points. Results of 
the shakedown domain may be seen in Figure 24, where 
σth is the maximum effective elastic thermal stress due to 
the fluctuating temperature. This shakedown domain is 
quite similar to a Bree-type diagram [18]. This diagram 
was examined in Ref. [31], where the simultaneous use of 
RSDM-S and RSDM made possible to establish, numeri-
cally, on one hand the shakedown boundary, and on the 
other, to identify ratcheting regions.

In Ref. [32], RSDM-S is used to produce a 3D shake-
down domain, resulting from a combination of two 
mechanical and a thermal load. It is proved there that 

θ(r, τ ) = θ0 +
�θ(τ) ln

(

5D/2
r

)

ln(5)

the iterations needed for the 3D problem to converge are 
of the same order with the ones that would be needed 
to solve the 2D problem. Thus, the computing time 
is virtually the same. This is in contrast with a shake-
down method that uses an optimization algorithm since 
between the 2D and the 3D cases there would be more 
than double the number of variables and the number of 
constraints [40].

In the same work ([32]), RSDM-S is extended to cater 
for an n-dimensional loading domain, of a zero origin, by 
creating automatically the cyclic loading program that 
would pass through the 2n − 1 vertices of this domain. 
This may be accomplished by making use of a combina-
torial algorithm (e.g., Ref. [41]).

4.2.2 � Frame Example
The framed structure of Figure  11 is considered next. 
Two different independent loading cases were examined.

Case 1. The two distributed loads P1 and P2 act inde-
pendently 0 ≤ P1 ≤ P∗

1 and 0 ≤ P2 ≤ P∗
2 (Figure  17(c), 

(d)), with the ratio P∗
1/P

∗
2 = 3 . The frame was discretized 

with 400 eight-noded plane stress iso-parametric finite 
elements with 3×3 Gauss integration points [29].

For this example, the initial convergence parameter ω 
needed to be halved twice, in order to converge and the 
shakedown factor was found 2.597. It may be seen that 
although the procedure started from a very high initial 
load factor, it descended quite rapidly (Figure 25). There 
is a smooth convergence, as it may be seen (insert of the 
Figure) towards the shakedown value, after the initial 
descent.

The same example was run, recently [33], using the 
discretization with the 350 brick elements shown in Fig-
ure  12 and a numerical scheme where ω is not needed. 
The shakedown factor was found approximately the same 
of about 2.58.
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By varying the ratio of the extreme values of the two 
loads, analogous points may be taken. Thus, the shake-
down domain depicted in Figure 26 may be established.

Case 2. A loading domain where the minimum values 
of the loads are different to zero is tried next. The loads 
now act also independently but with the following vari-
ations: 0.4P∗

1 ≤ P1(τ ) ≤ P∗
1 and 0.4P∗

2 ≤ P2(τ ) ≤ P∗
2 . This 

type of loading has been considered in Ref. [42]. RSDM-
S was run for various ratios of P∗

1/P
∗
2 . The shakedown 

domain is shown in Figure  27. One may see a perfect 
match with the domain that was produced by Ref. [42], 
where an optimization algorithm was used. Also, the 
result for P∗

1/P
∗
2 = 3 , that was produced in Ref. [37], 

with a quite involved incremental-iterative procedure of 
a strain driven algorithm, using different elements and 
a much denser mesh, is virtually on the boundary pro-
duced by RSDM-S (Figure 27).

Point A, which lies outside the shakedown boundary, is 
the one that has been used earlier in this work by RSDM 
to verify ratcheting behavior, referred to by both Ref. [37] 
and Ref. [42].

4.2.3 � Tee‑junction
Recently RSDM-S has been extended to cater for applied 
displacement type of loadings [33]. Tee-junctions are 
widely used for the connection of piping elements, which 
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form parts of pipelines. Thus tee-junctions may be sub-
jected to sever earthquake loading that may be simulated 
by cyclic applied displacements.

The junction shown in Figure 28 is composed of a main 
pipe with an outer diameter of 20.32 cm and thickness 
of 8.18 mm and is connected to a secondary pipe, called 
‘branch’, which has a diameter of 15.24 cm and thickness 
of 10.97 mm. The main pipe is considered fixed at the 
ends and a displacement is applied at the free end of the 
branch along the x direction.

The model consists of 9936 brick elements. The yield 
displacement is equal to 1.43 mm. The shakedown dis-
placement was estimated by the RSDM-S as 2.6 mm. One 
may see the smooth convergence towards shakedown in 
Figure 29, under the numerical scheme discussed in Ref. 
[33] that makes ω obsolete. The result was validated by 
the step-by-step analysis software Abaqus. Two different 
analyses were performed, one below and one above 2.6 
mm. With a cyclic displacement having a maximum value 
of 2.4 mm, one may see that the evolution of the plastic 
strains stops after the first cycles (Figure 30). The graph 

is plotted for the most stressed point, which is point A 
(Figure 31). One may also see in Figure 31 the final spread 
of plasticity at this shakedown state.

On the other hand, for the second analysis, for which the 
maximum cyclic displacement was set equal to 3.2 mm 
there is a constant evolution of plastic strains (Figure 32) at 
point A, which shows that ratcheting has taken place.

As a final remark, from the common example of the 
framed structure, studied in both the presented methods, 
because of their common basis, it is obvious that one may 
easily determine directly to what kind of asymptotic state 
a cyclic loading of a prescribed history will lead the struc-
ture and at the same time when the history is not known, 
what are the limits of this loading that would lead the 
structure to a safe asymptotic state.

5 � Conclusions
The Residual Stress Decomposition Method (RSDM) is 
a direct method that may determine any kind of cyclic 
asymptotic state of a structure subjected to cyclic loading. 
The power of the method lies in the fact that it directly 
addresses the physics of the asymptotic cycle, by exploit-
ing the expected cyclic behavior of the residual stresses. 
Following their decomposition in Fourier series, a compu-
tational procedure is constructed, which finds the Fourier 
coefficients in an iterative manner. Plasticity effects may be 
easily accounted for, in a radial type return, on the yield 
surface, of the total stress vector, which is the sum of the 
residual stress and of a purely elastic solution. Regions of 
unsafety, either of alternating plasticity or of incremental 
collapse mechanism, may be manifested in a simple way.

RSDM-S is a direct method to compute shakedown 
limits of thermomechanical loading domains. It addresses 
the physics of the limit cycle, where the residual stresses 

Figure 28  Tee junction and mesh discretization

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60

Im
po

se
d 

di
sp

la
ce

m
en

t (
m

m
)

No of itera�ons

Figure 29  Convergence of the displacement towards shakedown 
value

Figure 30  Equivalent plastic strain evolution for imposed maximum 
cyclic displacement of 2.4 mm



Page 17 of 18Spiliopoulos and Kapogiannis ﻿Chinese Journal of Mechanical Engineering          (2021) 34:140 	

are constant in time. Starting from high above shake-
down, the procedure keeps shrinking the loading domain 
until the only remaining term in the Fourier decomposi-
tion of the residual stresses is the constant term.

With no optimization algorithm needed, both 
approaches may be implemented in any existing FE code. 
They are both numerically stable and computationally 
efficient. Only three Fourier coefficients are needed and 
the stiffness matrix needs to be decomposed only once. 
Although von Mises elastic-perfectly plastic material has 
been used, a hardening behavior may also be accounted 
for.
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