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Statistical Analyses of the Strengths 
of Particulate Reinforced Metal Matrix 
Composites (PRMMCs) Subjected to Multiple 
Tensile and Shear Stresses
Geng Chen1,2  , Shengzhen Xin1,2, Lele Zhang1,2*   and Christoph Broeckmann3 

Abstract 

For design and application of particulate reinforced metal matrix composites (PRMMCs), it is essential to predict the 
material strengths and understand how do they relate to constituents and microstructural features. To this end, a 
computational approach consists of the direct methods, homogenization, and statistical analyses is introduced in our 
previous studies. Since failure of PRMMC materials are often caused by time-varied combinations of tensile and shear 
stresses, the established approach is extended in the present work to take into account of these situations. In this 
paper, ultimate strengths and endurance limits of an exemplary PRMMC material, WC-Co, are predicted under three 
independently varied tensile and shear stresses. In order to cover the entire load space with least amount of weight 
factors, a new method for generating optimally distributed weight factors in an n dimensional space is formulated. 
Employing weight factors determined by this algorithm, direct method calculations were performed on many 
statistically equivalent representative volume elements (SERVE) samples. Through analyzing statistical characteristics 
associated with results the study suggests a simplified approach to estimate the material strength under superposed 
stresses without solving the difficult high dimensional shakedown problem.

Keywords:  Direct methods (DM), Particulate reinforce metal matrix composites (PRMMCs), Random heterogeneous 
materials
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1  Introduction
Owing to its outstanding strength-to-weight ratio and 
excellent global isotropy, particulate reinforced metal 
matrix composites (PRMMCs) consisted of ductile metal 
matrix and discrete ceramic reinforcement particles 
became increasingly popular in recent years. In numer-
ous applications where the weight of a structural compo-
nent is a critical issue, besides optimizing the geometry 
and topology of a part, another plausible strategy is to 
replace the metallic materials by PRMMCs. To fully 

exploit the potential of PRMMC materials, it requires 
their mechanical behaviors as well as the relationships 
between these behaviors and underlying material struc-
ture to be well understood. Since experimental investi-
gations alone provide only limited information on these 
issues, advanced micromechanical models were devel-
oped and employed as supplementary means. Using these 
models it was carefully examined and clarified in a large 
body of works how multiple microstructural characteris-
tics, e.g. particle shape [1, 2], size [3, 4], distribution [5, 6] 
individually and jointly influence global material proper-
ties ranging from coefficient of thermal expansion [7] to 
the rate of crack propagation [8].
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Among global material behaviors investigated, the 
load bearing capacity of PRMMCs occupies a central 
place. While due to the complexity of service condition 
that most mechanical parts made by PRMMCs are sub-
jected to, it is essential that the material strengths under 
both monotonic and cyclic loading can be accurately 
predicted. To this end, direct method based on Melan 
and Koiter’s theorem has a remarkable advantage over 
the conventional incremental method since they allow 
the strengths to be calculated without considering the 
specific load history. Using direct methods (DM) con-
structed from static theorem in conjunction with the 
finite element (FE) based homogenization techniques, 
Weichert et al. [9], Magoariec et al. [10], Bourgeois et al. 
[11], Zhang et  al. [12], You et  al. [13], Chen et  al. [14], 
Zhang et  al. [15, 16] elucidated in their works how the 
macroscopic feasible load domains of different heteroge-
neous materials can be calculated. Similarly, macroscopic 
strengths were also evaluated from numerical methods 
developed based on kinematic theorem, Carvelli [17], 
Chen and Ponter [18], Barrera et al. [19], Li and Yu [20, 
21], Canh et al. [22].

Strengths of PRMMC materials are not only affected by 
the material microstructure, but also by the type of load-
ing they are exerted to. Compared to the uniaxial loading, 
microstructure plays a more important role in determin-
ing the global material strength under multiaxial load-
ing featured by superimposed tensile and shear stresses 
[23, 24]. When the material strength is predicted in such 
circumstance, i.e., given that multiple tensile and shear 
stresses vary independently, then in contrast to the severe 
difficulty by using incremental method the problem can 
be tackled more easily and with a more affordable cost 
by adopting direct method thanks to their path-inde-
pendent nature. Extending direct method to high dimen-
sional load space and improving the numerical efficiency 
in solving the resulting optimization problem have been 
extensively studied in several works, e.g., Kim and You 
[25], Simon and Weichert [26] explained how to formu-
late and solve such a problem by nonlinear programming, 
Spiliopoulos and Panagiotou [27] by a novel numerical 
procedure called Residual Stress Decomposition Method 
for Shakedown (RSDM-S), and Peng et al. [28] by a stress 
compensation method.

One intrinsic difficulty related to micromechanical 
analysis of PRMMC materials is that, unlike most fiber 
reinforced composites, the material often has a random 
microstructure. As pointed out in many research works 
[7, 29, 30], predicting material behaviors of PRMMCs 
from unit cell models or representative volume ele-
ments (RVE) having an improper size may lead to 
strongly biased results. To account for the randomness 

in the material microstructure and to objectively reflect 
its influence in the model, one generally acknowledged 
solution is to employ statistically equivalent represent-
ative volume elements (SERVEs) [31]. According to this 
theory, instead of from one individual RVE, the mate-
rial behavior should be viewed from a statistical point 
of view and predicted from a set of SERVE models. One 
key premise for studying PRMMC materials by SERVEs 
is to have capable algorithms for creating a sufficient 
number of samples. In this regards, algorithms such as 
random sequential absorption and modeling software 
such as Digimat and Dream3D have greatly reduced 
the effort required for generating samples and therefore 
make this strategy a viable means for studying PRMMC 
materials.

In our previous works [32, 33], an integrated numeri-
cal approach for predicting the ultimate strength and 
endurance limit of PRMMC materials is proposed which 
incorporates homogenization, direct methods, and sta-
tistical analysis. In the present study, this method is 
extended to the case of high dimensional load space 
such that the strengths of PRMMCs subjected to super-
imposed tensile and shear stress can be evaluated. To 
exhaustively investigate the material behavior under all 
plausible combinations between two tensile and one 
shear stresses, a method for generating optimally dis-
tributed weight factors in an n dimensional space is 
developed. Using this method, endurance limit of an 
exemplary PRMMC material, WC- 30 Wt.% Co, sub-
mitted to three stresses is evaluated from many SERVE 
samples.

2 � Direct Method Based Strength Prediction
2.1 � Overall Strengths of Heterogeneous Materials
Macroscopic strengths of heterogeneous materials can 
be predicted by applying direct method to RVE sam-
ples. To do this, the material should be considered in 
two well-separated scales: The microscopic scale y in 
which the RVE exists and the macroscopic scale x large 
enough that the heterogeneities smear out. Two scales 
are related by a scale parameter δ

For a heterogeneous material, once it is subjected to 
external loading, microscopic stress field σ and the mac-
roscopic one Σ satisfy the relationship

(1)y =
x

δ
.

(2)Σ =
1

Ω

∫

�

σ (y)dV =
〈

σ (y)
〉

.



Page 3 of 12Chen et al. Chinese Journal of Mechanical Engineering          (2021) 34:142 	

Here �·� stands for the mean-field averaging operator, and 
Ω indicates the RVE domain. Similarly, the relationship 
between strains in micro and macro scales satisfy

The microscopic strain ε can be decomposed into two 
parts: The average value E and a fluctuating part ε∗

When the overall behavior of the RVE is purely elastic, 
then Σ and E are correlated by an effective elastic tensor 
C

If the material is isotropic in the macro scale, then C can 
be uniquely determined from effective Young’s modulus 
Ē and effective Poission’s ratio ν̄.

Given that the heterogeneous material is composed of 
elasto-plastic constituents, its global ultimate strength 
�U and endurance limit �∞ correspond to plastic and 
shakedown limits, respectively. Here, plastic limit can 
be viewed as a particular case of shakedown in which 
the load is only allowed to vary monotonically. The fea-
sible load domain of a material can be calculated from 
DM by imposing either E or � as boundary conditions 
[9], where the former case refers to the kinematically 
uniform boundary condition (KUBC) and the latter 
case the statically uniform boundary condition (SUBC). 

(3)E =
1

Ω

∫

�

ε(y)dV =
〈

ε(y)
〉

.

(4)ε(u) = E + ε∗ .

(5)Σ = C : E.

Here, ∂� refers to the RVE surface, n the outer surface 
normal, and u∗ the fluctuation part of the displacement 
corresponds to ε∗ . Because the material studied in this 
work is non-periodic, some modifications were made on 
conditions given in Eqs. (6) and (7): Instead of enforcing 
the node-wise anti-periodicity of the stresses and perio-
dicity of the fluctuating strain, it is only required �ε∗� and 
�ρ̄� to be zero. In other words, when an RVE is subjected 
to SUBC, �ρ̄� is only required to be divergence free inside 
� and have no contribution on the macroscopic stress.

2.2 � Generating Optimally‑Distributed Weight Factors 
in an n Dimensional Load Space

In the present study, the aim is to evaluate strengths of 
RVEs simultaneously subjected to two tensile and one 
shear stresses, all vary independently. To this end, we 
introduce in this section a pragmatic algorithm which 
systematically generates optimally-distributed weight 
factors in an n dimensional load space.

When an elastic-perfectly plastic structure is submit-
ted to NL independently varying loads P̂n(x, t) , P̂n can 
be decomposed into two parts: A time independent base 
P̂0n(x) corresponds to the load pattern and an associated 
coefficient µi describes the load magnitude. This way, 
as shown in Figure  1, a specific load history H can be 
defined as

where H is a trajectory in the n dimensional load space L

(8)H(x, t) =

NL
∑

i=1

P̂i(x, t) =

NL
∑

i=1

µi(t)P̂0i(x) ,

(9)L =

{

H(x, t)

∣

∣

∣

∣

∣

H(x, t) =

NL
∑

i=1

µn(t)P̂0n(x), ∀µn ∈ [µ−
n ,µ

+
n ]

}

.

Figure 1  Load domain L and vertices Pk

For a periodic heterogeneous material in the absence of 
the body force subjected to SUBC, Magoariec et al. [10] 
proposes a static shakedown condition which requires 
the stress field associated with the reference elastic 
body BE , σ e , and the time invariant residual stress field 
ρ̄ to satisfy

(6)

σ e :



















∇ · σ e = 0 in � ,
σ e = C : (E + ε∗) in � ,
σ e · n anti-periodic on ∂� ,
u∗ periodic on ∂� ,
�σ � = � .

(7)ρ̄ :







∇ · ρ̄ = 0 in � ,
ρ̄ · n anti-periodic on ∂� .
�ρ̄� = 0 .
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Here, µ−
n  and µ+

n  correspond to the lower and upper 
bound of a loading P̂n , respectively. L is a convex domain 
with NV = 2n vertices. We denote each vertex by Pk , so k 
could be any integer between 1 and NV.

Due to the linearity of elastic stresses, σ e can be seen as 
a superposition

As  Eq. (10) indicates, for a specific load history, only 
the magnitudes of loads are varying, thus it is justified 
to completely focus on coefficients µn . By separating µn 
from their original basis P̂0n and merging with the unit 
basis en , a load magnitude vector µ can be formed. All 
feasible µ with µn ∈ [µ−

n ,µ
+
n ] constitute a domain

It is evident that an one-to-one mapping can be estab-
lished between elements in L and U . The benefit for 
introducing U is, that the physical nature of a specific 
loading becomes unimportant; loadings P̂n differ only by 
their magnitudes. For simplicity, each basic loading P̂0n 
should be adjusted to a comparable level, e.g. all corre-
spond to the elastic limit. Then with µn varying inside 
µn ∈ [µ−

n ,µ
+
n ] , all admissible load combinations can be 

exhausted.
To illustrate the algorithm for generating µ with the 

lowest complication, the discussion is restricted to a 
particular load case where any given load P̂n is forced 
to vary within [0,µ+

n P̂0n] . In spite of this restriction, it 
is clear that by replacing 0 in the nth entry in result by 
µ−
n P̂0n , the outlined approach can be easily generalized 

to account for reversed loading as well. To derive σ e at 
all NV load vertices in an n dimensional load space, we 
define a matrix U ∈ R

NV×n whose each row corresponds 
to a binary index of a vertex k

Based on U  , a load magnitude vector µ can be converted 
to a combinatorial matrix Uµ ∈ R

NV×n

(10)

σ e(H(x, t)) =

NL
∑

n=1

σ e

(

P̂n

)

=

NL
∑

n=1

µi(t)σ
e

(

P̂0n

)

.

(11)U =
{

µ

∣

∣

∣
µ ∈ R

NL,µn ∈ [µ−
n ,µ

+
n ]

}

.

(12)U =



















1 1 1 · · · 1 1 1
1 1 1 · · · 1 1 0
1 1 1 · · · 1 0 1

:
:

0 0 0 · · · 0 0 1
0 0 0 · · · 0 0 0



















.

The purpose of Uµ is to superpose stress calculated from 
each individual loading P̂0n to all NV vertex stresses σ e

k
 . 

To do this, first we arrange stress associated with each 
basic loading P̂0i in following matrix form

In this equation, σ e(P̂0n) is a column vector consisting 
of stresses at all NG Gaussian points. When a 3D model 
is considered, the length of σ e

i
(P̂0n) is 6 · NG . Using σ e

B
 

introduced in Eq. (14), σ e

k
 at all load vertices can be cal-

culated by

In DM, load factor α is often evaluated for many differ-
ent combinations of P̂i . As  Eq. (13) implies, each com-
bination can be viewed as a polyhedron whose vertices 
generated from a different µ . A challenge in DM is to use 
the least number of µ to approximate the domain U . For 
two independently varied loads P̂01 and P̂02 , one sim-
ple way to generate a series of µ is introducing an angle 
θ ∈ [0, 2π]

(13)

Uµ =[U ][diag(µ)]

=[U ]



















µ+
1

µ+
2

µ+
3

. . .

µ+
n−1

µ+
n



















=



















µ+
1 µ+

2 µ+
3 · · · µ+

n−2 µ+
n−1 µ+

n

µ+
1 µ+

2 µ+
3 · · · µ+

n−2 µ+
n−1 0

µ+
1 µ+

2 µ+
3 · · · µ+

n−2 0 µ+
n

:
:

0 0 0 · · · 0 0 µ+
n

0 0 0 · · · 0 0 0



















.

(14)σ e
B =

[

σ e
i
(P̂01) σ e

i
(P̂02) · · · σ e

i
(P̂0n)

]

.

(15)

σ e

k
=[σ e

B][Uµ]
T

=
�

σ e
B

�























µ+
1 µ+

1 µ+
1 · · · 0 0

µ+
2 µ+

2 µ+
2 · · · 0 0

µ+
3 µ+

3 µ+
3 · · · 0 0

:
:
:

µ+
n−1 µ+

n−1 0 · · · 0 0
µ+
n 0 µ+

n · · · µ+
n 0























=
�

σ e
1 σ e

2 · · · σ e
NV

�

.

(16)µ =
(

cos θ sin θ
)T

.
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Similarly, when three independently varying loads P̂01 , 
P̂02 and P̂03 are considered, one can use two angles 
θ ∈ [0,π] and ϕ ∈ [0, 2π]

Although this approach is simple, it is hard to be gener-
alized to cases n > 3 . Meanwhile, the method requires 
users to specify the values of parameters, e.g., θ and φ 
in Eq. (17), therefore when these parameters are inappro-
priately selected, µ ’s will have a severe inhomogeneous 
distribution in U . To remedy such problem, we devel-
oped a simplealgorithm.

Before illustrating this algorithm, we assume  that 
P̂0n has already been adjusted to a comparable level, in 
other words, σ e(P̂0n) are in similar magnitudes. Based 
on this premise, we could fix all µ+

n  to 1 and discretize 
the interval [0, 1] associated to P̂0n to a grid vector pn of 

(17)µ =
(

sin θ cosϕ sin θ sin ϕ cos θ
)T

.

the length ln . Because each pn can be viewed as a set {pn} 
whose elements are vector’s components, the load set 
U can be generated by calculating the Cartesian power 
p1 × p2 × · · · × pn . The U generated in such a manner is 
a set consisting of 

∏

n

i=1 li elements where each element 
represents a vector µ ∈ R

n . It is easy to figure out that 
many µ in U have different norms but same directions. 
These vectors are repetitive because their difference in 
norms can be compensated by the load factor α calcu-
lated from DM. Due to this reason, only vectors differing 
in terms of directions should be remained in U and the 
repeating ones should be removed. To do this, as shown 
in Figure  2 we normalize vectors in U and remove the 
repeating ones after normalization. It is noteworthy that, 
after doing this µ in U are no longer evenly distributed. 
To optimize the distribution, the distance between each 
paired vector �µ is evaluated and once ‖�µ‖ drops below 
a user-defined tolerance ǫ , two vectors are regarded as 
identical and one of them is removed from the set (see 
Figure 2(b)). Using this method, by adjusting parameter 
ǫ , one can easily control the size of U and generate the set 
with optimally distributed µ’s.

2.3 � Optimization Problem from the Static Shakedown 
Theorem

Employing shakedown conditions outlined in  Eqs. (6) 
and (7) and discretizing the physical fields by FE formu-
lations, the macroscopic strengths of RVEs composed of 
elastic perfectly plastic materials can be calculated from 
following optimization problem

Here, α is the load factor, C the equilibrium matrix, ρ̄i 
the stress tensor in the ith Gaussian point, σ e

ik
 the abbre-

viation of σ e
i
(Pk) which means σ e at Gaussian point i and 

load vertex k, σY  the yield strength, F the yield function. 
Solving Eq. (18) yields the load capacity of the RVE, and 
depending on if k = 1 or k > 1 the calculated strength 
corresponds to either ultimate strength �U or endurance 
limit �∞.

Following steps elucidated in our previous work [32] 
problem Eq. (18) can be transformed into an equivalent 
one whose inequality constraints are Euclidean ball con-
straints. Since after this transformation the problems 
obtained are typical second-order cone programming 
(SOCP) problems, they can be solved efficiently using 
commercial optimization solvers such as Gurobi [34], 
CPLEX [35], MOSEK [36], among others. In the present 
study, solver Gurobi is employed to calculate strengths 

(18)

minimize
ρ̄,α

−α

subject to
∑

NG

i=1 C i ρ̄i = 0,

F(ασ e

ik
+ ρ̄i)− σ 2

Y i
≤ 0

∀i ∈ [1,NG]; k ∈ [1,NV ].

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

µ2[-]

µ1 [-]

µ
3 
[-
]

(a) Normalized weight factors

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

µ2[-]

µ1 [-]

µ
3 
[-
]

(b) After removing repeated ones
Figure 2  Generation of optimally distributed weight factors
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of RVE for cases NV = 1, 2 and 8 by solving optimiza-
tion problems. Here, NV = 1 yields the ultimate strength 
�U , NV = 2 the endurance limit under proportionately 
varied three loads �2P

∞  , and NV = 8 the endurance limit 
under disproportionately varied three loads �8P

∞ .

3 � Numerical Results
3.1 � Configuration of FE Models
In the present study, an exemplary PRMMC mate-
rial, WC - 30 Wt.% Co, was chosen, and by adopting 
the numerical approach explained above we studied its 
mechanical behaviors under two tensile and one shear 
stresses. Microstructures of WC - 30 Wt.% Co are simi-
lar to the scanning electron microscope (SEM) image 
shown in Figure 3 where the dark grey areas are Co and 
the bright areas are the WC-grains with their character-
istic prismatic shape. The average size of carbide phase is 
dWC = 2.35 µ m. Using a modeling technique developed 
in-house, fifty SEM images were cropped to 40 µ m × 40 
µ m squares and converted to FE models. All these mod-
els share a same mesh pattern: Elements distant from the 
phase boundaries were assigned a global size of 0.8 µ m 
and elements close to the phase boundaries with an edge 
length of 0.2 µ m. Meanwhile, as has been highlighted 
in our previous work [32], on the one hand, 3D models 
demand a huge amount of computational power to be 
calculated and therefore are too expensive for a statisti-
cal analysis, while on the other hand both plane strain 

and plane stress models make extreme idealizations of 
the material behavior in z direction and show a nontriv-
ial mesh sensitivity. For these reasons, due to its limited 
modeling complexity and insignificant mesh size depend-
ence, 2.5D models obtained by extracting 2D models for 
1 µ m in the z direction were employed for the present 
study. Meanwhile, the study is restricted to the infinitesi-
mal strain theory and consider both phases as von Mises 
materials with parameters summarized in Table 1.

To perform shakedown analysis and determine overall 
strengths of SERVE samples, elastic analyses were per-
formed in the commercial FE code ABAQUS. In these 
analyses, as illustrated in Figure  4 all fifty samples were 
successively prescribed with global stresses �11 , �22 and 
τ12 by means of SUBC and the elastic stress field under 
each load case was evaluated. Employing these stress 
fields and other key model information such as the shape 
function and node coordinates we constructed the shake-
down problems Eq. (18) at 44 load combinations whose 
weight factors are calculated from the aforementioned 
algorithm. By solving these problems considering one, 
two or eight load vertices, for each sample three feasible 
load domains corresponding to �U , �2P

∞  and �8P
∞  were 

obtained.

3.2 � Statistical Analysis of Elastic Properties
Before analyzing the strengths of RVE samples, we first 
evaluated results gained from elastic analyses. The pur-
pose for studying elastic behaviors is twofolds: Firstly, a 
careful and thorough investigation of elastic responses 
of SERVE samples to the global shear stress is the prem-
ise for understanding their performances, especially the 

Figure 3  SEM image of the PRMMC material WC- 30 Wt.% Co

Table 1  Key material properties

E (GPa) ν σY (MPa)

WC 700 0.24 2000

Co 210 0.30 683

Figure 4  FE mesh and load conditions for SERVE samples



Page 7 of 12Chen et al. Chinese Journal of Mechanical Engineering          (2021) 34:142 	

load bearing capacities, under shear and superposed ten-
sile and shear stresses. Secondly, in reality WC - 30 Wt.% 
Co is an isotropic material, which means it has only two 
independent elastic parameters. Therefore, by comparing 
the effective shear modulus obtained from the mean-field 
homogenization Ḡ with the one calculated from Ē and ν̄ 
and denoted as Ḡ∗ , one may know the degree of sample 
anisotropy and infer from this value if they satisfy basic 
model requirements.

Figure  5 shows the statistical distribution of car-
bide volume fraction WC Vol.%, Ē and Ḡ . In this fig-
ure r stands for the Pearson correlation coefficient and 
the proximity of r to one implies that both Ē and Ḡ are 

determined by the carbide content. Result of the compar-
ative study between shear moduli obtained from two dis-
tinct approaches is illustrated in Figure 6. In this figure |δ| 
is the relative discrepancy defined as |δ| = |Ḡ∗ − Ḡ|/Ḡ . 
Figure  6 shows that the difference between Ḡ∗ and Ḡ is 
insignificant for all SERVE samples. The fact that |δ| is 
no greater than 2.0% for all samples implies that all these 
models demonstrate a sound global isotropy. For this rea-
son, it is justified to conclude that they satisfy the basic 
size requirement and therefore can be used to study more 
sophisticated nonlinear material behaviors.

 Correlation Matrix
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3.3 � Statistical Analysis of Composite Strengths
The average feasible load domain calculated from fifty 
SERVE samples can be found in Figure  7. In this fig-
ure all macroscopic strengths were normalized with 
respect to the binder yield limit in order to emphasize 
the strengthening effect of carbide particles. One can 
easily notice from this figure that in both �11 − τ12 and 
�22 − τ12 planes, �2P

∞  overlaps with �8P
∞  . The reason 

behind this phenomenon can be explained as follows: 
Failure of all samples is caused by the stress state at P1 
in Figure 1, since this vertex plays a dominant role, as a 
consequence it does not make any difference if the ten-
sile and shear stresses have to be proportional or inde-
pendently. The slight difference between �2P

∞  and �8P
∞  

is attributed to the fixed solver configuration param-
eters: The optimization problem Eq.  (18) considering 
two and eight load vertices are remarkably different 
in terms of both variables and constraints, hence it is 
unavoidable that solutions for two cases are slightly dif-
ferent when adopting the same termination criterion. 
In the �11 −�22 plane �2P

∞  is remarkably smaller than 
�8P

∞  , especially in the region close to the π/4 line. As 
explained in Ref.  [32], this phenomenon is caused by 
the fact that when �11 and �22 vary proportional, they 
result in a hydrostatic stress which does not directly 
contribute to the overall strength.

Besides the mean value, the scatter of strengths 
among SERVE samples were evaluated as well and sum-
marized in Figure  8. In this figure the interval between 
[−2SD, 2SD] where SD stands for the standard deviation 
is illustrated as a colored band. Since width of a colored 
band reveals how great the impact of a microstructure 
is, it is clear that with the increase of NV the influence 
of microstructure becomes less critical. The relationship 
between volume fraction and strengths of different kinds 
can be found in Figure 9. One can notice from this figure 
that, unlike elastic modulus, strengths of the PRMMC 
samples are not strongly correlated to the carbide volume 
fraction. Meanwhile, one can see that r between �U in 
11 and 22 directions is 0.47, while r between �∞ in two 
direction becomes 0.70. It means, compared to ultimate 
strengths, endurance limits of samples subjected to nor-
mal stresses in 11 and 22 directions are apparently more 
similar. This again confirms the finding that the micro-
structure has a greater influence on the material strength 
in the context of a monotonic load than a time-varied 
load. Another noteworthy phenomenon in Figure  9 is 
that for both �U and �∞ , the correlation between ten-
sile and shear stresses is insignificant. This implies that a 
microstructure results in an outstanding tensile strength 
does not necessarily results in an outstanding shear 
strength.

(a) Σ11 − Σ22

(b) Σ11 − τ12

(c) Σ22 − τ12

Figure 8  Projection of the load domain on three planes
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To understand what are the main factors determining 
the shear strength of the PRMMC material, we com-
pared stress fields obtained from the DM calculation 
between SERVE samples having poor and excellent shear 
strengths. As can be noticed from Figure  10, the distri-
bution pattern of total stress σ = ασ e + ρ̄ at vertex P1 

are remarkably different for two SERVE samples. For 
the sample having a poor shear strength whose Z-score, 
Zτ∞ , is merely −2.82, the distribution of normalized 
effect stress is quite localized. It means that the overall 
deformation concentrates in a weakest region consisted 
almost completely of the binder phase when the sample 
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is subjected to a global stress. Undoubtedly for a sample 
whose deformation is dominated by such a mechanism, 
the reinforcement particles can hardly contribute and, as 
a consequence, the overall strength of the sample is poor. 
In contrast to these samples, for models in which such 

a weakest region is not obvious, a higher fraction of the 
overall volume would be stressed. Under such circum-
stance, the carbide particles would come into effect and 
the sample would have a higher strength.

To further investigate how SERVE samples react to 
superposed tensile and shear stresses, we separated the 
loads to two groups and considered shear stress as an 
addition to two tensile stresses. Adopting this point of 
view, we viewed 3D feasible load domain by means of 
contour maps. As shown in Figure 11, each contour line 
in such a map corresponds to a 2D load domain with a 
shear stress whose magnitude is displayed. Figure  11(a) 
corresponds to Figure  7 viewed from above, and Fig-
ure  11(b) shows load domains for a randomly picked 
sample. Contour maps reveal how strength under two 
tensile stresses change in accordance to the additionally 
imposed shear stress. These figures can be interpreted as 
a trade-off between two tensile and one shear stresses. 
One noteworthy characteristic pertained to Figure  11 
is that the transition of contour lines alongside increase 
of τ is fairly steady: The shape of contour lines are well 
preserved, and the rate of their shrinkage for all combina-
tions of �11 and �22 are alike. Such a characteristic can 
help with simplifying the strengths prediction practice of 
materials similar to WC - 30 Wt.%. One should bear in 
mind that although by adopting the numerical method 
elaborated in the present work the entire feasible load 

Figure 10  Stress fields in samples with different Zτ∞

(a) Contour map of averaged feasible load domain

(b) Contour map of an arbitrary RVE sample
Figure 11  Contour maps of feasible load domains
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domain under three combined tensile and shear stresses 
can be calculated, the required computational power 
for solving shakedown problems in 3D load space is still 
much greater compared to 2D. For this reason, when 
instead of the accurate value it is only important to know 
how the load domain varies with the additional shear 
stress, then the effort for solving DM problems with eight 
vertices can be saved and one can simply calculate three 
2D load margins and extrapolate them to a 3D surface.

4 � Conclusions
In this paper, the numerical approach for predicting the 
strengths of PRMMCs is extended to take into account of 
independently varied two tensile and one shear stresses. 
A general algorithm is proposed to generate optimally 
distributed weight factors in an n dimensional load space. 
Based on this algorithm the study calculated ultimate 
strengths and endurance limits of fifty 2.5D SERVE sam-
ples modeled from real SEM image of WC- 30 Wt% Co. 
Through studying the statistical characteristics of results, 
the study shows that shear strength is only subtly related 
to both tensile strength and carbide contents, while the 
magnitude of the shear strength is determined by the 
highly stressed volume fraction. In addition, by investi-
gating the load domains by means of contour maps the 
study suggests to decouple the superposed loads and 
simplify a shakedown problem in 3D load space to three 
problems in 2D load space. In the present study, the fail-
ure mode is restricted to the plastic failure and defects 
such as micro pores introduced during the sintering pro-
cess are neglected, the influence of these factors on mate-
rial strength will be investigated in our future studies.
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